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High enthalpy arc-jets

Needed: Capability to perform realistic simulations

Looking down the column Looking along the column Test chamber



Bruce Walter Arc Heater visualization



1D study of the mini-Arc
(with J.B. Scoggins & J. Jimenez-Miro)
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1D study of the 
mini-Arc

(Note from J.B. Scoggins)
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) Equilibrium formulation for applications of interest 
(high pressure ~ 9atm, high temperature ~10,000 K)
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Interaction 
Heating 
Facility 
(IHF)

Characteristics:
⋙ High pressure
⋙ High temperature
⋙ Variable Air/Ar mixture
⋙ Strong Imposed voltage drop (constant current)
⋙ Ballast at the electrodes to ensure uniform current
⋙ External B to force current to rotate around the electrode
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Compressible Navier-
Stokes Equations:

Equilibrium formulation 
with variable elemental 
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Transport properties from MUTATION++

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999
J.B. Scoggins, T.E. Magin, Development of Mutation++: multicomponent thermodynamic and transport property 
library for ionized plasmas written in C++, AIAA Pap. 2966 (2014)
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Tabulated 
Air/Ar mixtures
Interpolation

assuming
nO/nN stays

constant
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⋙ Variable Air/Ar mixture
⋙ Strong Imposed voltage drop (constant current)
⋙ Ballast at the electrodes to ensure uniform current
⋙ External B to force current to rotate around the electrode
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MHD 
approximation

r⇥B = µ0J

Set B = r⇥A

�
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where  is a Coulomb potetntial determined so that:

r ·A = 0
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E = Eimp +Eg

Splitting the
Electric field

Eimp = �r�imp

r · (J imp) = 0

r · (J imp) = 0 ) r · (��r�imp) = 0

Boundary 
conditions ��r�imp = Const. �imp = 0

Anode Cathode

�imp = Const.
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Electromotive 
force
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Radiative 
transport
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mix = X air + Y argon
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Radiative 
transport

up-winding

Z

V
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𝛀 = (1,0,0) 𝛀 = (0,1,0) 𝛀 = (0,0,1) 𝛀 = (1,1,1)

Radiative 
transport

Animation Courtesy: Alejandro Alvarez
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ARC Heater Simulator (ARCHeS)

ARCHeS
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Surface current interaction
Surface response

Swirling and ballast BC
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Ar-Air chemistry
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Temperature
High pressure à Th = Te = T



Velocity



Highly unsteady and turbulent flow

Video Tim



3D Radiation



Imposed Electric Field
r · �r� = 0



Induced Magnetic Field
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Arc instabilities in ARCHeS

Kink instability

Sausage instability

ARCHeS simulation with air chemistry.
The color represents the total B field.
Iso-current density of 1e6 A/m2.

Thermal instability



Arc behavior for air only

Video  Jimp Bimp



Arc behavior for air/Ar mixture



Arc reattachment
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Next Challenges
✺ Current numerical scheme not optimized for nearly 

incompressible flow – an all-speed formulation is needed
✺ Electrode boundary conditions
✺ Melt of the electrodes

Summary
✺ Priority physics models have been implemented
✺ Working tool is being tested for:

✺ Mini-ARC
✺ HyMETS
✺ IHF & AHF


