

Lynx Mission Costing Methodology

Karen Gelmis / MSFC Lynx Study Manager

- Introduction
- Costing Inputs
- Costing Methodology Overview
- Costing Methodology Details
- Closing Comments

Introduction

- Strong foundation for Lynx mission costing effort:
 - Clear science, mission and Observatory architecture requirements for a closed DRM design
 - Availability and leverage of deep Chandra heritage for spacecraft design, mission architecture and operations to minimize costing unknowns
 - Detailed inputs from Lynx technical and programmatic experts
 - Availability of Chandra program and contracting personnel for insights and lessons learned on programmatic, technical and costing analysis
 - Rapidly maturing Lynx technologies with clear development paths to achieve necessary TRL milestones
- Costs validated at element and mission level via analogies, in-family comparisons and multiple, independently conducted cost estimates with different approaches
- Lynx mission cost range across all methodologies is \$4.8B at 40% confidence level (CL) to \$6.2B at 70%CL in \$FY20
 - Cost confidence results highly consistent at ~40% CL, reflecting well-developed mission design with high heritage and lessons learned from past and present missions
 - Cost results diverge at 70% CL, reflecting appropriate pre-formulation-stage uncertainties
- Full details of entirety of costing efforts included in non-public Lynx Cost Book

Costing Inputs: Schedule Pre-Phase A through TRL6

- Instrument and Optics Technology Development Roadmaps lay out detailed pre-Phase A / Phase A schedules and milestones for achieving requisite TRL levels
- Requirements / assumptions:
 - Pre-Phase A funding start 10/2021
 - Architecture selection 2/2024
 - Phase A start 10/2024 / technologies at TRL5
 - Mission PDR 2/2028 / technologies at TRL6
 - All Lynx technologies remain actively funded during Pre-Phase A
 - Multiple decision points during pre-Phase A for technology down-select
 - Final down-select prior to start of Phase A based on ability to meet Lynx requirements
 - WFIRST technology development funding levels provided sanity check
- Included schedule margins for achieving TRL milestones based on risk assessments
- Iterated to arrive at schedule consistent with assumptions, technology development plans, and the overall project lifecycle schedule
- Pre-Phase A / Phase A technology development schedule provided in Figure 7.1 of Lynx Concept Study Report

Costing Inputs: Schedule Phase A - E

- Reflects inputs and development planning from Lynx technology, engineering and science operations teams
- Is consistent with technology development and current DDT&E plans for the DRM optics and instruments
- Leverages heritage and analogous AI&T, on-ground calibration, and mission and ground operations activities
- Is aligned with NASA project lifecycle milestones, and GAO best practices consistent with pre-Phase A project maturity
- Full Lynx lifecycle schedule provided in Figure 8.3 of Lynx Concept Study Report

Costing Inputs: Schedule Phase A - E

- Compared phase durations with WFIRST and Chandra as sanity check
- Included total schedule margin of 19 months consistent with MSFC practices, project complexities and risks
- Critical path runs through LXM DDT&E, through ISIM I&T, and through XRT, Observatory and launch vehicle I&T activities
- Further optimization possible based on mirror manufacturing studies, AI&T sequencing and on-ground calibration scope
- LCIT Comment: "...schedule well done"

While notional, project lifecycle schedule provides a credible path to launch in the mid-2030's

Project Milestone	~Milestone Date
Tech. Dev. / Start of Pre-Phase A	10/2021
Architecture Decision	2/2024
KDP-A / Start of Phase A	10/2024
SRR / MDR	2/2026
KDP-B / Start of Phase B	10/2026
PDR	2/2028
KDP-C / Start of Phase C	4/2028
CDR	11/2029
Start of Flight Unit On-ground Calibration	12/2031
Start of ISIM I&T	6/2032
Start of LMA I&T	8/2032
Start of XRT I&T	4/2033
SIR	6/2035
KDP-D / Start of Phase D	7/2035
ORR	3/2036
LRD	10/2036
KDP-E / Start of Phase E	11/2036
End of Primary Mission	11/2041

Costing Inputs: WBS, MEL and Power Schedule

- Work Breakdown Structure (WBS)
 - Provides project organizational structure consistent with NASA guidance
 - Similar to Chandra for organizational and analogous cost comparisons
 - Defined to Level 3 for all elements, and Level 6 for XRT and SCE consistent with Observatory design details
 - Summary WBS provided in Table 8.4 of Lynx Concept Study Report (full WBS provided in Appendix E)
- Master Equipment List (MEL)
 - Provides predicted mass for XRT and SCE systems, using sub-system and component-level basic mass
 - Predicted mass based on industry-standard MGA for Pre-Phase A maturity and TRL considerations
 - Full MEL provided in Appendix D of Lynx Concept Study Report
- Power Schedule
 - Provides SCE, optics and instrument design power levels with margin for all operational phases
 - Power system components designed and costed per power schedule
 - Power schedule provided in Table 6.16 of Lynx Concept Study Report
- LCIT Comment: "...WBS complete & MEL and PEL reflect a lot of work traceable to design"

Costing Methodology Overview

- Pre-Phase A cost estimates provided by technologists in the Technology Development Roadmaps
- Phase A E
 - Enabled by relatively straightforward and detailed Lynx Observatory design, detailed technology maturation plans, and use of rich Chandra heritage and lessons learned
 - Lynx lifecycle cost estimated and validated using multiple methods:
 - Parametric Cost Estimate:
 - Primary project estimate (point estimate + confidence level (CL) analysis)
 - Includes multiple parametric models for all cost elements
 - Consistent with pre-Phase A project maturity, GAO Best Practices and NASA Cost Estimating Handbook
 - Validation Methods:
 - Comparison to escalated (FY20) Chandra actuals (point estimate)
 - Grassroots estimate (point estimate)
 - Non-advocate Independent Cost Estimate (ICE) (point estimate + CL analysis)
 - Independent Cost and Technical Evaluation (CATE) (point estimate + CL analysis)
 - Validation estimates yielded results in reasonable agreement with parametric

Parametric Estimate

- Parametric model is primary cost estimate for Lynx
 - Consistent with pre-formulation stage design
 - True bottoms-up with vendor quotes not feasible
- Utilized multiple industry-standard models in parametric cost analysis
- Used subject matter expert inputs at the component level for all elements
- Incorporates high Chandra architecture heritage, high-TRL spacecraft components, and detailed designs for the DRM technologies

General GR&A for Lynx Parametric Estimate

Parameter	Value
Baseline Cost	\$FY20 per NASA inflation tables
Phased Mission Cost	\$RY per NASA inflation tables
Fee	10% applied to Spacecraft, ISIM, OBA and LMA; no fee for science instruments (assumed NASA or university-developed)
Reserves	30% on Phases B – D, excluding launch services and fee
Design Approach	Protoflight
Mission Risk Class	А
Parts Class	Unmanned space class S1 with associated redundancies (per MEL)
Flight Unit Quantity	1
Spares	10% for all subsystems
Phase A Estimate	5% of DDT&E + Flight Unit total
Public Outreach Estimate	1% of XRT (WBS 05) + SCE (WBS 06)

Parametric Estimate

- Other inputs and assumptions:
 - Per NASA HQ direction, Launch vehicle cost (for 2030's heavy lift vehicle) was a pass-through
 - LXM cost was a pass through from GSFC Instrument Design Lab (IDL) cost analysis
 - Funded schedule reserves included for identified schedule risks and critical path margins
- Cost model input tailoring:
 - Necessary given scarcity of X-ray mission analogies in the historical databases from which the CERs are drawn
 - Able to realistically represent Lynx technologies given relatively high TRL and detailed, current knowledge of development approach
 - Specific parametric model inputs provided in Table 8.7 in Lynx Concept Study Report

The DRM parametric mission cost is in the range of \$4.8B at a 40% CL to \$6.0B at a 70% CL in FY\$20

Parametric Estimate Lynx X-ray Mirror Assembly

- LMA parametric costing given special consideration due to lack of directly applicable historical comparisons
- Complex but cost-effective assembly due to many similarly manufactured and assembled sub-components
- Modeled assuming "learning curve" to account for repeated manufacturing processes
 - "make"->"major modification"->"average modification"
- Other model specifics targeted realistic development and manufacturing
 - "Staggered development start" of meta-shells to benefit from development of first one
 - "Concurrent production" to take advantage of assumed 12 production lines
- Estimate includes cost for LMA prototype (3 meta-shells, 9 fully populated modules, mass dummies for all else), consistent with TRL maturation plans
- GSFC Silicon Meta-shell optics team provided design details to support veracity of cost modeling inputs and assumptions
- LMA manufacturing risk accounted for in 9 months of costed schedule margin

Parametric LMA estimate within 4% of GSFC Silicon Meta-shell Optics team grassroots estimate

Parametric Estimate Spacecraft

- Spacecraft parametric costing also given special consideration due to high levels of heritage in subsystem design
- "Heritage Rating" settings in parametric model reflect degree of modifications assumed for each subsystem, and play a role in the cost
- Overall Heritage Rating of 5.1 for Lynx Spacecraft system is between "major" and "minor" modification, consistent with the design

Subsystem	Subsystem Heritage Rating
Structure	5.0
Thermal Control	3.8
Electrical Power & Distribution	4.2
Attitude Determination & Control	6.2
Reaction Control	4.2
RF / Communication	6.8
Command & Data	5.8
Cost Model Flight System Heritage Rating	5.1

Heritage Rating Key:
>0 = All items @ TRL< 7
1 = New, but standard practice
3 = Major Modification
7 = Minor Modification
10 = Exact Repeat (copy)

Chandra Analogy

- Mission architecture heritage and availability of actual costs make comparison of the Lynx parametric estimate to escalated (\$FY20) Chandra costs possible
- A side by side comparison of requirements and costs shows that many Lynx elements are analogous or comparable to Chandra
 - Spacecraft elements and operations very similar, HDXI ~ACIS, XGS ~HETG+ACIS
 - Summary of comparisons provided in Table 8.9 of Lynx Concept Study Report
- Lynx elements less amenable to direct comparison to Chandra are the LMA and LXM
 - LMA:
 - Base material (monocrystalline Si) is inexpensive and readily available
 - Laboratory performance of machinery to shape, polish and smooth mirror segments has been demonstrated
 - Flight production is modular with assembly line cost efficiencies
 - LXM design leverages successes from Hitomi, XRISM and Athena
 - Costs for these elements are well understood

Huge gains in capability that Lynx provides do not directly translate into huge cost increases over inflated Chandra actuals

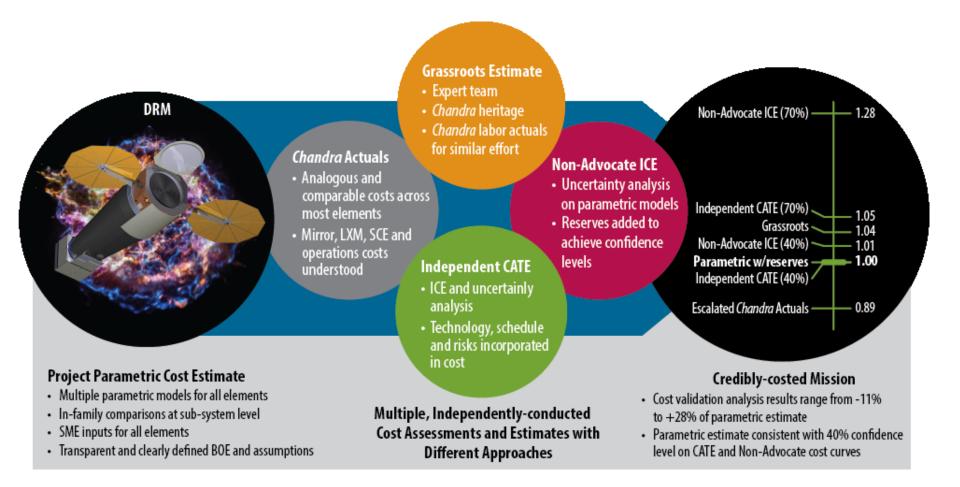
Grassroots Estimate

- Skilled and diverse team of experts developed a grassroots estimate for each WBS Level 2 code, and WBS Level 3 code in some cases
 - Team included Chandra project and prime contractor team members, and Lynx science, engineering and technology team members
- Estimates included a mix of Chandra-analogous estimates, scaled actuals for Chandra prime contractor activities, and true grassroots based on Lynx development planning
- Launch vehicle cost same as NASA HQ provided pass-through used for parametric
- Fee and 30% reserves applied as applicable
- Detailed BOE provided in Table 8.11 of Lynx concept Study Report

Additional Validation Assessments

Non-Advocate Independent Cost Estimate (ICE)

- The MSFC Engineering Cost Office performed a non-advocate ICE and uncertainty analysis on the Lynx parametric estimate
- ICE addresses uncertainty in estimating methods, input parameters, and design complexity, using Cost Office assumptions and processes
- Produced uncertainty curve for project cost
- Lynx parametric estimate (with reserves) at 38% CL on ICE uncertainty curve.
- Per MSFC Cost Office analysis, 38% CL substantially better than typical level of 15% for NASA missions at this stage


Independent risk assessment results, "...consistent with historical NASA mission cost growth behavior" Independent Cost & Technical Evaluation (CATE)

- Lynx team procured services to perform an independent CATE for further costing validation
- Contractor developed risk-based project cost estimate and schedule forecast
 - Developed detailed, independent parametric cost estimate
 - Analyzed project schedule, Technology Development Roadmaps & DRM architecture to determine missing or underestimated development costs and schedule risks
 - Produced uncertainty curves for total project cost and schedule
- 40% CL on CATE uncertainty curve within 1% of Lynx parametric

Lynx parametric cost estimate is, "...reasonable, credible, reproducible, and consistent with the DRM parameters"

Lynx Costing Effort Summary

LCIT Comment: "...cost estimate very well done and credible...with understanding of task at hand"

Lynx Mission Costing Closing Comments

- Lynx mission benefits greatly from Chandra heritage and lessons learned, straightforward Observatory design, rapidly maturing technologies with clear maturation paths, and a relatively low risk posture
- All DRM technologies are actively funded, and will continue development per detailed roadmap plans, with risk and progress-based decision points up through the final architecture selection
- Lifecycle schedule is consistent with DRM technology development plans, includes analogous and heritage mission lessons learned, and includes conservative margins consistent with development risks
- Mission parametric costing effort takes advantage of multiple models and analogous elements for comparison, and detailed design knowledge to tailor inputs as necessary for credible results
- Costing effort goes beyond parametric analysis to include multiple, separatelyconducted cost validation exercises providing additional peer reviews, sensitivity analyses and independent crosschecks
 - Close clustering of the costing results around the parametric
 - Good agreement, especially for this phase of mission

Substantial effort by entire Lynx team resulted in thorough and credible costing for a pre-formulation stage mission