
Formalizing and Analyzing Requirements with
FRET

Anastasia Mavridou

Robust Software Engineering Group
SGT Inc., KBR / NASA Ames Research Center

Requirements engineering

• Central step in the development of safety-critical systems

�2

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

Requirements engineering

Natural language

• Ambiguous

• No formal analysis

�3

Mathematical notations

• Unambiguous

• Various analysis
techniques

Requirements engineering

Natural language

• Ambiguous

• No formal analysis

�4

Mathematical notations

• Unambiguous

• Various analysis
techniques

Despite the ambiguity of unrestricted natural language, it is
unrealistic to expect developers to write requirements in

mathematical notations.

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

�5

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system is
supported without failures (not apfail).

�6

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is not in control (not standby) and the system
is supported without failures (and not apfail).

�7

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot. not in control (not standby) and the
system is supported without failures (not apfail).

autopilot = !standby & supported & !apfail

�8

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�9

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�10

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�11

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�12

limits & autopilot limits & autopilot

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�13

limits & autopilot limits & autopilot

pullup pullup

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�14

limits & autopilot limits & autopilot

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�15

limits & autopilot limits & autopilot

pullup pullup

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�16

autopilotlimits & autopilot

Autopilot Requirement Example

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�17

autopilot

pullup

limits & autopilot

Autopilot Requirement Example

None of the three interpretations of the Autopilot
requirement were satisfied by the model!

�18

FRETish

• Restricted natural language for writing requirements

• Intuitive

• Unambiguous

• Based on a grammar

• Underlying semantics are determined by specific fields.

�19

Writing Requirements in FRETish

• Users enter system requirements in a structured English-
like language

�20

Writing Requirements in FRETish

• Users enter system requirements in a structured English-
like language

Component that the requirement refers to

e.g., Autopilot, Monitor

�21

Writing Requirements in FRETish

• Users enter system requirements in a restricted English-
like language

The component’s behavior must conform to the requirement

�22

Writing Requirements in FRETish

• Users enter system requirements in a restricted English-
like language

A Boolean expression

e.g., satisfy autopilot_engaged

�23

Writing Requirements in FRETish

• Users enter system requirements in a restricted English-
like language

The period where the requirement holds

e.g., in/before/after initialization mode

�24

Writing Requirements in FRETish

• Users enter system requirements in a restricted English-
like language

A Boolean expression that further constrains when the
response shall occur

e.g., if x > 0

�25

Writing Requirements in FRETish

• Users enter system requirements in a restricted English-
like language

Specifies when the response shall happen, relative to the
scope and condition

e.g., always, immediately, after n time steps

�26

Unambiguous Requirements with FRET

FSM shall always satisfy (limits & autopilot) => pullup

• Clear, unambiguous semantics in many different forms

• Linear Temporal Logic

• Pure Past time

• Pure Future time

�27

Temporal logics

A future time formula is satisfied by an execution, if the formula holds at
the initial state of the execution.

A past time formula is satisfied by an execution, if the formula holds at
the final state of the execution.

�28

Past time

• Past time operators

• Y, O, H, S

Future time

• Future time operators

• X, F, G, U

Future time Operators

X (Next) refers to the next time step:

X φ is true iff φ holds at the next time step

�29

Future time Operators

X (Next): refers to the next time step:

X φ is true iff φ holds at the next time step

�30

Future time Operators

X (Next): refers to the next time step:

X φ is true iff φ holds at the next time step

�31

Dual past time operator: Y (Yesterday)

Future time Operators

U (Until) refers to multiple time steps:

φ U ψ is true iff ψ holds at holds at some time step t in the future and
for all time steps t’ (such that t’ < t) φ is true.

�32

Future time Operators

U (Until): refers to multiple time steps

φ U ψ is true iff ψ holds at holds at some time step t in the future and
for all time steps t’ (such that t’ < t) φ is true.

�33

Future time Operators

U (Until): refers to multiple time steps

φ U ψ is true iff ψ holds at holds at some time step t in the future and
for all time steps t’ (such that t’ < t) φ is true.

�34

Dual past time operator: S (Since)

Future time Operators

F (eventually): refers to at least one time step in the future:

F φ is true iff φ is true at some future time point including the present
time

�35

Future time Operators

F (eventually): refers to at least one time step in the future:

F φ is true iff φ is true at some future time point including the present
time

�36

Future time Operators

F (eventually): refers to at least one time step in the future:

F φ is true iff φ is true at some future time point including the present
time

�37

Dual past time operator: O (Once)

Future time Operators

G (Globally): refers to all future steps of an execution

G φ is true iff φ is always true in the future

�38

Future time Operators

G (Globally): refers to all future steps of an execution

G φ is true iff φ is always true in the future

�39

Future time Operators

G (Globally): refers to all future steps of an execution

G φ is true iff φ is always true in the future

�40

Dual past time operator: H (Historically)

FRET Semantic Patterns

• FRET generates semantics based on templates.
• Each template is represented by a quadruple:

[scope,condition,timing,response]

Autopilot shall always satisfy (limits & autopilot) => pullup

• [null, null, always] pattern

• Pure FT: G ((limits & autopilot) => pullup)

• Pure PT: H ((limits & autopilot) => pullup)

�41

FRET Semantic Patterns

If autopilot & limits Autopilot shall after 1 step satisfy pullup

• [null, regular, after, satisfaction] pattern

• Pure PT: ((H (((((! FTP) S ((autopilot & limits) & ((Y (! (autopilot & limits))) | FTP))) &
(O[<=1] ((autopilot & limits)& ((Y (! (autopilot & limits))) | FTP)))) -> (! (pullup))) &
(((autopilot & limits) & FTP) -> (! (pullup))))) & (H ((O[=1+1] (((autopilot & limits) & ((Y
(! (autopilot & limits))) | FTP)) & (! (pullup)))) -> (O[<1+1] (FTP | (pullup))))))

�42

FRET Semantic Patterns

If autopilot & limits Autopilot shall after 1 step satisfy pullup

• [null, regular, after, satisfaction] pattern

• Pure PT: ((H (((((! FTP) S ((autopilot & limits) & ((Y (! (autopilot & limits))) | FTP))) &
(O[<=1] ((autopilot & limits)& ((Y (! (autopilot & limits))) | FTP)))) -> (! (pullup))) &
(((autopilot & limits) & FTP) -> (! (pullup))))) & (H ((O[=2] (((autopilot & limits) & ((Y
(! (autopilot & limits))) | FTP)) & (! (pullup)))) -> (O[<2] (FTP | (pullup))))))

�43

Time-constrained versions of past-time
operators

How do we make the connection with analysis tools?

�44

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�45

Finite State Machine Requirement

Atomic propositions in generated formula.

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�46

Finite State Machine Requirement

Atomic propositions in generated formula.
Meaningless when it comes to the model!

• Natural language requirement:

Exceeding sensor limits shall latch an autopilot pullup when
the pilot is in autopilot.

�47

Finite State Machine Requirement

Atomic propositions in generated formula.
Meaningless when it comes to the model!

Additional challenge: How to bridge the gap between
requirements and analysis tools?

An Important Gap Remains

• Between

• formalized requirements

• model/code that they target

• Atomic propositions must be mapped to model signal values or
method executions in the target code.

• To breach this gap:

• Connect FRET with Analysis tools (CoCoSim, NuSMV, etc)

• Highly automated approach

• Interpretation of counterexamples both at requirements and
models level

�48

Mapping propositions to model signals

Autopilot shall always satisfy (limits & autopilot) => pullup

• Pure PT: ((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

�49

Mapping propositions to model signals

FSM shall always satisfy (limits & autopilot) => pullup

• Pure PT: ((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

�50

Exporting Simulink Model Information

• Can be directly imported into FRET

�51

Linking requirement variables to Simulink signals

• FSM shall always satisfy (limits & autopilot) => pullup

�52

Linking requirement variables to Simulink signals

• FSM shall always satisfy (limits & autopilot) => pullup

�53

Lustre & CoCoSpec

• A synchronous, declarative language that operates on streams
• A Lustre program is called a node and has a cyclic behavior
• At the nth execution cycle of the program, all the involved streams take

their nth value
• Variables represent input, output, and locally defined streams
• CoCoSpec: a mode-aware assume-guarantee-based contract

language built as an extension of the Lustre language.

�54

Autopilot shall always satisfy (limits & autopilot) => pullup

((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Lustre & CoCoSpec

• A synchronous, declarative language that operates on streams
• A Lustre program is called a node and has a cyclic behavior
• At the nth execution cycle of the program, all the involved streams take

their nth value
• Variables represent input, output, and locally defined streams
• CoCoSpec: a mode-aware assume-guarantee-based contract

language built as an extension of the Lustre language.

�55

Autopilot shall always satisfy (limits & autopilot) => pullup

((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Lustre & CoCoSpec

�56

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

CocoSpec

Lustre & CoCoSpec

�57

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Input variables

Lustre & CoCoSpec

�58

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Output variable

Lustre & CoCoSpec

�59

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Internal variable

Lustre & CoCoSpec

�60

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Translated past time LTL formula

Translation of LTL to CoCoSpec/Lustre

• Library of past time temporal operators

�61

Generating Simulink Observers

�62

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Generating Simulink Observers

�63

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Generating Simulink Observers

�64

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Generating Simulink Observers

�65

Autopilot shall always satisfy (limits & autopilot) => pullup
((limits & autopilot) => pullup) S (((limits & autopilot) => pullup) & FTP)

Tracing Counterexamples

�66

If autopilot & limits Autopilot shall after 1 step satisfy autopilot & pullup

Tracing Counterexamples

�67

If autopilot & limits Autopilot shall after 1 step satisfy autopilot & pullup

Exceeding sensor limits shall latch an autopilot pullup when the
pilot is in autopilot.

Very different from the initial requirement!

Lockheed Martin Challenge Problems

• LM Aero Developed Set of 10 V&V Challenge Problems
• Each challenge includes:

• Simulink model
• Parameters
• Documentation Containing Description and Requirements
• Difficult due to transcendental functions, nonlinearities and

discontinuous math, vectors, matrices, states
• Challenges built with commonly used blocks
• Publicly available case study

�68

Overview of Challenge Problems

• Triplex Signal Monitor
• Finite State Machine
• Tustin Integrator
• Control Loop Regulators
• NonLinear Guidance Algorithm
• Feedforward Cascade Connectivity Neural Network
• Abstraction of a Control (Effector Blender)
• 6DoF with DeHavilland Beaver Autopilot
• System Safety Monitor
• Euler Transformation

�69

Challenge Problem Complexity

�70

Number of blocks Types of Blocks

Challenge Problem Complexity

�71

Number of blocks Types of Blocks

Transcendental functions

Challenge Problem Complexity

�72

Number of blocks Types of Blocks

Nonlinearities & Discontinuous math

Challenge Problem Analysis Results

�73

Challenge Problem Analysis Results

�74

Challenge Problem Analysis Results

�75

Challenge Problem Analysis Results

�76

Algebraic loop!

Challenge Problem Analysis Results

�77

Abstraction of trigonometric, non-linear functions and
allows local analysis

Our work supports…

• Automatic extraction of Simulink model information

• Association of high-level requirements with target model
signals and components

• Translation of temporal logic formulas into synchronous
data flow specifications and Simulink monitors

• Interpretation of counterexamples both at requirement
and model levels

�78

Thank you for your attention!

�79

