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Following the 2013 Boeing 787 Dreamliner incident, NASA teams developed new definitions for battery design 
success criteria for human space exploration:
o Always assume thermal runaway (TR) will eventually happen
o Design should ensure that TR event is not catastrophic
o Demonstrate that propagation to surrounding cells will not occur

Thermal management systems designed to mitigate the effects of thermal runaway and prevent cell-to-cell 
propagation should consider the following 1:
o No two runaway events are the same; even for the same manufacturer and state-of-charge; there is a range of possible outcomes
o Onset temperature, acceleration temperature, trigger temperature, trigger cell peak temperature and neighbor cell peak temperature
o Total energy released through sides and top of the cell body
o Cell failure type (e.g. side wall vs. top), system pressure increase, gases released and ejecta material

Optimization of battery assemblies that satisfy the aforementioned strategies requires knowledge of the following:
o Total energy output range during TR for a single Li-ion cell
o Fraction of TR energy transferred through the cell casing
o Fraction of TR energy ejected through cell vent/burst paths
o The need for these data points was one of the primary drivers for the development of the fractional thermal runaway calorimeter (FTRC)

Spacesuits Launch Vehicles Space Station RoboticsSpacecraft

1 Crewed Space Vehicle Battery Safety Requirements. JSC-20793 Rev D. JSC Engineering Directorate, Power and Propulsion Division
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NASA recently developed a small format fractional thermal runaway calorimetry (S-FTRC) method for Li-ion cells 
(18650, 21700, & D formats ranging up to 5 Ah in capacity) which provides data necessary for discerning (1) total 
heat output and (2) the fraction of heat released through the cell casing vs. ejecta material:
o The energy distributions are determined by post processing temperature vs. time for each calorimeter sub-assembly (i.e. σ𝑚𝑖𝐶𝑝𝑖𝑑𝑇𝑖)

o Uses high flux heaters or nail penetration to initiate TR quickly (i.e. relevant to field failure)
o Simple operation enables multiple experiments per day
o Optional interface for measuring the gas exhaust heat

After the success of the S-FTRC there was a desire to develop similar capability for larger format Li-ion cells:
o A new NESC assessment was initiated in early 2018 to develop a large format fractional thermal runaway calorimeter (L-FTRC) capable of 

supporting cell formats with capacities greater than 100 Ah
o This NESC lead assessment involves collaboration with the NESC, NASA Johnson Space Center, NASA Glenn Research Center, SAIC, and USRA
o A recent test series was conducted at the NASA JSC Energy Systems Test Area (ESTA) with the L-FTRC where 14 134 Ah GS Yuasa Li-ion cells 

were triggered into thermal runaway via nail penetration; this presentation provides description of the preliminary results from this test series
o No pictures or images depicting the L-FTRC will be shown in this presentation

F R A C T I O N A L  T H E R M A L  R U N A W AY  C A L O R I M E T R Y  ( F T R C )
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Insulation: FOAM GLAS• ONE™ insulation is used 
to isolate the calorimeter from the environment 

Housing: Lightweight and 
shipping ready housing is 
employed to support 
hardware mobility 

Ejecta Mating Assemblies: Captures 
ejected solids such as the electrode 
winding 

Cell Chamber Assembly: Includes heating 
system for thermally induced failure and 
mounting point for nail penetration system 

Ejecta Bore Assemblies: Stow down and 
extract heat from escaping flames and gas 



The primary goal for the L-FTRC is to characterize both the total thermal runaway energy release and the fractions 
of energy released through the cell casing vs. the jellyroll vs. the ejected gases and effluents:
o This is accomplished by calculating the σ𝑚𝑖𝐶𝑝𝑖𝑑𝑇𝑖 +𝐻𝑒𝑎𝑡 𝐿𝑜𝑠𝑠 of the calorimeter hardware and then by dividing said energy calculations based 

on sub-assembly; different sub-assemblies represent the fractions of energy released for each area of interest (cell body, jellyroll, ejecta)
o The images below depict a sample thermal profile of the L-FTRC components after a 134 Ah GS Yuasa cell is triggered into thermal runaway via 

nail penetration

P R E L I M I N A R Y  T E M P E R A T U R E  P R O F I L E S

Individual Measurements Multi-Pin Connector A Multi-Pin Connector B Multi-Pin Connector C

Multi-Pin Connector D Multi-Pin Connector E Multi-Pin Connector F Multi-Pin Connector G
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Using the aforementioned σ𝒎𝒊𝑪𝒑𝒊𝒅𝑻𝒊 +𝑯𝒆𝒂𝒕 𝑳𝒐𝒔𝒔 calculations, the baseline and loss-corrected total energy 

releases as a function of time from trigger can be calculated:
o Approximately 1500 s are required for the total energy to be “realized” by the system (this is a function of the thermal mass of the system)
o Until the data is vetted more thoroughly, the same technique used with S-FTRC data will be used to calculate the fractions; i.e. the distribution of 

energy 15 s after trigger will be assumed to be representative of the thermal runaway energy fractions
o The corresponding preliminary total energy curves and energy fractions for the previously shown temperature profiles are given below

P R E L I M I N A R Y  E N E R G Y  C A L C U L A T I O N S

Cell Body
(0.035 MJ)

Jellyroll
(1.5 MJ)

Ejecta and 
Gases

(0.8 MJ)

Preliminary Loss-Corrected Total Energy Release: 2.34 MJ
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Since no two TR events are the same, test-to-test variability must be taken into consideration for any scientific 
effort that seeks to characterize the overall range of expected thermal runaway behavior for a given cell type

It is helpful to consider the variability of thermal runaway energy release as a statistical distribution to help 
answer the following questions:
o What is the highest probability energy release? What is the lowest?

o What is the absolute maximum energy release one could expect? Minimum?

o We recommend 10 experiments to characterize this distribution; the results for 8 of our experiments are shown below.

P R E L I M I N A R Y  E V A L U A T I O N  O F  T O T A L  E N E R G Y  R E L E A S E  V A R I A B I L I T Y
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A secondary goal for this assessment was to determine the volume, composition, and energy fractions of the gas 
that is expelled from the cell during thermal runaway:
o Our system allows us to measure the flow rate of gases as they exit through a specialized exhaust path

o The flow rate is integrated over time to calculate the total volume of expelled gases

o A sample flow rate plot (for the same example experiment used previously) is shown to the bottom left and a plot showing the total expelled 
gases (for the experiments that used the gas collection system) is shown to the bottom right
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Plot Credit: Ryan P. Brown (NASA JSC) and Gary Bayles (SAIC)
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Note that all findings are preliminary and are subject to change as calculations are refined

A large format fractional thermal runaway calorimeter (L-FTRC) for Li-ion cells with capacities greater than 100 Ah 
was developed and testing capabilities were demonstrated: 
o The device supports the discernment of both total energy release and the fractions of energy released through the cell casing vs. the jellyroll vs. 

the ejecta materials and gases

o A test series was conducted at the NASA JSC ESTA where 14 134 Ah GS Yuasa cells were triggered into thermal runaway via nail penetration

o Thermal data, gas flow data, and gas samples were collected

PRELIMINARY FINDING: Of the 8 experiment data sets processed thus far, the average total energy release is 2.45 
MJ with a standard deviation of 0.12 MJ; the corresponding average distribution of energy is 2% through the cell 
casing, 59% through the jellyroll and 39% through the ejecta and gases:
o These values will be updated as the remaining 6 sets of data are processed
o Further work will be conducted to distinguish the fraction of energy in the ejecta vs the gas

PRELIMINARY FINDING: Gas collection and flow rate measurement was conducted for 6 of the experiments; the 
average total volume of expelled gases is 444.3 L

The collected gas samples will be analyzed in the near future to determine gas composition

S U M M A R Y  O F  P R E L I M I N A R Y  F I N D I N G S
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NASA Engineering and Safety Center (NESC)
o Steve Rickman, Kenneth Johnson, and Christopher Iannello, Ph.D.

NASA JSC Engineering Directorate (EA):
o Power and Propulsion Division (EP)
o Structural Engineering Division (ES)

FTRC Team Members

NASA JSC Energy Systems Test Area (ESTA)

A C K N O W L E D G E M E N T S
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