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Abstract Extreme ultraviolet (EUV) waves are large-scale propagating distur-
bances observed in the solar corona, frequently associated with coronal mass
ejections and flares. They appear as faint, extended structures propagating from
a source region across the structured solar corona. Since their discovery, over
two hundred papers discussing their properties, causes, and physical nature
have been published. However, despite this their fundamental properties and the
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physics of their interactions with other solar phenomena are still not understood.
To further the understanding of EUV waves, we have constructed the Automated
Wave Analysis and Reduction (AWARE) algorithm for the measurement of EUV
waves. AWARE is implemented in two stages. In the first stage, we use a new
type of running difference image, the running difference persistence image, which
enables the efficient isolation of propagating, brightening wavefronts as they
propagate across the corona. In the second stage, AWARE detects the presence
of a wavefront, and measures the distance, velocity, and acceleration of that wave-
front across the Sun. The fit of propagation models to the wave progress isolated
in the first stage is achieved using the Random Sample Consensus (RANSAC)
algorithm. AWARE is tested against simulations of EUV wave propagation, and
is applied to measure EUV waves in observational data from the Atmospheric
Imaging Assembly (AIA). We also comment on unavoidable systematic errors
that bias the estimation of wavefront velocity and acceleration. In addition, the
full AWARE software suite comes with a package that creates simulations of
waves propagating across the disk from arbitrary starting points.

Keywords: Corona – Waves, propagation – Coronal Seismology

1. Introduction

Extreme ultraviolet (EUV) waves are large-scale propagating disturbances ob-
served in the solar corona. These waves were discovered through observations
made by Extreme ultravioiet Imaging Telescope (EIT) onboard the Solar and
Heliospheric Observatory (SOHO) (Moses et al., 1997; Thompson et al., 1998,
1999), and were hence initally dubbed ‘EIT’ waves. Since those first observations,
over two hundred papers discussing their properties, causes and physics have
been published. EUV waves appear to be strongly associated with coronal mass
ejection (CME) activity (Biesecker et al., 2002), and to a lesser extent with solar
flares (Chen, 2006). However, the initiation of EUV waves and their physical
nature is not completely understood.

Recent reviews by Gallagher and Long (2011), Liu and Ofman (2014), War-
muth (2015) and Long et al. (2017b) present and interpret the EUV wave
literature. In interpreting EUV wave observations, a variety of explanations have
been put forward. Some studies present evidence supporting a magnetohydro-
dynamic (MHD) wave interpretation (Thompson et al., 1998, 1999; Wang, 2000;
Wu et al., 2001; Ofman and Thompson, 2002; Schmidt and Ofman, 2010), while
others argue for what Patsourakos and Vourlidas (2012) call a “pseudo-wave”
due to either the evolving manifestations of a CME (Delannée and Aulanier,
1999; Delannée, 2000; Delannée et al., 2008; Schrijver et al., 2011) or transient
localized brightenings (Attrill et al., 2007a,b). Some authors have found evidence
indicating that the complex brightenings associated with EUV waves can be
due to a combination of both MHD waves and pseudo-waves (Chen et al., 2002;
Chen, Fang, and Shibata, 2005; Zhukov and Auchère, 2004; Cohen et al., 2009).
A unified explanation of this phenomenon is complicated by the broad range of
observed wave propagation speeds (Thompson and Myers, 2009; Warmuth and
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Mann, 2011) and amplitudes of EUV waves. The path of EUV waves have been
observed to be modified by nearly all major coronal features, including active
regions (Wang, 2000), filaments (Liu et al., 2012), coronal holes (Gopalswamy
et al., 2009), streamers (Kwon et al., 2013). Liu and Ofman (2014) and War-
muth (2015) review observations of EUV wave-like behavior including reflection,
transmission and refraction.

EUV waves are also clearly correlated with other dynamic phenomena in
addition to CMEs and flares. For example, investigations such as Thompson
et al. (2000), Zhukov and Auchère (2004), and Podladchikova et al. (2010) have
indicated that the development of coronal dimmings may be closely linked to
the development of EUV waves. Some authors have also explored the potential
of EUV waves in diagnosing properties of the coronal medium that are otherwise
hard to measure, i.e., their use as tools to perform coronal seismology (Uchida,
1970). For example, if a fast MHD wave mode interpretation is assumed, then the
wave propagation speed, coronal density and temperature can all be estimated
from observations, allowing the coronal magnetic field strength to be derived
(Nakariakov and Verwichte, 2005). This value can also be used to test the
accuracy of magnetic field extrapolation codes (Schrijver et al., 2008) and other
indirect measurements of the coronal magnetic field strength (Tomczyk et al.,
2007).

Recent advances in solar instrumentation have allowed substantial progress to
be made over early SOHO/EIT observations. Data from the Solar Terrestrial Re-
lations Observatory (STEREO) Extreme Ultraviolet Imager (EUVI) instruments
provided a significant improvement in both spatial and temporal resolution
(e.g. Long et al., 2008; Veronig, Temmer, and Vršnak, 2008). Critically, with
the launch of Solar Dynamics Observatory (SDO) in 2010, highly detailed,
multi-wavelength observations of EUV waves are now possible, illuminating
the complex structure and interactions of these waves (e.g. Liu et al., 2012).
With these new data, studies of individual wave events (e.g. Long, DeLuca, and
Gallagher, 2011) have augmented earlier kinematic studies (Wills-Davey and
Thompson, 1999; Wang, 2000), improving the description of the initiation and
subsequent deceleration of EUV waves. Nitta et al. (2013) catalogs 171 EUV
waves identified through visual inspection of AIA images in the 193 Å channel
between April 2010 and January 2013.

In order to answer fundamental questions regarding the physical nature of
EUV waves, many waves must be studied using reproducible methods that can
scale to perform automated searches of the AIA data. Such studies are too
time-intensive in scope to be carried out manually. It is challenging to produce
exactly reproducible results using a manual approach applied to large datasets.
Automated feature detection algorithms have an advantage over human detec-
tions of features because they generate repeatable results for the same input
data, i.e. they enable reproducibility. In addition, their ability to examine large
quantities of data quickly makes them a valuable tool and a complement to
manual inspection and analysis. The solar physics community already makes use
of the Computer Aided CME Tracking (CACTus, Robbrecht and Berghmans,
2004) and Solar Eruptive Event Detection System (SEEDS, Olmedo et al., 2008))
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CME catalogs, both of which are generated from automated feature detection
algorithms.

Hence, in this article we present the Automated Wave Analysis and Reduc-
tion in EUV (AWARE) algorithm∗, a new automated EUV wave detection and
characterization procedure applied to EUV image data. Such a fully automated
procedure is essential in order to unlock the full potential of the large full-disk
image datasets available from SDO and STEREO, and enables the characteriza-
tion of EUV waves in large numbers. AWARE has been developed in the Python
programming language, and makes use of features provided by the SunPy data
analysis package (SunPy Community et al., 2015). AWARE is also a fully open-
source and version controlled package, which is freely available (see Section 5)
under a BSD-3 clause license.

In Section 2 we discuss existing algorithms for the detection of solar features,
including EUV waves, and their current status. In Section 3 we discuss in detail
the AWARE algorithm and pipeline. In Section 4 we analyze the performance
of AWARE and demonstrate its diagnostic and characterization features.

2. Existing EUV Wave Detection Algorithms

EUV waves appear as faint, extended, enhancements that propagate against the
complex background structure of the solar corona. Their relative faintness and
structurally complex corona make them difficult to isolate. There are at least
three automated EUV detection methods currently published, the Novel EUV-
wave Machine Observing (NEMO) algorithm, described by Podladchikova and
Berghmans (2005) (see also Podladchikova et al., 2012), the Coronal Pulse Iden-
tification and Tracking Algorithm (CorPITA) described in Long et al. (2014),
and Solar Demon (Kraaikamp and Verbeeck, 2015).

NEMO was originally designed for analysis of SOHO/EIT data, but has since
been modified to analyze STEREO/EUVI images. The original NEMO algorithm
Podladchikova and Berghmans (2005) consists of three components. These are:
1) source event detection, 2) recognition of eruptive dimmings, 3) detection and
analysis of EUV waves. The event detection component is based on the higher-
order moments of running difference (RD) images. A RD image is simply the
difference between two consecutive images. A sharp change in the skewness or
kurtosis of the distribution of RD image values is a reliable signature that an
impulsive event, such as a flare or an EUV wave, has been observed in that image.
Results from NEMO are available at http://sidc.be/nemo/; however, the imple-
mentation ceased operations in 2010 and so there are no new EUV detections
being provided to the community. Podladchikova et al. (2012) is concerned with
advances to original NEMO algorithm with respect to source event detection
and eruptive dimmings, and does not explicitly tackle EUV waves. Example RD
images are shown in the second row of Figure 1.

∗The results shown here were derived using SunPy version 0.7.10, with AWARE code available
at https://github.com/wafels/eitwave/releases/tag/v0.1.
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The second algorithm that has been developed is CorPITA (Long et al., 2014).
CorPITA uses percentage base difference (PBD) images as the foundation for
detection (for example images see the third row of Figure 1). A PBD image is
formed by taking the difference between a selected base image and the current
image, and then scaling that difference by the base image, multiplied by 100.
CorPITA is triggered by the occurrence of a flare. In CorPITA PBD images, the
base image is taken two minutes before the flare start time. The flare position
is used as the origin of the EUV wave; great circles intersecting this origin are
analyzed to identify whether an EUV wave is present. The intensity profile along
the great circle is fitted for each time-step with a multi-Gaussian function, based
on the observation of Wills-Davey (2006) that cross-sections of EUV wave events
have this approximate form. This assumption allows the wave to be characterized
in terms of its position, velocity, and width.

The third algorithm that has been developed is Solar Demon (Kraaikamp and
Verbeeck, 2015). Solar Demon detects three types of solar phenomena - flares,
dimmings, and EUV waves. Whenever Solar Demon detects a flare, its starting
location and time are used to initiate Solar Demon EUV wave detection and
characterization, using percentage running difference images. The percentage
running difference image (PRD, examples are shown on the final row of Figure
1) is calculated by subtracting an image taken two minutes earlier from the
current image, and dividing by the image two minutes earlier. The characteriza-
tion procedure involves de-rotation, limb brightness correction, and divides the
image into 24 sectors. A Hough transform-based scheme is used for identifying
and characterizing the EUV wave front in every sector.

In this context, AWARE provides a new, alternative approach for the detec-
tion and characterization of EUV waves, based on running difference persistence
(RDP images, first row of Figure 1). In the following section, we describe in detail
the image processing and data analysis steps in AWARE, and demonstrate its
application to solar data.

3. The AWARE Wave Characterization Algorithm

AWARE is implemented in two stages. In the first stage, image processing tech-
niques are used to isolate the wavefront. These are described in Section 3.1. In
the second stage, the location of the propagating wavefront is estimated and a
model of the propagation is fit to the wavefront motion. These are described in
Section 3.2.

3.1. Stage 1: Image Processing Steps to Segment the Propagating

Wavefront

As was noted in Sections 1 and 2, EUV waves are difficult to detect since they
are faint, extensive, and propagate over a complex background image, the solar
corona. This realization has driven past attempts to enhance and detect EUV
waves by making use of running difference or percentage base difference images.
However, these images, while enhancing potential wavefronts, remain noisy and
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Figure 1. Illustration of the effect of four different imaging processing techniques applied to
three EUV waves. The columns show the result of applying different differencing methods to
three different EUV wave events as seen in the AIA 211 Å channel. Wave A refers to data
15 February 2011 02:00:24 UT, Wave B refers to 16 February 2011 14:35:48 UT and Wave
C refers to 07 June 2011 06:29:12 UT (see also Figures 14, 16 and 9 respectively). In all
plots, blue pixels indicate a positive change in emission, white indicates no change in emission,
and red indicates a negative change in emission. The first row shows the running difference
persistence (RDP) images used by AWARE (Section 3.1.1), the second row shows the running
difference (RD) images (used in NEMO analysis), and the third row shows the percentage base
difference (PBD, used by CorPITA). The final row shows the percentage running difference
(PRD) images used by Solar Demon. The color representations in the RDP and RD images
are identical; values are linearly scaled in the range -100 – 100. The colors in the PBD images
are linearly scaled in the range -25% – 25%. The RDP images show a cleaner separation of the
propagating bright wavefront compared to the other three differencing methods.
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populated by other extraneous features (see Figure 1). AWARE adopts a new,
simple, and very promising strategy for segmenting an EUV wave wavefront from
image data, running differences of persistence images (Thompson and Young,
2016).

3.1.1. Segmentation Using Running Difference Persistence Images

A persistence image is found by calculating the persistence (or running max-
imum) value of the emission at each pixel at all locations and times. The
persistence value at time t of a time series f(t) is simply the maximum value
reached by that pixel in the time range 0 → t. If at later times the pixel value
increases, the persistence value increases accordingly. If the pixel value decreases
however, the persistence value remains unchanged. Hence, a set of persistence
maps constructed from an image sequence will indicate the brightest values
yet achieved in that sequence at each t. The persistence transform P (t) of the
time-series f(t) is defined as

P (t) =
t′=t
max
t′=0

f(t′). (1)

Figure 2 illustrates the persistence transform P (t) of a time-series of simulated
data f(t). In AWARE, the persistence transform is applied on a pixel-by-pixel
basis on time-ordered sets of AIA images to obtain a persistence transform of
the original AIA images. The running difference of these images generates the
running difference persistence (RDP) images. Figure 1 illustrates RDP images
for three example EUV wave events (these were also analyzed by CorPITA
(Long et al., 2014)). The first row shows running difference persistence (RDP)
images, the basic image type used by AWARE. The second row shows running
difference (RD) images, the basic image type analyzed by the NEMO algorithm
(Podladchikova and Berghmans, 2005). The final row shows percentage base
difference (PBD) images, used by the CorPITA algorithm. Comparison with
RDP images shows that in standard RD and PBD images the wavefront is more
diffuse, and much coronal structure not associated with the wavefront remains
in the image. RD and PBD images also have much denser noise compared to the
RDP images of the same data; hence, separating the EUV wave from the noise
is substantially easier when using RDP images.

RDP images have two desirable properties when searching for EUV waves.
Firstly, only pixels that brighten over previous values have a non-zero value in the
running difference of persistence images, while zero-value pixels correspond to
areas that did not increase in brightness. Hence, since an EUV wave brightens
neighboring pixels as it moves across the Sun, the RDP images isolate those
brightening pixels. In other words, the RDP images isolate the leading part of
the wavefront that brightened new pixels. Secondly, since much of the corona
does not vary significantly during an EUV wave, RDP images show very little
residual coronal structure distant from the EUV, greatly simplifying the resulting
images.
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Figure 2. Example of the application of the persistence transform. The original data f(t) is
shown in blue, and its persistence transform P (t) is shown in red.

3.1.2. Reducing Noise in Running Difference Persistence Images

EUV waves are faint against the background corona and so some additional steps
are applied in order to improve the chance of their detection. The image pro-
cessing steps used to segment the EUV wave from the input data are described
below. In the following, a datacube refers to a three-dimensional array of data
ordered as (x, y, t), two spatial directions (x, y) and one temporal direction t. An
image is a slice in the datacube at a fixed value of time t.

1. Given a set of time-ordered solar EUV images (e.g. SDO/AIA or STEREO/EUVI
data), data are summed in time and space to increase the signal to noise ratio
of the wave against the background. Images may be summed in space as
desired, for example an AIA image may be binned using 2× 2 super-pixels to
form 2048×2048 pixel images. In the time dimension, images may be summed
as required. Typically, pairs or triplets of consecutive images are used. After
this step the datacube consists of ND images (the summations in the space
and time dimensions are used to determine the EUV wave detections shown
in Figures 9, 13, 11, 14, and 16).

2. The persistence transform is then applied to the resulting image set. This
creates a set of persistence images, showing the brightest values obtained in
each pixel (Equation 1) as a function of time.

SOLA: eitwave-paper.tex; 7 August 2019; 10:39; p. 8



An algorithm for the automated characterization of EUV waves

3. Perform a running difference operation on the persistence images. Hence,
only areas that increase in brightness from one time to the next remain. An
example RDP image is given in Figure 3a. There are now ND − 1 images in
a datacube R(x, y, t).

4. The dynamic range of the datacube R(x, y, t) is reduced by applying a square
root transformation. AWARE uses a percentile clipping on the transformed
datacube where the top 1% of the intensity distribution in the datacube are
clipped and set to the value at the 99%th percentile. This filters out spikes
in the data caused by cosmic ray strikes, bright flares, etc. The datacube
is then normalized to the range zero to 1, yielding a datacube D(x, y, t).
The purpose of this step is to remove the high values so that the intensity
distribution better represents the bulk of the image pixels.

5. The above steps extract propagating features from the input datacube.
However, the resulting images Ii (1 ≤ i ≤ ND−1) still show substantial noise.
The following steps are intended to further isolate the wavefront by applying
additional filtering steps that analyze each image at multiple length-scales
rk, 1 ≤ k ≤ Nr.
a) Apply a noise reduction filter to the data cube of images. Our demonstra-

tion algorithm uses a two-dimensional median filter applied to each image
in the datacube. This replaces every pixel in the image with the median
value found in its neighborhood. The median filter used is a circle Crk in
the spatial dimensions with a given radius rk pixels. The median filter is a
commonly used and simple method of removing noise from an image (Gon-
zalez and Woods, 2001). The resulting image is Inoise,k = median(I, Crk).
An example of the effect of this operation is shown in Figure 3b.

b) Apply a morphological closing operation to the noise-reduced image (Gon-
zalez and Woods, 2001). This operation helps to close small ‘cracks’ in
structures. The structuring element used is the same as that used by the
median filtering operation, and generates an image Iclose,k = Inoise,k •Crk ,
where • denotes the morphological closing operator. An example of the
effect of this operation is shown in Figure 3c.

6. The non-zero locations in the image F (x, y) =
∑Nr

k=1 Iclose,k(x, y) indicates
the location of the EUV wave as determined by the multi-scale operations in
the previous step. Note that the temporal summing needs to be large enough
so that when the running difference of the persistence image is calculated
a significant number of pixels are newly brightened in the data so that the
median noise reduction at the specified length scale does not replace those
pixels with zeroes (the background value).

7. Masks indicating the non-zero locations in each image F are created:

mask(x, y) =

{
1 , F (x, y) > 0
0 , otherwise.

The final product is a datacube of time-ordered series of ND−1 masks M(x, y, t)
that localize the bright wavefront of the EUV wave. This is the AWARE stage 1
data product which is used to detect and characterize EUV wave propagation.
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Figure 3. (a) Shows the running difference image between two consecutive persistence images.
The wavefront is already evident. (b) Shows the image at the same time after applying the
median filter (Section 3.1). (c) Shows the resulting image after the morphological closing
operation is applied. This has the effect of filling in small gaps in the detected wavefront (e.g.
Gonzalez and Woods, 2001).

The mask datacube is clearly time-dependent. However, the wave progress can
be summarized for illustrative purposes as a static image by creating a wave
progress map, defined as

wave progress map(x, y) =

{
max(t), M(x, y, t)−M(x, y, t− 1) > 0, 1 ≤ t ≤ ND − 1
0, otherwise.

(2)
The wave progress map summarizes the results of stage 1 of AWARE, indicating
the time at which the leading edge of the wavefront is detected. Figures 4a, 9a,
11a, 13a, 14a and 16a show examples of wave progress maps. In the following
section, the characterization of the EUV wave dynamics is described.

3.2. Stage 2: Determining Wave Dynamics

The output of the first stage of AWARE is a time-ordered series of masks
that indicate regions that were progressively brightening (summarized by wave
progress maps - see Equation 2, Section 3.1 and Figure 4a). The second stage is
to determine the dynamics of the wave using the following steps.
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1. Isolate the increase in intensity due to the EUV wave. This is determined by
calculating S(x, y, t) = R(x, y, t)×M(x, y, t) on a pixel-by-pixel basis, i.e. the
density increase caused by the wave is evaluated at the locations indicated by
the mask.

2. It is known that EUV waves are associated with solar eruptive events and so
this provides a candidate location and start time for the source of the wave.
The candidate location is used as a source from which the wave is launched.
The equivalent pixel locations in the data S of arcs emanating from the source
location and propagating across the sphere of the Sun following the path of
great circles are used, similar to Long et al. (2014).

3. Each arc A has a unique path A(s) = (xs, ys) (0 ≤ s ≤ 1) which is used to
extract data from S(xs, ys, t) at each time t. This creates a two-dimensional
segment of the data as a function of time and distance along the arc. At each
time, the position p(t) of the wavefront and an estimate of the error e(t) in
that position is calculated. For the results shown here,

position(t) =

∑1
s=0 S(xs, ys, t)L(s)∑1
s=0 S(xs, ys, t)

, (3)

where L(s) is the distance along the arc from the initiation point. The position
of the wavefront is the weighted mean location of the wave, weighted according
to the intensity of the wavefront. The error in the position is defined as the
maximum width of the wavefront at time t, that is,

e(t) = L(smax)− L(smin), (4)

where smax = maxs S(xs, ys, t) 6= 0 and smin = mins S(xs, ys, t) 6= 0. Note
that at some times, an estimate of p(t) or e(t) cannot be made. This can
happen when there is no emission at a given time along the arc. These times
are eliminated from further consideration.

4. It is common to find that noise in the data S(x, y, t) yields estimates of p(t)
that are clearly outliers compared to the general trend of other nearby points.
Long et al. (2014) also encounter this issue, and describe a novel iterative
algorithm for deciding which points to consider. Instead, AWARE uses the
Random Sample Consensus (RANSAC) algorithm (Fischler and Bolles (1981),
see also Milligan et al. (2014)) to decide which p(t) can be considered inliers
and which can be discarded as outliers to a possible fit. A point p(t) is
considered to be an inlier if the residual between a test fit and p(t) is less
than the median estimated error median(e(t)). The scikit-learn (Pedregosa
et al., 2011) implementation of RANSAC is used†, with no other changes to
the default selection of choices.

5. The points that remain after steps 3, 4 and 5 are indicated on fit participation
maps (an example of the fit participation map is shown in Figure 4b). If more

†Version 0.19.1 of scikit-learn is used.
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than three points p(t) are found to be inliers via the RANSAC algorithm, the
progress of the wave is fit with a quadratic function

s(t) = s+ v0t+ 0.5at2. (5)

Increasing the number of samples fits and reducing noise (e(t)) increases the
amount of information in the data, improving the fits (Byrne et al., 2013).

3.3. Adjusted CorPITA Score

CorPITA (Long et al., 2014) defines a quality score, referred to here as the
CorPITA score to assess how well determined is each part of the EUV wavefront.
The CorPITA score is defined as

CorPITA score = 100× [Escore +Dscore] /2 (6)

The score weights the fit quality in two parts, an existence component Escore
and a dynamic component Dscore. The existence component is the fraction of
time that has a measurable extent. CorPITA defines the denominator in this
fraction as the number of images processed. However, it is not known a priori at
what time the wave is no longer present or detectable. In AWARE, we assume
that the times of the first and last detections defines the start and end of when
the wave was present and detectable. The existence component measures how
well AWARE captured the existence of the wave over the maximum extent of
its estimated detectable range.

The dynamic component of the score is defined as

Dscore =
1

3

(
vscore + ascore + σrelscore

)
, (7)

where each of the scores have value 1 if the measured value is within pre-defined
limits and zero otherwise. In Long et al. (2014), if 1 < vfit < 2000 kms−1 then
vscore = 1 and if −2 < afit < 2 kms−2 then ascore = 1. If the mean value of
the relative error in the fit position is less than 0.5, then σrelscore = 1. AWARE
uses an adjusted version of the CorPITA score in which vscore is defined as the
integral of a normal probability distribution with mean value vfit and width
equal to the error in vfit, integrated between the same pre-defined limit range as
Long et al. (2014). In comparison, this introduces more fit quality information
to the existing CorPITA score. The quantity ascore is defined similarly. AWARE
calculates this adjusted CorPITA score for each arc.

4. Results

To test the performance of the AWARE algorithm, it is useful to analyze signals
where the underlying wave properties are already known. We therefore apply
AWARE to a simulated wave with known properties, and compare the detection
and characterization of AWARE with the actual wave characteristics. This allows
us to identify systematic errors in the analysis process.
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4.1. Characterization of AWARE Using Simulated Data

The AWARE software suite contains a package that generates simulations of
EUV waves propagating across the disk of the Sun. Many different parameters
of the wave kinematics can be altered, such as its kinematic profile, its width,
dispersion, signal to noise ratio, and origin on the solar disk. This simulation
software is used to assess how well the AWARE detection and characterization
software is performing (Section 3). Section 4.1.1 describes a simulated wave,
the application of AWARE to these simulated data, and compares the AWARE
results to the known properties of the wave. Section 4.1.3 tests the ability of
AWARE to determine if a wave is accelerating or not, and Section 4.1.2 demon-
strates the existence of a systematic bias in the values of v0 and a that must be
present in any algorithm (including AWARE) that allows for the wavefront to
accelerate.

4.1.1. Detection and Characterization of an Example Simulated Wave

A circularly propagating wave with an initial velocity vtrue = 466.5 kms−1 and
acceleration atrue = 1.5 kms−2 is launched from heliographic position (−22◦,−33◦).
The wave has a Gaussian profile in the direction of propagation, with a width
of 0.49◦. The wave has an amplitude of 1 (in arbitrary units). The position of
the wave is calculated once every 12 seconds for 60 consecutive images. Images
are 1024 by 1024 pixels, with diameter of the disk the same width as the image.
Noise in each image is Poisson-distributed with a mean value of 1.

AWARE is implemented on the resulting simulated dataset as follows. To
increase the signal-to-noise ratio (see Section 3.1), the images are binned in to
2 × 2 super-pixels and are pair-summed in time. Finally, the noise reduction
and morphological closing operations are applied (see Section 3.1) using disks of
radius 22′′. The results are shown in Figure 4 and Figure 5.

Figures 4 and 5 illustrate various data products produced by AWARE. Figure
4a is a wave progress map (Equation 2) and shows the pixels at which wave
progress is detected by stage one of AWARE (Section 3.1). Figure 4b shows the
fit participation map, the locations that determine the wave dynamics (found
through AWARE stage 2 - see Section 3.2). Figure 4c shows the fitted arcs and
their CorPITA score. Figure 4d shows the wave progress along each arc as a
function of time since the initiation time. Figures 4e and f show the values vfit
and afit respectively and their estimated error as a function of angle around the
initiation point. Figure 4g shows the wave location and its error as a function of
time along the arc which has the highest CorPITA score. Red lines in each of the
plots (a-f) indicate the location of the arc with the highest CorPITA score. The
remaining lines in Figures 4a-f indicate the 0◦, 90◦, 180◦, and 270◦ longitudinal
extent around the wave source.

Figure 5 shows the distributions of the dynamics of the wave detection. Figure
5a shows a clear dependence of vfit and afit, even although the simulated wave
does not include this dependence. The reasons for this dependence are explored
more fully in Section 4.1.2. Figures 5b and c show the distribution of vfit and afit
with the CorPITA score. All plots demonstrate that although there is a spread
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Figure 4. AWARE applied to simulated data, a wavefront propagating evenly out from an
off-disk center initiation point with an initial velocity of 466.5 kms−1 and an acceleration of
1.5 kms−2. (a) Is the result of stage 1 (Section 3.1), the wave progress map (Equation 2). (b) Is
the fit participation map showing the locations at which the wavefront is fit, and is the result
of AWARE stage 2 (Section 3.2). (c) Is the CorPITA scorefor each of the arcs. (d) Shows the
fitted arcs and the fitted wave propagation. In (a–d) the red line indicates the position and
extent of the arc with the highest CorPITA score. The solid, dashed, dot-dashed and dotted
black lines indicate the 0◦, 90◦, 180◦, and 270◦ angular location around the wave source. (e, f)
Show the mean and standard deviation of the wavefront velocity and accelerations respectively,
as a function of longitudinal angle around the source. (g) Shows the wave progress along the
angle with the best CorPITA score.
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in the values recovered compared to the true values, the mean value is correctly
recovered (see also Figure 4e and f).

Figure 6 shows the average behavior of AWARE as a function of longitude
around the source in recovering the true initial velocity vtrue and acceleration
atrue. The mean value and standard deviation error bars are shown. These
results are found by running AWARE on 100 noisy realizations of the wave
setup described in Section 4.1.1. Even with the very low signal-to-noise ratio of
the simulated wave, the algorithm recovers a range of values that include the
v0 and a values along all arcs, but with a substantial error. There is a small
but systematic offset in the fit value of the acceleration in the range 0 − 180◦.
These systematic effect is caused by projection effects in creating the simulated
data, and in determining which pixels lie on arcs from the initial point. These
systematic effects are more notable in the angular range 180− 270◦ and are due
to foreshortening making fewer pixels available (Figure 4). However, the range of
values indicated by the error bar suggests that the systematic offset is much less
than the expected error due to noise. The error in both vfit and afit increases
in the angular range 180− 270◦, due to the lower number of positions at which
AWARE finds a propagating wave. The average value of vfit decreases here, and
the average value of afit increases, suggesting that the two quantities are not
independent of each other, as was already seen in Figure 5a. This dependence is
explored further in Section 4.1.2.

4.1.2. Velocity-Acceleration Correlation as a Source of Bias

The error in determining the position of the wave is a significant source of error
in determining the errors in vfit and afit. Figure 7a–d shows the scatter in
the fit initial velocity and acceleration found in 10000 noisy realizations of a
test arc. The plots show that fitting any particular realization of the true wave
progress can lead to velocities and accelerations that are very distant from vtrue
and atrue. It is easy to see how the correlation between the fit velocity and
acceleration arises by considering Equation 5 and the fitting process. The fitting
process calculates

D = min

nt∑
i=1

[
s(ti)− p(ti)

e(ti)

]2
(8)

by varying the values of a0 and v0. If the fit finds a value of a0 that is a higher
than the true value then a lower value of v0 is preferred for the minimization.
Similarly, if the fit finds a value of a0 that is lower than the true value then a
higher value of v0 is sought by the minimization routine. This leads to correlated
values of afit and vfit.

It is also notable that the histograms shown in the top and bottom rows of
Figure 7 illustrate different scattering behavior around the true values. This is
due to the number of samples in each time series. For smaller numbers of samples,
there is less information to constrain fit values, and so the scatter about the true
value increases. Increasing the number of samples not only reduces the scatter
but changes the afit, vfit correlation. With more information, a small change in
the value of a0 means that the fit requires a bigger change in the value of v0 in
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Figure 5. Distributions of vfit, afit and the CorPITA score for the fitted arcs of the simulated
data. (a) Shows vfit versus afit; median values and 16% and 84% percentile values of each
quantity are shown (for normal distributions the 16% and 84% percentile values indicate the
mean value plus/minus one sigma). The title of (a) shows the number of arcs fitted out of a
possible 360). Error bars are the one-sigma errors reported by the fit algorithm (stage 2, step
7). (b) shows vfit versus the CorPITA score, and plot (c) shows the CorPITA score versus afit.
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Figure 6. (as) Scatter of recovered values of vfit and afit (b) for 100 runs of AWARE on
different noisy versions of the simulated wave.

order to reach a minimum. This can be understood by considering Equation 8
for two different fits. Assume there is a fit s(t) = S + V t+At2/2 giving a value
D; now perturb that fit and consider s′(t) = (S + s) + (V + v)t + (A + a)t2/2
(for simplicity we also assume that e(ti) is 1 for all ti) giving a value D′. If we
assume that D ≈ D′ (both fits give approximately the same value), and consider
each summand in Equation 8 then

v ≈ −at4 (2A+ a) /4− V at3 + t2
(
As+ Sa+ as+ v2 − ay

)
− 2V st− 2Ss− s2 + 2sy

t3 (A+ a) + 2V t2 + 2t (S + s− y)

→ −a
4

(
2A+ a

A+ a

)
t (9)

as t→∞. Hence as larger times are considered, small changes in the acceleration
inevitably lead to larger changes in the velocity to achieve the same quality of
fit. Equation 9 also explains the negative correlation between the fit velocity and
acceleration.

Figure 7e is generated by creating 200 simulated wavefront propagation pro-
files with random properties and using the fit process described in Section 3.2
to derive values of vfit and afit. The number of samples in each profile is drawn
from Uinteger(10, 60)‡ , and the true initial velocity is drawn from U(0, 1000)and
the true initial acceleration is drawn from U(−1, 1). Plotting vfit against afit
shows an apparent correlation, even although the true values are uncorrelated
since they are drawn from independent uniform distributions. This complicates
the discussion of Long et al. (2017a) as to if there is true, physical correlation
between the initial velocity and the acceleration. One way of estimating if there
is a true physical correlation is to fit multiple noisy realizations of the original
data to generate a probability distribution P (ρ) of correlation coefficients and
then compare that distribution to the correlation coefficient ρo derived from the
original velocity versus acceleration scatter. If the complementary cumulative

‡Uinteger(x, y) is the uniform probability distribution for integers between x, y and U(x, y) is
the uniform probability distribution for real numbers between x, y.

SOLA: eitwave-paper.tex; 7 August 2019; 10:39; p. 17



J. Ireland et al.

probability value 1 −
∫ ρo
−∞ P (ρ′)dρ′ is close to zero then it is very unlikely that

the correlation value ρo arose by chance, lending support that the initial velocity
and acceleration are indeed correlated.

4.1.3. Detection of Accelerating Versus Non-Accelerating Wavefronts

One test for the existence of accelerating wavefronts is to fit linear (n = 1) or
quadratic (n = 2) functions to the progress of the wave along each arc, and
then decide which fit is a reasonable explanation for the data. For illustrative
purposes, we use the Bayesian information criterion (BIC) (Schwarz, 1978) to
perform model selection, in this case, to decide between the linear and quadratic
fits to the arc progress. The BIC is defined as

BIC = −2 ln(L) + k ln(N), (10)

where L is the likelihood function evaluated at its maximum, k is the number of
parameters in the fitting function, and N is the number of values fit. Since we
are assuming that the location of the wavefront is Gaussian-noisily distributed,
maximizing the likelihood function is equivalent to the least squares fit used in
AWARE to fit either linear or quadratic functions to the data. The model with
the lowest BIC is the preferred model.

Figure 8a shows the fit initial velocity vfit derived from fitting the simulated
wavefront using linear and quadratic functions. As expected, the linear function
performs poorly except close to atrue = 0. Away from atrue = 0, the linear
function is attempting to compensate for the accelerating progress of the wave
by changing the initial velocity, leading to initial velocities with magnitudes
much larger than the true value of v0. Figure 8b shows that the quadratic fit
recovers the true acceleration with a relatively small error. Figure 8 c shows the
difference in the BIC for each model. Positive values indicate a preference for the
correct model n = 2 which includes an acceleration. Negative values indicate a
preference for the linear model. The degree of preference is also indicated by the
different colored regions, following the classification of Kass and Raftery (1995).
The plot shows that the accelerating model is not strongly preferred until the
magnitude of the acceleration is around 2 kms−2. Therefore at lower magnitude
accelerations, fits with and without accelerations are not easily distinguishable.

4.2. Application to Observational Data

The AWARE algorithm is applied to datasets derived from the results shown in
the CorPITA article (Long et al., 2014), the EUV waves of 7 June 2011 (Figure
9, 13 February 2011 (Figure 11), 15 February 2011 (Figure 14), and 16 February
2011 (Figure 16). The algorithm is also applied to the same time range analyzed
by (Long et al., 2014) from 8 February 2011 (Figure 13) to illustrate a null result.
In all cases, full spatial resolution FITS level 1.0 AIA 211 Å image data at 12
second cadence in the hour following the initiating eruptive event are downloaded
and analyzed.
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Figure 7. (a–d) Shows two dimensional histograms of the vfit and afit correlation. The
histograms of vfit and afit are found by fitting a quadratic polynomial to 10000 noisy re-
alizations of one arc in a wavefront. All plots were generated assuming a 5 degree error in
locating the wavefront. (a, c) Shows results with atrue = 0 kms−2. (b, d) shows results with
atrue = 3 kms−2. Comparing (a, b) to (c, d) shows that the afit, vfit dependency is a function
of the number of samples in the time-series nt (sample cadence is 36 seconds for all plots).
It is clear that there is a dependency between afit and vfit and that the number of samples
in the time series varies the dependence. The solid red line in the plot indicates the line of
best fit assuming a linear dependence of vfit on afit. (e) Shows how it is possible to create a
correlation even when each arc has a different initial velocity, initial acceleration and number
of samples nt. See Section 4.1.2 for more details.

SOLA: eitwave-paper.tex; 7 August 2019; 10:39; p. 19



J. Ireland et al.

Figure 8. The effect of the degree of the polynomial used to fit a simulated wave arc as a
function of the wave acceleration. The x-axis indicates the true value of the acceleration in the
simulated wavefront. (a) Shows the median and median absolute deviation velocity derived
from fitting either a n = 1 or an n = 2 polynomial. (b) Shows the median and median absolute
deviation acceleration derived from fitting a n = 2 polynomial (the red true acceleration
line is fully covered by the blue line indicating the value derived from fitting). (c) Shows the
median and median absolute deviation difference in the Bayesian information criterion (BIC)
calculated from each polynomial fit. Positive values indicate that the BIC correctly prefers
the n = 2 polynomial fit containing an acceleration term. (note that BIC1 refers to the BIC
value for the n = 1 model, and BIC2 refers to the BIC n = 2 value model). The degree of
preference for each model (n = 1 or n = 2) is indicated on the left hand side of the plot (Kass
and Raftery, 1995). The simulation assumed that the position of the wavefront was measured
at 20 times, with a cadence of 36 seconds between each measurement. The wave position had
a normally distributed error of 5 degrees of arc. The propagation of the wavefront along the
arc was simulated 1000 times to generate the results.

The wave progress maps (Figures 9a, 13a, 11a, 14a, and 16a) illustrate the

initial identification of the wave location. It is notable that the algorithm cap-

tures changes that are quite distant from the wave source at earlier times. These

are clearly unphysical, as the wave cannot have reached those locations so soon

after its initiation. These initial wave progress locations are obtained from stage

1 of the algorithm. At these earlier times, small changes at distant locations are

captured by the RDP image processing and expanded into contiguous areas by

the morphological processing. The effect of this is mitigated somewhat by stage

2 of the algorithm (fitting a profile to the wave propagation along radial arcs

beginning at the initiation point) where the mean location of the wavefront and
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its error often lead to the elimination of earlier times from consideration in the

final fit.

It is difficult to exactly compare the AWARE results to the results of Long

et al. (2014). The wave progress maps (Figures 9a, 13a, 11a, 14a, and 16a)

are broadly similar to the wave pulse propagation maps of Long et al. (2014)

(although it may be more appropriate to compare the fitted arcs maps of Figures

9d, 13d, 11d, 14d, and 16d). The locations of fitted wave propagation found

are broadly similar, but without doing an actual numerical comparison, it is

difficult to accurately assess if the AWARE maps show more successfully fitted

arcs than any other algorithm. Reassuringly, running AWARE on the null result

data suggested by Long et al. (2014) and shown here in Figure 13 produces a

similar null result. The values of afit and vfit found (Figures 9e and f, 10, 11e

and f, 12, 14e and f, 15, 16e and f, 17) for all EUV waves appear reasonable

compared to the values obtained in the literature. Firstly, Long et al. (2014)

in analyzing the 15 February 2011 event (their Figure 8a – d, Figures 14 and

15 here), CorPITA returned an average vfit of 406 ± 1 kms−1 in the range

0 → 1000 kms−1. Calculating over all the measured arcs, AWARE returns a

mean vfit value of 584± 258 kms−1, a median value of 551 kms−1, a central 68%

width 199 → 877 kms−1, with all values falling in the range of 0 → 1200 kms−1

approximately. For the 16 February 2011 event, Long et al. (2014) quote an

average vfit of 331 ± 6 kms−1 in a range varying ≈ 100 → 975 kms−1(their

Figure 8e – h, Figures 16 and 17 here). AWARE returns a mean vfit value of

592± 453 kms−1 (over all arcs), a median vfit value of 442 kms−1, a central 68%

width of 13→ 820 kms−1, with all values falling in the range of 0→ 2000 kms−1

approximately. Although these values are not the same, they are comparable in

magnitude. Secondly, Long et al. (2017a) applied the CorPITA algorithm to

362 EUV events originally identified by Nitta et al. (2013). Median values to the

spread of velocities and accelerations found in each event are quoted; CorPITA

finds median velocities in the range of 0→ 950 kms−1 and median accelerations

in the range of −0.75 → 0.1 kms−2 Nitta et al. (2013) quote a velocity range

of 200 → 1400 kms−1, and an acceleration range of −0.7 → 0.3 kms−2. For

the events analyzed here, AWARE finds a range of velocities 0 → 2000 kms−1,

and accelerations in the approximate range of −1.7 → 1.9 kms−2, overlapping

with the results of Long et al. (2017a) and Nitta et al. (2013). All detections

show a correlation between afit and vfit. Figure 15a differs from similar plots

in that there appears to be two separate branches of afit and vfit dependence

above the median value of vfit. Interpreting this using the discussion of Section

4.1.2 suggests weak evidence for either two different distinctive durations of the

wavefront or that the ratios of vtrue/atrue differ significantly in at least two

locations. Given that the CorPITA score values (Figure 15b, c) do not show

evidence of two populations (which could be caused by having two populations

that have a significant difference in their duration, as measured by the existence

component Escore in Equation 6) then this suggests an interpretation in terms

of differing vtrue/atrue ratios.
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Figure 9. AWARE performance for the EUV wave of 7 June 2011. See the caption of Figure
4 for more details.
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Figure 10. Distributions of vfit, afit, and the CorPITA score for the fitted arcs of the 7 June
2011 EUV wave. See the caption of Figure 5 for more details.
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Figure 11. AWARE performance for the EUV wave of 13 February 2011. see the caption of
Figure 4 for more details.
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Figure 12. Distributions of vfit, afit and the CorPITA score for the fitted arcs of the 13
February 2011 EUV wave (see Figure 11). See the caption of Figure 5 for more details.
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Figure 13. AWARE performance when there is no EUV wave identifiable by eye, using the
same data analyzed by Long et al. (2014) and shown in their Figure 6. See the caption of
Figure 4 for more details.
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Figure 14. AWARE performance for the EUV wave of 15 February 2011. See the caption of
Figure 4 for more details.
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Figure 15. Distributions of vfit, afit and the CorPITA score for the fitted arcs of the 15
February 2011 EUV wave (see Figure 14). See the caption of Figure 5 for more details.
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Figure 16. AWARE performance for the EUV wave of 16 February 2011. See the caption of
Figure 4 for more details.
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Figure 17. Distributions of vfit, afit and the CorPITA score for the fitted arcs of the 15
February 2011 EUV wave (see Figure 14). See the caption of Figure 5 for more details.

SOLA: eitwave-paper.tex; 7 August 2019; 10:39; p. 30



An algorithm for the automated characterization of EUV waves

5. Summary and Future Work

AWARE uses the novel running difference persistence images to isolate faint,
propagating bright features in coronal channel AIA data. The algorithm then
applies noise removal and morphological image operations to better isolate the
wave structure. Great arcs are traced from the suspected wave launch location
and the RANSAC method is used to find when and where the propagating
wavefront intensity approximately fits an accelerating profile. These points are
fit using a least-squares fitting algorithm to find value and error estimates of the
initial velocity and acceleration of the wave. As noted above, one hour’s worth
of AIA 211 Å data are used to determine the wave location and dynamics.
The only criterion for determining the time-range of data to be downloaded is
that it be long enough to include the possible lifetime of the wave. Stages 1
and 2 of AWARE are sufficient to estimate the wave lifetime within the time-
range of data downloaded. Stage 1 of AWARE isolates propagating fronts that
brighten emission as they propagate; therefore, if they are not present they will
not be available for characterization in stage 2. In stage 2, the wave location as
a function of time along each arc is determined. The RANSAC algorithm is used
to find the inlier wave locations that satisfy the proximity criteria (see Section
3.2), eliminating outliers that can cause bad fits.

AWARE has been tested on both simulated and real datasets, and was found
to perform well and produce results comparable with other established methods.
The AWARE code repository comes with codes to generate simulated waves.
The mean behavior of AWARE shows that the initial velocity and acceleration
of simulated EUV waves can be recovered, subject to error. Fitting the simulated
waves also demonstrates that the fitting algorithm introduces a systematic nega-
tive correlation between the fit value of the initial velocity and the acceleration.
A negative correlation persists even when a diverse population of simulated
wavefront propagations are considered (Section 4.1.2). Therefore, the inherent
correlation between the initial fit velocity and the acceleration must be taken into
account when attempting to determine which physical mechanism is operating
that creates EUV waves.

Several future refinements are possible that will improve AWARE and max-
imize its effectiveness and use to the solar community. On comparing the wave
progress plots (Section 3.1.1) to the fitted wave progress plots in Figures 9, 11,
14, and 16, it seems clear that AWARE loses information about the wavefront.
AWARE assumes purely radial propagation; future versions of AWARE could
use the wave propagation maps to derive the propagation instead of assuming
a radial propagation. For example, the Huygens principle method employed by
Wills-Davey and Thompson (1999) and Wills-Davey (2006) captured non-radial
propagation allowing the determination of wavefront curvature, variable speed,
and acceleration. The analysis of Section 4.1.2 shows that reducing the error in
locating the wave is crucial to improving knowledge of wave kinematics. The
noise removal algorithm used in this article sums the results of the median
filter applied at multiple length-scales. However, there are a number of other
noise removal algorithms. For example, Gonzalez and Woods (2001) describe
an adaptive median filter algorithm that varies the size scale of the area over
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which the median is calculated based on local greyscale values in the image.

Two-dimensional wavelets, along with thresholding algorithms could be used

to determine global (or local) noise levels, segmenting the wavefront from the

data. Improved wave segmentation leading to smaller errors on the position of

the wavefront would greatly improve our knowledge of the kinematics of EUV

waves.

An operational version of AWARE will monitor the Heliophysics Event Knowl-

edgebase (HEK) event database for new events in event types such as as solar

flares and eruptions. The appearance of a new event of one of these types will

trigger subsequent data download and analysis. The HEK event information

will be used to determine parameters of the analysis, such as start time of the

interval to be analyzed, and potential locations on the Sun of a wave origin.

AWARE will perform the image processing and wave assessment steps described

above, finally writing a record into a database that is easily accessed through

existing solar feature and event databases. The availability of such a catalog will

allow large-scale statistical studies of EUV waves and their properties. There

are several additional properties that could be stored about each EUV wave in

such a catalog. The total number of degrees around the starting point at which

a propagating wavefront was fit would give an assessment of its total angular

extent. For example, if θwave = 360, then there was a successful detection of the

wave completely encircling the starting point. Also, the number of distinct angu-

lar regions of wave propagation would yield information as to how discontinuous

the wavefront is compared to a single wave. Median values of populations are less

sensitive to outliers and so the median CorPITA score of all the arcs extending

from the starting point would give a useful assessment of the entire wave.

AWARE is the fourth published EUV wave detection algorithm at the time

of writing. Along with NEMO, CorPITA and Solar Demon, EUV wave detection

is now at the stage that it should now be possible to compare the effectiveness

of these algorithms on the same simulated and observational data with the goal

of obtaining useful insight on the performance of each of them (at the very least

making the comparisons in Section 4.2 easier). Such comparison work has been

useful in understanding the performance of automated loop tracing algorithms

(Aschwanden et al., 2008) and magnetic field extrapolation (Schrijver et al.,

2006; Metcalf et al., 2008). Approaches similar in style to these works would

create a useful benchmark, and guide the development of improved algorithms

to better determine the dynamics, and ultimately the physics, of EUV waves in

the solar atmosphere.
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Understanding the Physical Nature of Coronal “EIT Waves”. Solar Phys. 292, 7. DOI.
ADS. [2017SoPh..292....7L]

Metcalf, T.R., De Rosa, M.L., Schrijver, C.J., Barnes, G., van Ballegooijen, A.A., Wiegelmann,
T., Wheatland, M.S., Valori, G., McTtiernan, J.M.: 2008, Nonlinear Force-Free Modeling
of Coronal Magnetic Fields. II. Modeling a Filament Arcade and Simulated Chromospheric
and Photospheric Vector Fields. Solar Phys. 247, 269. DOI. ADS. [2008SoPh..247..269M]
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