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Abstract: Traditional design typically consists of a master-servant relationship between humans
and machines where the human directly controls what the machine will do and when it will do
it through an interface. The current archetypical path encompasses moving from informational
displays, where the human directly controls the machine based on information displayed, to
automation where the human still directs the machine that then caries out the request using
predefined set of instructions. Rapid pace of technological advancement makes it possible now,
or in a near future, for machines to reach a level of intelligence that enables for systems to
execute tasks/missions without predefined specific instructions; thus attaining a status of non-
human autonomous agents. Now the course of human-machine interface technology changes
from an information system to automation to an autonomous agent—essentially moving from
a master-servant relationship to teammates. This paper discusses these changing relationships
and challenges associated with progressing from a master-servant relationship with technology
to more of an equal teammate. Examples of this progression includes current work encompassing
rotorcraft noise minimization for urban air mobility.
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1. INTRODUCTION

Traditional system design encompassing human operators
and machinery typically consists of a master-servant rela-
tionship between humans and machines. Humans specify
commands the machine will perform and when it will
do these prescribed commands through an interface. The
current archetypical path encompasses moving from in-
formational displays to automation. Within the aviation
realm, the alerting system is an informational display.
Typically a caution or warning message is displayed when
sensors detect out-of-bound parameter(s) indicating a sys-
tem failure. The pilot then uses that information to look
up appropriate checklists which he then completes. For
automation, a common example is the aircraft’s autopi-
lot that moves control surfaces accordingly to carry out
higher-level command such as “ascend at 500 feet per
minute.”

Rapid pace of technological advancement makes it possible
now, or in a near future, for machines to reach a level of in-
telligence that enables systems to execute tasks or missions
without specific predefined instructions; thus attaining a
status of non-human autonomous agents. Choe et al.’s
(2016) and Puig et al.’s (2015) work on time coordination
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of multiple unmanned aircraft, and Widdowson et al.’s
(2018) and Marinho et al.’s (2016) virtual reality research
on small unmanned aircraft around humans are examples
of autonomous agent behavior specified with high level
goals rather than predefined specific instructions. Self-
aware vehicle concept with adaptive mission management
incorporating autonomous control across vehicle subsys-
tems, situation awareness, intelligent contingency man-
agement, decision making regarding given mission and its
execution, introduced in Gregory et al. (2016), to enable
an intelligent autonomous vehicle and research building
upon this concept is another example of machines moving
beyond tightly prescribed actions.

Now the course of human-machine interface (HMI) tech-
nology is rapidly evolving from an information system to
automation to an autonomous agent—essentially moving
from a master-servant relationship to teammates. This
paper discusses these changing relationships and chal-
lenges associated with progressing from a master-servant
relationship with technology to more of an equal team-
mate. An example of this progression is the current work
encompassing rotorcraft noise minimization for urban air
mobility.

2. INFORMATION SYSTEMS

A typical first step for integrating new technology is to
provide information to the human operator so that he



may appropriately control the system. Therefore, the sys-
tem must provide adequate information that appropriately
maintains the situation awareness of the human controller.
This involves, at a minimum, providing information to the
human operator about the current situation. To better
support the human controller, interfaces now typically pro-
vide fused data to aid the human in comprehension of the
current situation and some predictive capabilities about
the future. This is Endsley’s (1995) situation awareness
model.

To provide this information to the human operator, eco-
logical interface design principles (see Vicente and Ras-
mussen, 1992; Vicente et al., 1995; Vicente, 1996) are often
employed, especially in the age of graphical user interfaces
(GUI). These design principles enable constraints and rela-
tionships in the system to be evident to the operator; thus
increasing situation awareness. However, the execution of
a function based on obtained information resides with the
human operator; the human has direct control (Fig. 1).

Fig. 1. Information system block diagram where human
operator has direct control of machine

3. AUTOMATION

As the information proves useful and in the push to
increase efficiency, actions the human operator performs
based on provided information are automated as control
capabilities present themselves. However, execution au-
thority resides solely with the human controller in that
the human authorizes task specific functions to the au-
tomation which performs them in tightly prescribed and
predictable ways (Fig. 2).

Fig. 2. Automation block diagram where human operator
has executable control of machine

Automation executes tasks specified by the human opera-
tor. In this case the interface typically adds commands to
tell the automation what to execute rather than redesign-
ing the whole interface based on a new role, which should
add consideration of the different function allocation be-
tween the human and the automation in addition to the
possibly changed information needs of the operator. Func-
tion allocation between the automation and the human
operator typically is determined by what the automation
can do with the rest of the functions relegated to the hu-
man operator to fill in the gaps irrespective of the human
operator’s capabilities. This frequently results in degraded
overall performance and piecemeal system design.

This type of design that adds automation in a piecemeal
fashion without reconsidering the system as a whole is
driven by a number of factors, among them cost and
recertification, but it introduces its own costs, often hidden
or latent. When the interface and information needs of
the operator are not fully considered, this often results in
automation surprises—“What’s it doing now?” syndrome
(see Sarter and Woods, 1992, 1995; Sarter et al., 1997). An
additional issue that often arises is the lack of communica-
tion from the automation. This results in “silent co-pilots”
as described by Kirlik et al. (2017). To the human oper-
ator, these “silent co-pilots” typically fail abruptly (for
example, see Wilson, 2012). This often results in systems
not being used, thus eliminating potential efficiencies, or
in serious incidents or accidents.

A change in design paradigm is needed when moving from
an information system to automation because the relation-
ship between human and machine changes; however, this
is rarely done. These changes should include moving from
manual control, even in reversionary mode, to more of a
manager of the function the automation is taking over.
This requires different information and thus a different
interface for the manager in addition to changes in func-
tion allocation. Additionally, there are requirements on
automation itself. For the designed function, automation
must demonstrate reliability and predictability as well as
graceful performance degradation as it approaches the pre-
scribed bounds of its authority, unlike current commercial
aircraft autopilot that disconnects abruptly handing the
aircraft in an unusual attitude to potentially situationally
unaware unsuspecting pilot. Moreover, the approach of
authority bounds must be communicated in a timely and
appropriate manner to the operator.

4. AUTONOMOUS AGENTS

Advances in machine learning—especially in vision algo-
rithms and perception—and robotics are allowing move-
ment from “dumb” autonomy to “smart” autonomous
agents that are able to make and carry out decisions within
a defined solution space without a human operator’s input.
In these instances, the autonomous agent becomes part
of a team with humans (Cronk, 2012; Ensor, 2014) but
these autonomous teammates are still learning to deal with
humans (Richtel and Dougherty, 2015; Fairley, 2017).

4.1 Teammates

In teams, members have particular jobs or tasks they are
in charge of but may also be cross-trained so that any
teammate may pick up the tasks of another in case of
task overload or incapacity. Task function allocation is
optimized based on human capabilities. This will need to
occur in teams consisting of both humans and machines,
especially as machines become more intelligent.

As with moving from information systems to automation,
a change in design philosophy is needed when moving from
automation to autonomous agents. Now the autonomous
agent is carrying out a separate task. But to be an effective
team member, the autonomous agent must also be cross-
trained, within its capabilities, which then requires fluid
function allocation in the team when the need arises. With



fluid function allocation, there will be bidirectional task
assignment from human to machine and vice versa.

4.2 Characteristics of Good Teammates

Communication. Communication is core to a successful
team. This will ensure that all members of the team,
whether human or machine, have the same understanding
of the goals, objectives, current situation, and plans. For
human team members, understanding machine decisions
is paramount. Essentially, machine behavior needs to be
transparent to the human teammates. An approach to
understanding, developing, and maintaining communica-
tion is the Army Research Laboratory situation awareness-
based transparency (SAT) model (Chen et al., 2014),
which mirrors Endsley’s (1995) situation awareness model.
The first level consists of basic information such as pur-
pose, process, and current performance and status. The
second level consists of rationale or the agent’s reasoning
process which may include environmental and other con-
straints. The third level consists of outcomes and includes
projections of future outcomes, uncertainty, likelihood of
success, and performance history.

Trust. Teammates must trust one another to make cor-
rect decisions and to carry out tasks. This is usually devel-
oped while training and working together when team mem-
bers learn to predict one another’s actions. Thus, trust is
based on experience and predictable behavior. Trust has
traditionally been subjective but research is now ongoing
looking at humans developing trust in autonomous agents
who display possible outcomes and decision making (for
example, see Beller et al., 2013; McGuirl and Sarter, 2006;
Verberne et al., 2012). Additionally, there is some pre-
liminary research in trying to objectively measure trust
(Trujillo, 2018). Others are now using techniques to cor-
relate trust with physiological responses by linking human
arousal with autonomous agent behavior in proximity to
humans (Widdowson et al., 2018; Marinho et al., 2016).

Sacrifice. A highly functional team incorporates indi-
vidual teammate sacrifice. This is a willingness to sacrifice
own goal optimization to allow mission success. In other
words, local agent optimization is sacrificed for global
mission optimization (Gregory and Trujillo, 2016).

4.3 Other Considerations

Autonomous agents must be able to deal with conditions
that may not have been foreseen during the design or
every possible combination of actions considered. This
implies that autonomous agents must be learning agents
by necessity. This raises an important challenge—how
to assure appropriate actions within the boundaries of
allowed authority. As the autonomous agents become more
intelligent their tasks will become more sophisticated and
safety critical; thus, making assurance a critical, though
not exclusive, part of acceptance.

5. NOISE EXAMPLE

5.1 Noise Information Display

A new system starting down this design path involves
providing helicopter pilots with output from a real-time

helicopter noise algorithm so that the pilot can decrease
ground noise annoyance. Greenwood et al. (2015) has de-
veloped an algorithm that indicates current noise footprint
based on helicopter type, attitude, and external conditions
such as wind. Work is now ongoing to provide a helicopter
pilot real-time information about his noise footprint. Be-
fore development of this algorithm, helicopter pilots used
rules of thumb depicted by a “fried egg” plot (Fig. 3) (Heli-
copter Association International Fly Neighborly Commit-
tee, 2007).

Fig. 3. “Fried egg” plot depicted noise footprint for heli-
copter (from Greenwood, 2017)

With Greenwood’s noise algorithm that considers real-
time blade vortex interaction and helicopter attitude, a
display indicating actual noise footprint on the ground and
changes in helicopter attitude to decrease this footprint is
now possible. Here, the team consists of the algorithm with
its associated displayed information and the pilot who acts
on this information. Function allocation is not a concern
because the algorithm only provides information. This
information must be conveyed such that the helicopter
pilot understands the noise footprint projection on the
ground and current noise levels based on the helicopter’s
attitude. It should also inform in real time attitude changes
needed to decrease the noise on the ground. This incorpo-
rates all aspects of the SAT model. As long as the noise
footprint changes as expected with helicopter attitude,
trust is maintained in the system. Because this is only an
information system, sacrifice does not factor in because
the helicopter pilot has sole authority in changing the
helicopter’s attitude. Therefore, for an information system,
communication and trust are the primary factors in the
system.

Other consideration for an information display for heli-
copters include several operational aspects. For example,
ground noise is a factor primarily when the helicopter is
close to the ground. When close to the ground, helicopter
pilots are looking out, not looking in at their instrument
panel. This forces the options for the information display
to be a small succinct display, a helmet-mounted or head-
up display, tactile or aural cues, or a training aid that
is used between flights. Currently a training aid is being
developed that will also test the visual implementation of
information (Fig. 4 on the next page).

With the noise algorithm, piloting commands are available
to decrease this noise footprint. This initial information



Fig. 4. Example Real-Time Helicopter Noise Footprint
(from Greenwood, 2017)

display will indicate to the helicopter pilot suggested
commands to decrease noise footprint such as “laterally
accelerate and/or ascend” (Greenwood, 2017). With these
commands comes the possibility of automating them.

5.2 Noise Automation

There is ongoing work to further automate noise reduction
for both helicopters and other multi-rotor vehicles envi-
sioned for Urban Air Mobility (for example, see Gregory
et al., 2018). In particular, for multi-rotor vehicles, noise
abatement is multi-tier control problem that is tightly
coupled to a particular configuration. Different vehicle
configurations are more or less amenable to noise control.
Given a configuration, noise abatement becomes part of
close-loop control of vehicle flight/propulsion system. At
the next tier, noise control is part of vehicle trajectory. For
automation, the pilot receives the suggested trajectory and
makes the final decision. Figure 5 illustrates the difference
a noise constraint can make in trajectories for a minimum
time mission. Given the pilot’s understanding of priorities,
either can be selected and automatically flown.

Designing a system where automation can implement a set
of instructions now requires a different function allocation
scheme where the human is moving more towards being
an operator rather than directly controlling a vehicle.
Therefore, in the above example, function allocation roles
are fairly static—the automation flies the trajectory once
the operator chooses which one to follow. This will only
change when the operator behaves more as a pilot—i.e.,
taking manual control—and the automation becoming an
information display. These reversionary modes must be
taken into consideration in the design but the relationship

Fig. 5. Minimum time trajectory for a single vehicle
without and with acoustic constraint at a single
observer location. Relative noise level is provided by
the temperature map.

between the human and the automation is still a master-
servant relationship.

The automation must still communicate to the operator
the possible trajectories and the information provided
should also indicate the reasoning behind various tra-
jectories (e.g., minimum time, minimum distance) and a
projection of whether various constraints will be met at the
end state. This cost function is a low level of sacrifice on
the part of the automation. In addition to minimum time
(Fig. 5), mission objective may require minimum energy
expenditure as the performance metric. Figure 6 illustrates
the difference between vehicle flying at constant speed
with and without noise constraints. Again, in this case,
the pilot has options on which trajectory to select. If the
algorithm is consistent in providing feasible trajectories
once a performance metric is selected, it becomes trusted
and under less scrutiny by the pilot. Trust is then increased
in the system as the operator uses the automation and
it performs as expected—such as minimizing noise while
arriving on time. Another consideration is that the tra-
jectories must be achievable. If they are not, trust in the
system is lost with the possibility of the system becoming
suboptimal because the operator may be more prone to
manually controlling the vehicle.

Fig. 6. Constant speed trajectory for a single vehicle
without and with acoustic constraint at a single
observer location. Relative noise level is provided by
the temperature map.

5.3 Noise Autonomy

The urban air mobility market, to be economically fea-
sible and pervasive, requires autonomous vehicles carry-
ing people or cargo. In addition to autonomous flight,
noise is one of the major barriers. At the mission level
multiple, potentially contradictory, requirements must be
considered. These include mission performance (e.g., travel
time), energy consumption, dynamic noise signature, and
restricted air space. Even under autonomous flight this is
where human-machine teaming comes into consideration.



The human-mission manager or dispatcher sets the prior-
ities among the various constraints—i.e., determines the
cost function—while onboard mission management system
(MMS) optimizes the route under the specified, potentially
dynamic, constraints, mitigates any failures and provides
tactical mission replanning if necessary. The autonomous
MMS would be in communication with the human dis-
patcher providing updates, receiving new priorities or pro-
viding suggested changes based on potential vehicle safety
impacts.

In autonomous flight the machine selects the appropriate
cost function for the path generation algorithm based
on the priorities specified by the dispatcher. The tech-
nology is built on previous pilot-automation interactions
and justifiable trust, in addition to the rigorous certifi-
cation process. An example multi-objective trajectory is
presented in Fig. 7 illustrating a path for minimum time
and energy, conflicting performance, with and without
noise constraints. Such algorithms provide an illustration
of building blocks to enable assured autonomous flight and
new relationship between human and machines that would
result from it.

Fig. 7. Minimum energy and time trajectory for a single
vehicle without and with acoustic constraint at a sin-
gle observer location. Relative noise level is provided
by the temperature map.

6. CONCLUSION

As machines become more intelligent and can perfor-
mance more sophisticated functions, a new relationship
between human and automation is dawning. This rela-
tionship is moving from master-servant to teammates and
necessitates a different approach to system design, human-
machine information exchange and interface, as well as
placing additional requirements on the machine.
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