

The Image Constraint Measurement Type for Orbit Determination & Geophysical Parameter Estimation

2nd RPI Space Imaging Workshop

Kenneth M. Getzandanner¹, OSIRIS-REx Flight Dynamics Manager

Jason Leonard², Andrew Liounis¹, Erwan Mazarico³, David Rowlands⁴, Coralie Adam², Peter Antreasian², Benjamin Ashman¹, and Dante S. Lauretta⁵

KinetX Aerospace Space Navigation and Flight Dynamics Practice

¹NASA/GSFC Navigation and Mission Design Branch, Greenbelt, MD 20771, USA.
 ²KinetX, Inc., Space Navigation and Flight Dynamics Practice, Simi Valley, CA 93065, USA.
 ³NASA/GSFC Planetary Geology, Geophysics, & Geochemistry, Greenbelt, MD 20771, USA.
 ⁴NASA/GSFC Geodesy & Geophysics Laboratory, Greenbelt, MD 20771, USA.
 ⁵Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85705, USA

NASA GSFC Navigation and Mission Design Branch

UNIVERSITY OF ARIZONA NASA'S GODDARD SPACE FLIGHT CENTER

LOCKHEED MARTIN

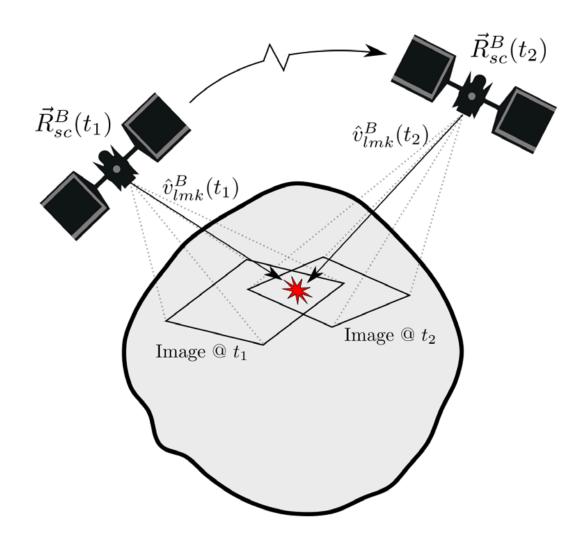
- Brief History
- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

Brief History

- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

- Originally published in Mazarico, et. al. (2014)
 - Developed as an alternative to direct landmark processing
 - Processed image constraint measurements for NEAR at Eros
- Implemented in GSFC's GEODYN precision orbit determination and geophysical parameter estimation software
- Further improved and tested for Dawn at Vesta (see Centinello, et. al, 2015)
- Recently implemented in the MIRAGE operational navigation software suite for the OSIRIS-REx mission at Bennu
 - Used to supplement traditional direct-landmark measurements

• Brief History


Measurement Specification

- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

Measurement Specification (1/X)

- Consists of observations of a single surface feature (or landmark) in two different images
- The unit vectors corresponding to each observation must, by definition, intersect in the target body's fixed frame
- Constrains the relative position and orientation of the spacecraft at the time of the two exposures
- Similar to visual odometry but at much longer baselines

Start with observed sample/line location of landmark, [s, l] (in pixels) for each image
Extracting [s, l] for each landmark is addressed later...

• $\hat{v}_{lmk}^{C}(t)$ - find by inverting an appropriate camera model (OpenCV for OSIRIS-REx):

$$\begin{bmatrix} S \\ l \end{bmatrix} = g(\hat{v}_{lmk}^{C}, f_{x,y}, k_{0-6}, p_{1-2}, c_{x,y})$$

$$\hat{v}_{lmk}^{C} = g'(s, l, f_{x,y}, k_{0-6}, p_{1-2}, c_{x,y})$$

• Rotate $\hat{v}_{lmk}^{C}(t)$ from the camera frame to the spacecraft-fixed frame:

 $\hat{v}_{lmk}^{S}(t) = C_B^{I}(t)\delta C C_S^{C} \hat{v}_{lmk}^{C}(t)$

• Rotate $\vec{R}_{sc}^{I}(t)$ and $\hat{v}_{lmk}^{I}(t)$ to target-body fixed frame using IAU rotation parameters:

$$\vec{R}_{sc}^{B}(t) = C_{B}^{I}(t)\vec{R}_{sc}^{I}(t)$$
$$\hat{v}_{lmk}^{B}(t) = C_{B}^{I}(t)\hat{v}_{lmk}^{C}(t)$$
$$C_{B}^{I}(t) = f(t,\alpha,\delta,\omega_{0},\omega,\dots)$$

• Minimum intersect distance of two rays with origins $\vec{R}_{sc}^B(t_1)$, $\vec{R}_{sc}^B(t_2)$ and directions $\hat{v}_{lmk}^B(t_1)$, $\hat{v}_{lmk}^B(t_2)$:

$$d = \left[\vec{R}_{sc}^{B}(t_{1}) - \vec{R}_{sc}^{B}(t_{2})\right]^{T} \left[\frac{\hat{v}_{lmk}^{B}(t_{1}) \times \hat{v}_{lmk}^{B}(t_{2})}{\left|\hat{v}_{lmk}^{B}(t_{1}) \times \hat{v}_{lmk}^{B}(t_{2})\right|}\right]$$

• By definition, d is nominally zero: $\delta y = 0 - d = -d$

• Image constraints are a **differenced measurement**:

- No dependence on landmark locations/shape model (except during processing)
- Some 1st order errors in location/shape cancel
- Still susceptible to shape/orbit scale errors

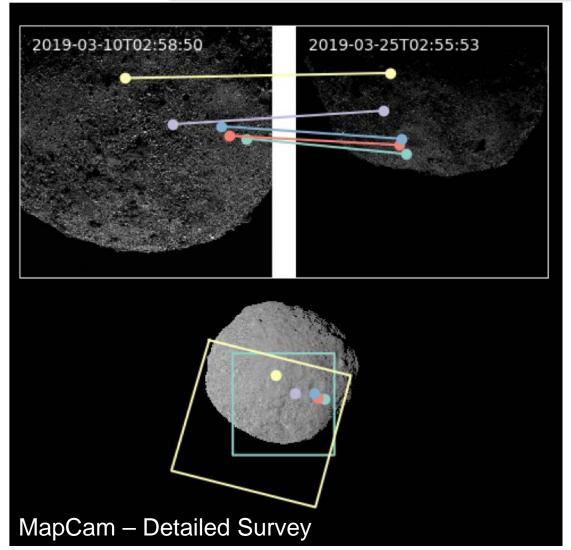
• Provides relative state information ($\Delta \vec{R}_{sc}^B$) perpendicular to the baseline:

$$\frac{\partial d}{\partial \Delta \vec{R}_{sc}^B} = \left[\frac{\hat{v}_{lmk}^B(t_1) \times \hat{v}_{lmk}^B(t_2)}{\left| \hat{v}_{lmk}^B(t_1) \times \hat{v}_{lmk}^B(t_2) \right|} \right]^T$$

• Alternate formulation for epoch-state filters (in terms of $X^{I}(t_{0})$):

$$d = X^{I}(t_{0})^{T} [C^{I}_{B}(t_{1})\Phi(t_{0},t_{1}) - C^{I}_{B}(t_{2})\Phi(t_{0},t_{2})]^{T} \left[\frac{\hat{v}^{B}_{lmk}(t_{1}) \times \hat{v}^{B}_{lmk}(t_{2})}{\left| \hat{v}^{B}_{lmk}(t_{1}) \times \hat{v}^{B}_{lmk}(t_{2}) \right|} \right]^{T} \frac{\partial d}{\partial X^{I}(t_{0})} = \left[\frac{\hat{v}^{B}_{lmk}(t_{1}) \times \hat{v}^{B}_{lmk}(t_{2})}{\left| \hat{v}^{B}_{lmk}(t_{1}) \times \hat{v}^{B}_{lmk}(t_{2}) \right|} \right]^{T} [C^{I}_{B}(t_{1})\Phi(t_{0},t_{1}) - C^{I}_{B}(t_{2})\Phi(t_{0},t_{2})]$$

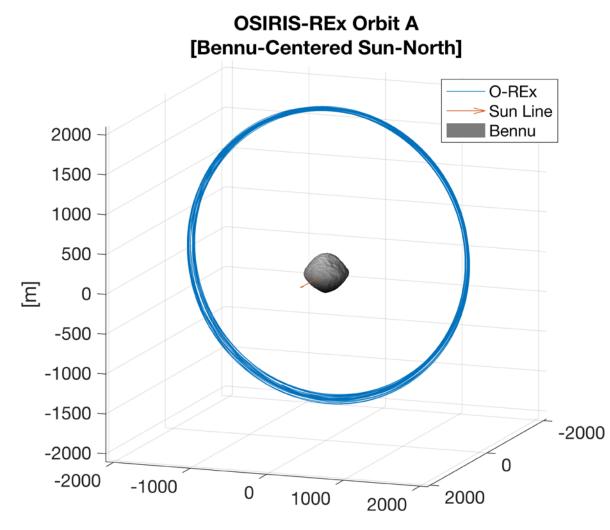
- Also provides information for:
 - Camera Pointing Correction δC
 - Target Body Orientation α , δ , ω (not ω_0 !)



- Brief History
- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

Constructing the Observables

- Need to identify common landmarks between two images
 - Usually from the same imager, but can be different
- Convenient by-product of traditional SPC (or similar) terrain-relative navigation
 - Requires a full shape model
 - See subsequent slides for alternative approaches...
- Commonly constrain:
 - Min/Max time between landmarks
 - Number of "appearances" of each landmark
- Ideal to select combinations that vary the baseline direction



- Brief History
- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

Example: OSIRIS-REx Orbital A

- Processed Direct Landmark and IC data from Orbital A in GEODYN
 - Representative example do not replace official results from FDS and other science working groups
- 2.1 x 1.6 km "Frozen" terminator orbit
 January 1st to February 28th
- Long and Short NavCam Exposures
 - Precise camera pointing
- Shape Model: 75 cm GSD
 - From Altimetry Working Group (iterated)
 - Sub-sampled to ~1000 landmarks

- Total number of Direct Landmark Observables: 91,999
 - From 1757 images and 992 Landmarks
- Filter Criterion:
 - Minimum Time Between Image Pairs: 60 hours (~1 orbit period)
 - Maximum Time Between Image Pairs: None (entire arc, ~2 months)
- Total number of Image Constraint Observables: 107,573
 - Most "appearances" by a single landmark: 23
- Also looked into filtering landmark pairs by baseline direction to maximize information content (J. Leonard/KinetX)

• Case 1:

- Direct Landmarks Only (1 pixel weight)
- No scale or COM-COF estimation

• Case 2:

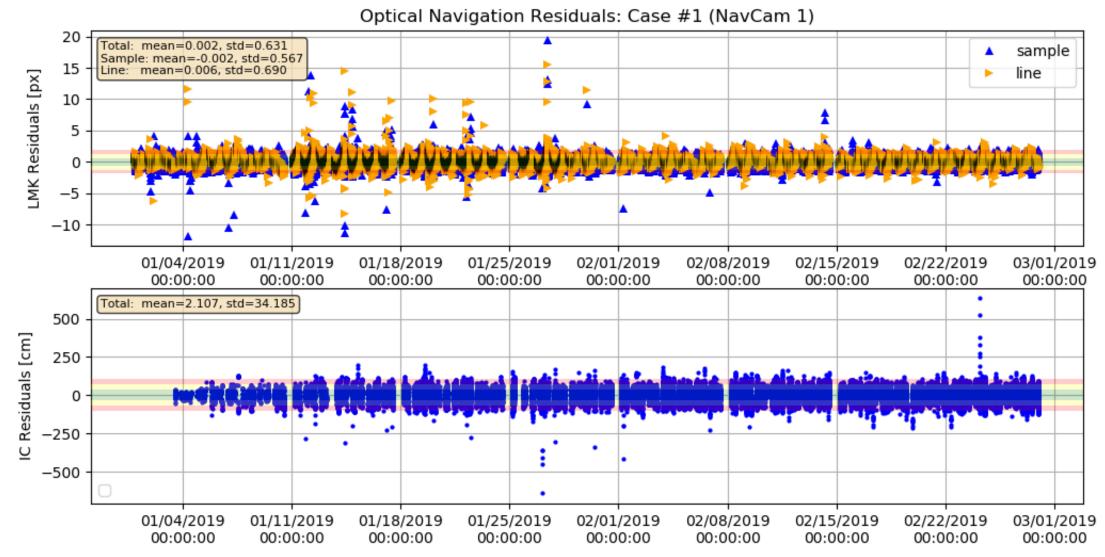
- Direct Landmarks Only (1 pixel weight)
- Estimate scale and COM-COF
- Case 3:
 - Direct Landmarks Only (3 pixel weight)
 - Estimate scale and COM-COF
- Case 4:
 - Image Constraints Only (10 cm weight)
- Case 5:
 - Image Constraints Only (75 cm weight)

Orbital A Filter Cases

- Solve-For Parameters:
 - Spacecraft:
 - Position/Velocity at Epoch
 - Impulsive Momentum Desaturations
 - Twice-per-week
 - Stochastic Accelerations
 - 1-day Batches
 - Per-Pass DSN Range Biases
 - Bennu:
 - GM and J2
 - Spin Pole & Rate
 - Shape Model Scale (Cases 2 & 3)
 - COM-COF Offset (Cases 2 & 3)

- Measurements (Weight)
 - DSN Range (21 RU)
 - DSN Doppler (5.5 mHz)
 - Direct Landmarks (1 or 3 pixels)
 - Image Constraints (10 or 75 cm)

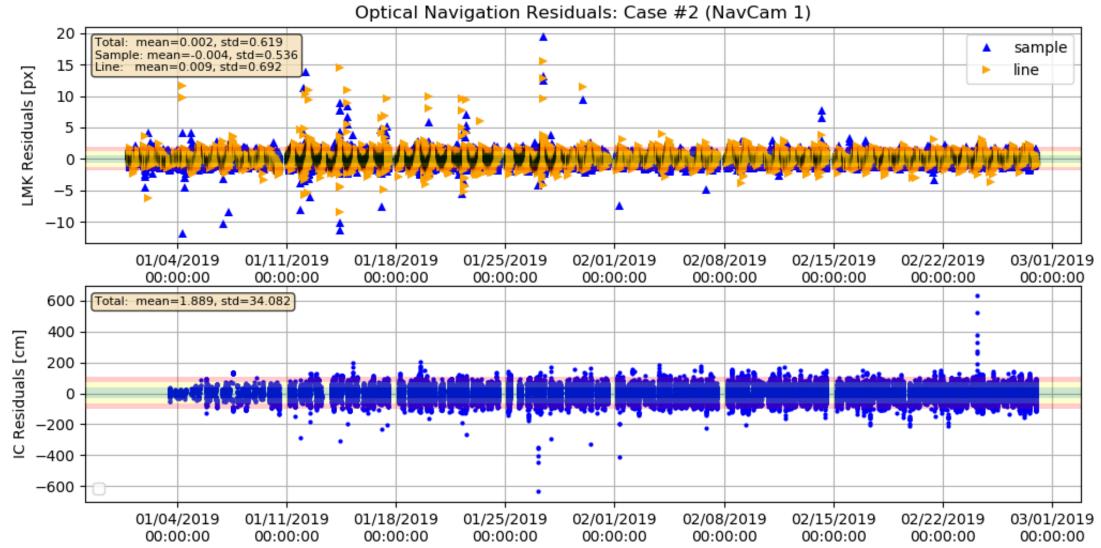
Residual Comparison


	Direct Landmarks		Image Constraints	
	Mean (pix)	RMS (pix)	Mean (cm)	RMS (cm)
Case 1: DL (1 px), no Scale or COM-COF	0.0019	0.6315	2.11	34.25
Case 2: DL (1 px), Scale & COM-COF	0.0021	0.6187	1.89	34.13
Case 3: DL (3 px), Scale & COM-COF	0.0025	0.6402	2.38	34.52
Case 4: ICs Only (10 cm)	0.2293	1.516	-0.64	29.29
Case 5: ICs Only (75 cm)	0.1665	1.0856	-0.67	29.74

• Fit / Passthru

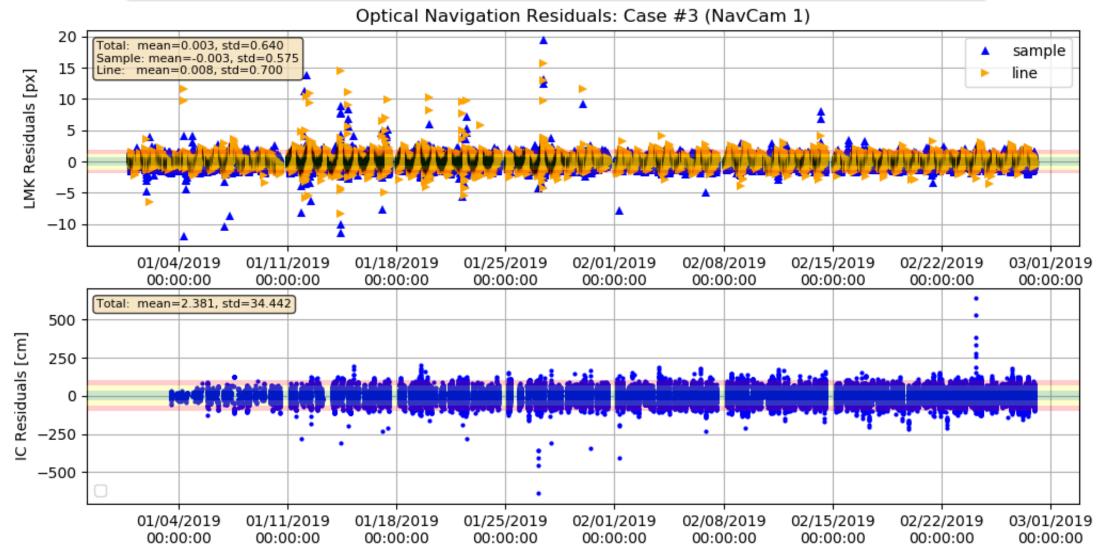
• Residuals are similar for DL-only and IC-only cases

Residuals: Case 1 Direct Landmarks Only (1 px), No Scale/COM-COF



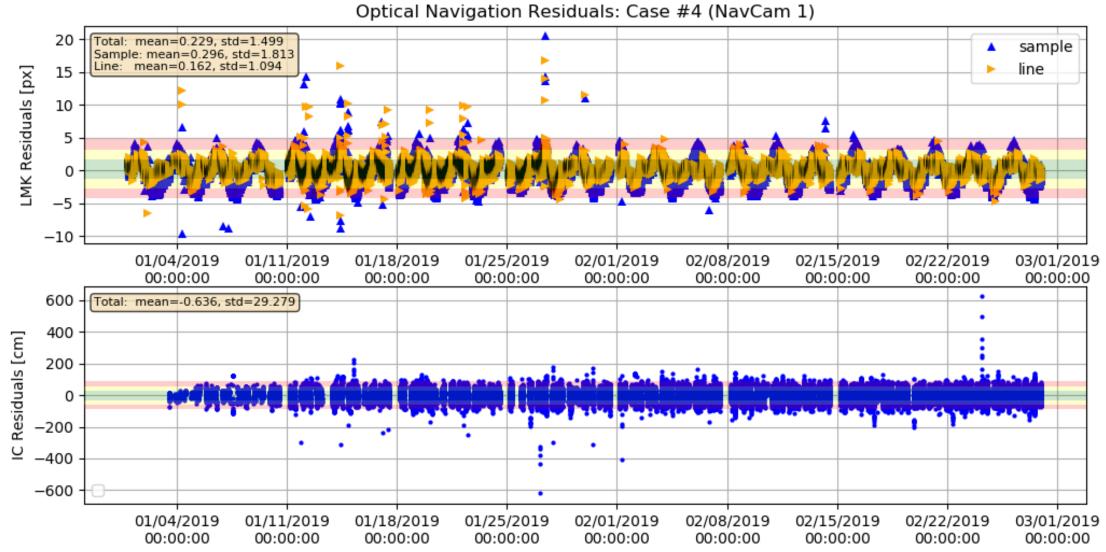
K. Getzandanner, 2nd RPI Space Imaging Workshop, October 28-30, 2019

Residuals: Case 2 Direct Landmarks Only (1 px), With Scale/COM-COF

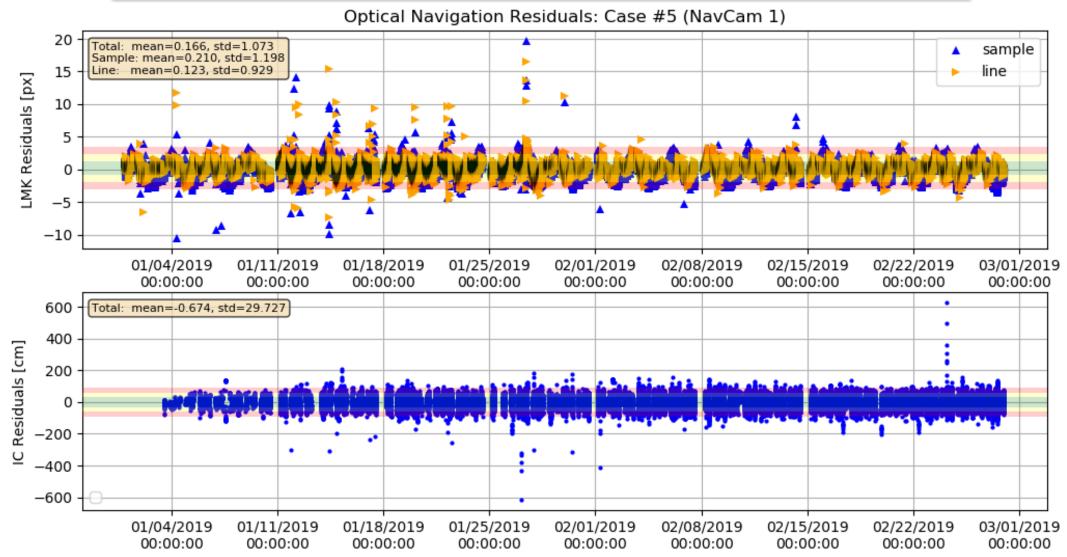


K. Getzandanner, 2nd RPI Space Imaging Workshop, October 28-30, 2019

Residuals: Case 3 Direct Landmarks Only (3 px), With Scale/COM-COF



K. Getzandanner, 2nd RPI Space Imaging Workshop, October 28-30, 2019

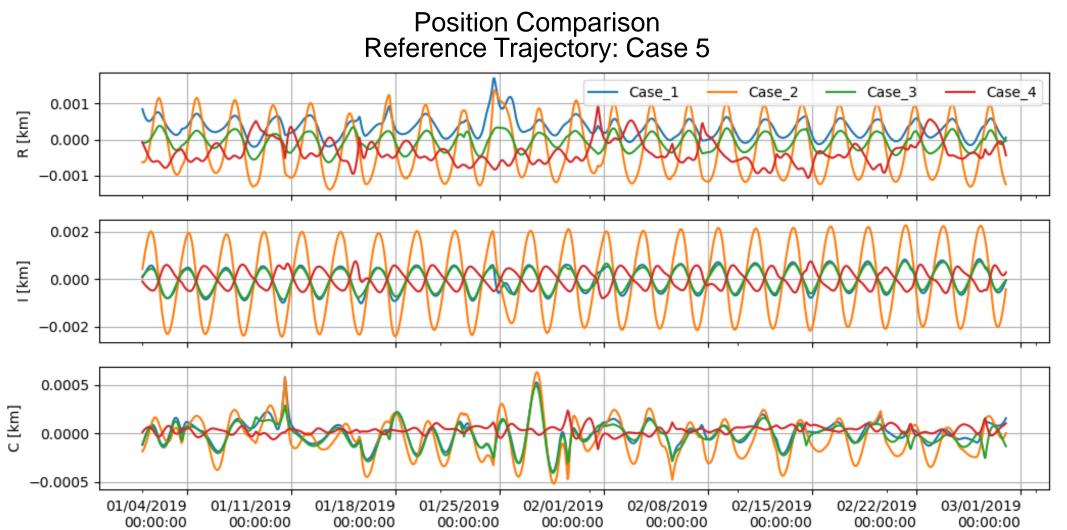


K. Getzandanner, 2nd RPI Space Imaging Workshop, October 28-30, 2019

Residuals: Case 5 (Image Constraints Only, 75 cm)

K. Getzandanner, 2nd RPI Space Imaging Workshop, October 28-30, 2019

Spin State Sensitivity


	α	δ	ω ₀	ω
Case 1	85.5039° ± 0.223°	$-60.2974^{\circ} \pm 0.070^{\circ}$	27.3665° ± 0.298°	0.02328 ± 4.6e-8°/sec
Case 2	85.5036° ± 0.223°	-60.2905° ± 0.071°	27.3642° ± 0.298°	0.02328 ± 4.6e-8°/sec
Case 3	85.4991° ± 0.583°	-60.2969° ± 0.209°	27.3599° ± 0.842°	0.02328 ± 1.4e-7°/sec
Case 4 (w/ ω_0)	85.4437° ± 0.052°	-60.3767° ± 0.019°	16.6103° ± 12.98°	0.02328 ± 4.6e-8°/sec
Case 4 (w/o ω_0)	85.4435° ± 0.052°	-60.3767° ± 0.019°	27.3118° (Fixed)	0.02328 ± 7.5e-9°/sec
Case 5	$85.4503^{\circ} \pm 0.363^{\circ}$	-60.3760° ± 0.137°	27.3118° (Fixed)	0.02328 ± 5.5e-8°/sec

• Spin State Epoch: December 1st, 2018 00:00:00.000

• All parameters are within family **except** for ICs-only with ω_0 estimation

Iterating IC Solutions with Direct Landmarks

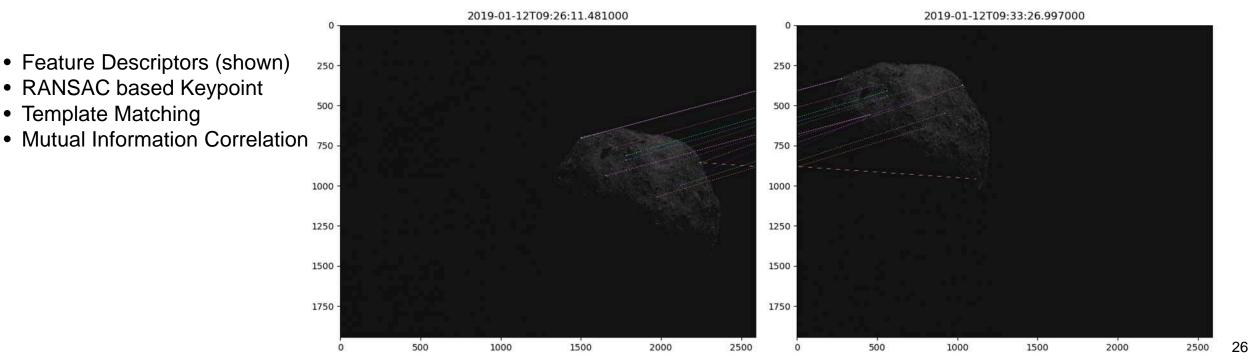
- Case 6:
 - Held Case 4 trajectory fixed (ICs only, 10 cm weight)
 - Re-estimated Spin Pole/Rate, Shape Model Scale, and COM-COF offset using Direct Landmarks
 - Direct Landmark Residuals: -0.0147 px mean, 0.6952 px RMS

• Case 7:

- Held Case 5 trajectory fixed (ICs only, 75 cm weight)
- Re-estimated Spin Pole/Rate, Shape Model Scale, and COM-COF offset using Direct Landmarks
- Direct Landmark Residuals: -0.0046 px mean, 0.6973 px RMS

	SCALE	COM-COF X	COM-COF Y	COM-COF Z
Case 1	1.0 (Fixed)	0.0 (Fixed)	0.0 (Fixed)	0.0 (Fixed)
Case 2	0.9995 ± 2.07e-5	0.3599 ± 0.17 cm	1.235 ± 0.17 cm	146.6 ± 3.68 cm
Case 3	0.9996 ± 8.97e-6	0.2048 ± 0.52 cm	1.266 ± 0.51 cm	-62.80 ± 5.3 cm
Case 6	0.9997 ± 8.97e-6	0.1454 ± 0.17 cm	1.249 ± 0.17 cm	-119.2 ± 0.24 cm
Case 7	0.9998 ± 8.97e-6	-0.0885 ± 0.17 cm	1.427 ± 0.17 cm	-67.87 ± 0.24 cm

- Brief History
- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work



While SPC provides an opportunity to easily extract the location of the same feature in numerous images, it requires having a pre-built shape model, nullifying one of the benefits of this measurement type.

We are currently investigating alternative methods of matching features between images using just image processing.

- Brief History
- Measurement Specification
- Constructing the Observables
- Results from Orbital A
- Alternative Approaches to Observable Construction
- Conclusion & Future Work

- ICs are an alternative to Direct Landmark observables in orbit determination and provide an additional metric to evaluate solutions
 - Demonstrated with NEAR, Dawn, and OSIRIS-REx data
- The IC measurement model does not depend on a shape model or pre-defined landmarks
 - Some 1st order errors cancel (not scale)
 - Potential to generate ICs without prior shape model development
- Orbital A results are consistent with one-another, depending on the weighting scheme
- Future Work:
 - Continue analyzing OSIRIS-REx data in other mission phases (Surveys, Orbit B, etc.)
 - Refine IC alternative construction techniques that do not require a shape model and test with OSIRIS-REx imagery
 - Compare with other complimentary data types: Direct and Differenced Altimetry

JOIN THE MISSION ON THE WEB!

AsteroidMission.org
OSIRISREx
OSIRISREx

