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ABSTRACT
We calculate the expansion of the Universe under the assumptions that G varies in space and
the radial size r of the Universe is very large (we call this the MOND regime of varying-
G gravity). The inferred asymptotic behaviour turns out to be different from that found by
McCrea & Milne in 1934 and our equations bear no resemblance to those of the relativistic
case. In this cosmology, the scale factor R(t) increases linearly with time t, the radial velocity
is driven by inertia, and gravity is incapable of hindering the expansion. Yet, Hubble’s law is
borne out without any additional assumptions. When we include a repulsive acceleration ade

due to dark energy, the resulting universal expansion is then driven totally by this new term
and the solutions for ade → 0 do not reduce to those of the ade ≡ 0 case. This is a realization
of a new Thom catastrophe: The inclusion of the new term alters the conservation of energy
and the dark energy solutions are not reducible to those in the case without dark energy.

Key words: gravitation – methods: analytical – cosmology: theory – cosmology: large-scale
structure of Universe.

1 IN T RO D U C T I O N

In the FLRW relativistic metric of general relativity (Weinberg
1972; Kazanas 1980; Ferreira 2019; Ishak 2019) as well as in
the Newtonian cosmology (McCrea & Milne 1934; Milne 1935;
Gurzadyan 1985), the radial expansion of the scale of the spherical
Universe R(t) is described by the following differential equation in
the absence of dark energy:(

Ṙ

R

)2

= 8πG0

3
ρ − kc2

R2
, (1)

where G0 is the Newtonian gravitational constant, c is the speed
of light, ρ(t) is the spatially uniform density of the medium, the
dot denotes the derivative with respect to cosmic time t, and k is
the curvature of space. It is rather odd that Newtonian dynamics
and general relativity both lead to the same equations for the
expanding Universe. One reason (perhaps the only reason) for such
confluent descriptions is the assumption of the same constant G0

in both theories, in conjunction with the cosmological principle
(Berry 1976). We surmised that after we solved the problem of
the Newtonian universal expansion with varying G(r), where r is

� E-mail: dimitris christodoulou@uml.edu (DMC);
demos.kazanas@nasa.gov (DK)
†This work is dedicated to the memory of Prof. René Thom, a giant
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the radial coordinate. Furthermore, Perivolaropoulos & Kazantzidis
(2019) used a Yukawa parametrization of varying-G gravity and they
obtained yet a different set of dynamical equations for the expansion
of the Universe (their equations 2.21 and 2.22). Thus, it seems that
the assumption of a constant G0 is too restrictive and binding in
current theories of gravity, and that any variation of G(r) produces
new physical models. In varying-G models, as was also pointed out
by the referee, the spatial variation of G(r) is permissible because
the centre could be the location of any point-mass in the Universe.
The superposition of all point-masses over the entire Universe will
lead to a homogeneous and isotropic G.

In our spatially varying G gravity (Christodoulou & Kazanas
2018, 2019), G is given by the equation

G(s(r)) = G0

2

(
1 +

√
1 + 4

s

)
, (2)

where s(r) ≡ σ /σ 0 is the dimensionless surface density of a
spherical mass distribution M(r), σ = M/r2 [where M(r) is assumed
to be finite and then σ → 0 as r → ∞], and σ 0 = a0/G0.
Here a0 is the familiar MOND acceleration of about 1.2 Å s−2

(Milgrom 1983, 2015; Sanders & McGaugh 2002). Using the above
prescription for G(s(r)) results in cosmological equations that are
not manageable analytically. We can however solve analytically for
the two asymptotic cases of the Newton–Weyl regime (s → ∞) and
the MOND regime (s → 0).

When s → ∞, then equation (2) reduces to G = G0 and the
Newtonian treatment of McCrea & Milne (1934) and Milne (1935)
is fully recovered. On the other end, when s → 0, then equation (2)
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reduces to

G(s(r)) = G0√
s

=
(

3G0a0

4πρ(t)r

)1/2

, (3)

to leading order in 1/s, where we also used the definition M(r, t)
≡ 4πr3ρ(t)/3 and the assumption that the spatially uniform density
ρ is only a function of time t (as in the study of McCrea & Milne
1934). In this case, the cosmological principle (Weinberg 1972)
is still valid, but the universal expansion of the scale factor R(t)
at late times changes its evolution and its properties dramatically
as compared to the standard McCrea & Milne (1934) Newtonian
cosmology, as we describe in Section 2 below. In Section 3, we
include dark energy in the calculations and the expansion of the
Universe changes character and properties once again. Following
these analyses, we summarize and discuss our results in Section 4.

2 UNIVERSAL EXPANSION W ITH VA RY ING G
IN THE MOND A SYMPTOTIC REGIME

2.1 Preliminariesverse

We work in the deep MOND regime of varying-G gravity, where s
→ 0 and also r � rM, where rM is MOND’s scale length defined
by the equation1

rM ≡
√

G0M(r)

a0
, (4)

where mass M(r) is constant within radius r in a Lagrangian
framework in which we move along with a test particle that is
located on the surface of a uniform sphere of density ρ(t). In the
following, we will pursue an Eulerian description of the equations of
motion and continuity, in which case, M(r, t) = 4πr3ρ(t)/3 (as in the
study of McCrea & Milne 1934). Then equation (3) is applicable and
the radial gravitational acceleration a on the surface of an expanding
sphere of radius r is given by the equation

a ≡ G(s(r))M(r)

r2
=

√
A0 ρ(t)r , (5)

where MOND’s fundamental constant A0 (Milgrom 2015;
Christodoulou & Kazanas 2018) is redefined here after absorbing a
factor of 4π/3 in it, viz.

A0 ≡ 4π

3
G0a0 . (6)

We note that ρr = 3σ /(4π) for a spherical mass distribution in
Eulerian coordinates, and then equation (5) can be cast in the form

a =
√

G0a0σ (r) ,

which reveals that the radial acceleration of the test particle on the
surface of the sphere is uniquely determined by the surface density
σ (r) = M/r2. This is a fundamental property of varying-G gravity
(see Christodoulou & Kazanas 2019).

1Adopting fiducial values for the mass MU = 4.5 × 1051 kg and the
radius rU = 4.4 × 1026 m of the observable Universe and also a0 =
1.2 × 10−10 m s−2, we estimate that rM = 5.0 × 1025 m or rU/rM � 9;
thus the present Universe (observable and beyond) appears to be already in
the MOND asymptotic regime. This is also corroborated independently by
the characteristic time T0 for the Universe to enter the MOND regime, viz.
T0 = c/(2πa0) � 12.6 Gyr (Milgrom 2015), which is somewhat shorter than
the age of the Universe (�14 Gyr).

2.2 Eulerian equations of motion and continuity and their
relation to Hubble’s law

Following McCrea & Milne (1934) and Milne (1935), the Eulerian
equation of motion of a test particle at radius r with speed v is

∂v

∂t
+ v

∂v

∂r
= −

√
A0 ρ(t) r , (7)

and the Eulerian equation of continuity is

1

ρ

dρ

dt
+ 1

r2

∂

∂r

(
r2v

) = 0 . (8)

Here we wrote the derivative of the density as dρ/dt because the
uniform density ρ of the spherical mass distribution is assumed to
be a function of time only, whereas the radial speed is v(r, t). Then,
we set (1/ρ)(dρ/dt) = −3H(t) and (1/r2)∂(r2v)/∂r = +3H(t), where
the function H(t) is to be determined. The former equation implies
that the cosmological principle remains valid, precisely as in the
McCrea & Milne (1934) study. Integrating the latter equation, we
find that

v = r

(
H (t) + J (t)

r3

)
, (9)

where J(t) is the constant of integration in r, generally a function of
t. Substituting equation (9) into equation (7), we find that

√
r

[
Ḣ + J̇

r3
+

(
H + J

r3

)(
H − 2J

r3

)]
= −

√
A0 ρ(t) , (10)

where the dots denote derivatives of H(t) and J(t) with respect to
cosmic time t. This is the point where our analysis deviates from
the calculation of McCrea & Milne (1934). The right-hand side
of equation (10) is a function of time only, and the same condition
applied to the left-hand side is supposed to determine the integration
constant J(t), which turns out to be zero in the McCrea & Milne
(1934) analysis, but not necessarily in our treatment.

Unable to determine J(t), we proceed as follows. We reduce
equation (10) to the deep MOND limit r � rM. Then all terms with
powers of 1/r3 can be discarded and we find that

Ḣ + H 2 = −
√

A0 ρ(t)

r
,

or, asymptotically as r → ∞, that

Ḣ + H 2 = 0 . (11)

In equation (9), we also have to drop the J(t)/r3 term for consistency,
and then the expansion speed assumes the asymptotic form

v(r, t) = r H (t) . (12)

Equations (11) and (12) are fundamental for the cosmology with
varying G in the MOND asymptotic limit of r � rM. Equation (12),
in particular, is a realization of Hubble’s law, which is valid in the
MOND regime.

On the other hand, Hubble’s law is not valid in the regime of
intermediate accelerations between the Newton–Weyl and MOND
limits (equation 9 in the case of r ∼ rM). This is an unexpected
result; it shows that Hubble’s law in the present Universe happens
to be valid only because the Universe has entered the MOND regime
(see footnote 1). Therefore, Hubble’s law starts out to be true in the
early Newton–Weyl Universe (G = G0), then it becomes invalid at
intermediate accelerations, and finally it is reinstated in the MOND
regime described by equations (3) and (12), unless J(t) ≡ 0 can
somehow be justified.
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2.3 Varying-G cosmology in the MOND regime

It is not surprising that the analysis of universal expansion in the
deep MOND regime r � rM is considerably simpler than the
McCrea & Milne (1934) treatment since we can solve equations (11)
and (12) rather easily. Before we do so, we should draw attention
to the fact that the gravitational acceleration term (a = √

A0ρr)
has dropped out of equation (11). An immediate consequence is
that the expansion at late cosmic times (when r → ∞ effectively)
is not retarded significantly by gravitational attraction. This is not
surprising: We are working in the asymptotic limit of r � rM,
and thus gravity has weakened considerably and it is incapable of
providing any substantial resistance to the ongoing radial expansion.
In the present context, there is only one other factor that can drive
the expansion unimpeded by gravity, namely the inertia of the
expanding spherical mass. We show this to be true in equation (16)
below.

The general solution of equation (11) is

H (t) = 1

c1 + t
, (13)

where c1 is the integration constant. Substituting this solution into
the equation (1/ρ)(dρ/dt) = −3H(t) and integrating, we find that

ρ(t) = c2

(c1 + t)3
, (14)

where c2 is another integration constant, and that

H (t) =
(

ρ(t)

c2

)1/3

. (15)

Combining equations (12) and (15), we find for the expansion speed
that

v =
(

3

4πc2
M(r)

)1/3

∝ r . (16)

This relation shows that, at late times, expansion is driven by the
inertia of M(r) and not by gravity. It is also notable that, in this
context, the radial speed scales with mass as

v3 ∝ M .

This proportionality (which is effectively Hubble’s law) should
be contrasted to the Tully–Fisher and Faber–Jackson relations
v4 ∝ M (Faber & Jackson 1976; Tully & Fisher 1977) for the
asymptotic rotation and dispersion velocities of spiral and elliptical
galaxies, respectively (see also recent works by McGaugh et al.
2000; Sanders & McGaugh 2002; McGaugh 2012; den Heijer et al.
2015).

2.4 Late evolution of the scale factor

Equation (12) takes the form

dr

dt
= r H (t) . (17)

Integrating this equation yields the relation r(t) ∝ R(t), where R(t) =
(const.)exp (

∫
H(t)dt) is defined as the scale factor of the expansion

of the Universe. Then equation (17) can be rewritten in the form

H (t) = 1

R

dR

dt
, (18)

that describes the evolution of the scale factor R(t). Substituting
this equation into equation (11), we find for the cosmological scale
factor that

R̈ = 0 =⇒ R(t) = c3 t + c4 , (19)

where c3 and c4 are integration constants. In this cosmology, the
scale factor R(t) will increase linearly with time t at late times and
at very large radii r. Based on the above results, it is rather obvious
that inertia (equation 16) is incapable of producing a faster (e.g.
exponential) expansion of the Universe at late times. Never the less,
the expansion will continue to proceed at linear rates as t, r → ∞
(in the deep MOND regime of varying-G gravity and in the absence
of dark energy).

3 INCLUSI ON O F A REPULSI VE DARK
E N E R G Y T E R M

McCrea & Milne (1934) claimed that the inclusion of a repulsive
dark energy term in Newtonian cosmology was ad hoc, and this
presumption is widespread to date. But this is no longer the case:
Gurzadyan (1985) and Barrow (1996) showed that in the case of
spherical symmetry the most general force law at the surface of
a self-gravitating sphere is a linear combination of the Newtonian
force and a Hooke-type repulsive linear force. This result justifies
the addition of a repulsive dark energy term in the Newtonian
equation of motion of a spherical fluid. We also note that these two
force components are known individually to be the only ones that
support closed orbits, as Isaac Newton (1687) has already proven
in Principia, but their linear combination has not been investigated
in detail yet (see however the pilot study of Barrow 1996).

Equation (7) with a Gurzadyan repulsive dark energy term
(Gurzadyan 1985, 2019; Barrow 1996; Gurzadyan & Stepanian
2019) then reads

∂v

∂t
+ v

∂v

∂r
= −

√
A0 ρ r + �2r , (20)

where we wrote Einstein’s usual cosmological constant �/3 as �2

with � > 0 to reinforce its positive value. The continuity equation (8)
remains the same. Substituting equation (9) into equation (20), we
find that

Ḣ + J̇

r3
+

(
H + J

r3

)(
H − 2J

r3

)
= �2 −

√
A0 ρ

r
. (21)

In the deep MOND limit r � rM, the 1/r terms can all be discarded
and this equation reduces to

Ḣ + H 2 = �2 , (22)

whereas equation (12) for v(r, t) is still valid. The general solution
of equation (22) is

H (t) = � tanh [�(c1 + t)] , (23)

where c1 is the integration constant. Substituting this solution into
the equation (1/ρ)(dρ/dt) = −3H(t) and integrating, we find that

ρ(t) = c2 sech3 [�(c1 + t)] , (24)

where c2 is another integration constant, and that

H (t) = �

[
1 −

(
ρ

c2

)2/3
]1/2

. (25)

We see that the Hubble constant becomes a true constant, equal to
�, only for ρ(t) → 0. Thus, in this case, the Hubble constant H →
� is determined exclusively by dark energy.

Combining equations (12) and (25), we find for the radial
expansion speed that

v = �

√
r2 −

(
3M

4πc2

)2/3

. (26)
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In this description, inertial resistance (the term ∝ M2/3) opposes this
faster expansion (as inertia should do), which is entirely due to dark
energy.

Finally, the growth of the scale factor R(t) is no longer linear in
the presence of dark energy. Equations (18) and (22) imply for R(t)
that

R̈ = �2 R =⇒ R(t) = c3 exp (�t) + c4 exp (−�t) , (27)

where c3 and c4 are integration constants. As t → ∞, and since �

> 0, we find that

R(t) � c3 exp (�t) , (c3 > 0) . (28)

In this cosmology that is driven by dark energy repulsion, the scale
factor R(t) increases exponentially with time t at late times. This is
not an unexpected result. Apparently, dark energy wins against both
gravitational resistance and inertial resistance at very late times (as
t, r → ∞) and it drives the universal expansion at an exponential
rate.

4 SUMMARY AND DISCUSSION

Using spatially varying G gravity (Christodoulou & Kazanas 2018,
2019), we have analysed two expanding Universes in the asymptotic
MOND limit (at late cosmic times and at large radial sizes), one
devoid of dark energy (Section 2) and another with the inclusion
of repulsive dark energy (Section 3). In both cases, gravity is too
weak to influence/retard the expansion, which is driven solely by
inertia or dark energy, respectively. Inertia is also too weak going
against dark energy in the latter case (equation 26). In both cases,
however, Hubble’s law (equation 12) remains valid without the
need of resorting to additional assumptions (other than r → ∞).
However, Hubble’s constant becomes a true constant, independent
of time, only in the dark-energy-dominated Universe (equation 25
with ρ(t) → 0) at late cosmic times.

A striking difference between the two cases is that the inertia
can produce only a linearly expanding scale factor at late times
(equation 19), whereas dark energy can produce an exponential
growth of the scale factor (equation 28). In particular:

(a) The linear growth of the scale factor at late times in the
absence of dark energy (Section 2) also implies that the expansion
speed scales as v ∝ M1/3 ∝ r. This relation shows that inertia alone
drives the expansion of this Universe in the absence of dark energy
or any other extraneous factors.

(b) The exponential growth of the scale factor at late times
with the inclusion of dark energy (Section 3) implies that the
asymptotic radial speed v � �r as r → ∞, where � = √

�/3 > 0
is the coefficient introducing the dark energy repulsion (as in the
Newtonian description of Gurzadyan 1985). In this case, it is the
dark energy repulsion that drives the expansion unhindered by
gravitational resistance and also by inertial resistance.

In both of the above cases, the asymptotic radial velocities can
only be strictly positive. This leads to hyperbolic expansions in
Universes that can be interpreted as having negative curvature
(see also McCrea & Milne 1934, for additional cases that do not
materialize in varying-G gravity). Furthermore, to the proponents of
exponential universal expansion, the above two different outcomes
would seem to support the presence of dark energy in this Newtonian
Universe because only then can the varying-G model achieve
exponential growth in time (equation 28).

On the other hand, to the extent that observations will continue
to support the strange present coincidence Rh = c t (Melia 2018,

2019), where Rh is the apparent horizon of the Universe, the varying-
G solution without dark energy is strongly favoured since the local
flatness theorem (Weinberg 1972) is automatically satisfied and the
theory predicts quite naturally that H(t) = 1/t (for c1 = 0) and
R(t) = c3 t (for c4 = 0); and it also validates the above equation for
Rh at present and at all future times.

The results described in Sections 2 and 3 also reveal the presence
of a Thom catastrophe (Thom 1975; Gilmore 1981) among Uni-
verses with and without dark energy. If we set � = 0 in equation (22),
we recover equation (11), so the differential equations appear to
behave according to our expectations. But the solutions of Section 3
do not reduce to those of Section 2 for �→ 0. In fact, equations (23)–
(28) in Section 3 all reduce to zero or a constant for � = 0. Thus,
the results of Section 2 cannot be recovered from the dark energy
case as � → 0.

This is the signature of one of René Thom’s non-linear catas-
trophes (Thom 1975). The phenomenon occurs when different
conservation laws are applicable in the two cases (Christodoulou
et al. 1995a,b). Once a conservation law is imprinted or is de-
stroyed/modified between the two cases, the solutions can no longer
be reduced from one case to the other in the naive way expected
by simple continuity arguments. Continuity is destroyed by the
application of differing conservation laws between the two states
under consideration, and a non-linear Thom catastrophe then sets
in.

In the present case, the inclusion of dark energy in Section 3
alters the conservation of kinetic energy as this materializes in the
treatment of Section 2. With gravity incapable of competing in
either case, the kinetic energy per unit mass in the dark energy case
is KE/M ∝ �2 (equation 26), whereas in the absence of dark energy,
KE/M ∝ M2/3 (equation 16). This alteration is the reason that the
solutions of Section 3 for � → 0 are not reducible to those shown
in Section 2.
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