IMERG
Reaching for 20 Years

George J. Huffman(1), David T. Bolvin(1,2), Dan Braithwaite(3), Kuolin Hsu(3), Robert Joyce(4,5), Christopher Kidd(1,6), Eric Nelkin(1,2), Soroosh Sorooshian(3), Jackson Tan(1,7), Pingping Xie(5)

(1) NASA/GSFC Earth Sciences Division – Atmospheres
(2) Science Systems and Applications, Inc.
(3) Univ. of California Irvine
(4) Innovim
(5) NOAA/NWS Climate Prediction Center
(6) Univ. of Maryland / ESSIC
(7) Univ. Space Res. Assoc.

ageorge.j.huffman@nasa.gov
1. IMERG – Quick Description

IMERG is a single integrated code system for near-real and post-real time

- “Early” – 4 hr (flash flooding)
- “Late” – 14 hr (crop forecasting)
- “Final” – 3 months (research)
- half-hourly and monthly (Final only)
- 0.1° global CED grid
 - morphed precip, 60° N-S in V05, 90° N-S in V06

Combined product (calibrator) adjusted to GPCP V2.3 seasonal climatology zonally for reasonable bias

- GPM core products have similar bias (by design)
 - these profiles are systematically low in the extratropical oceans compared to
 - GPCP V2.3 SG product
 - Behrangi Multi-satellite CloudSat, TRMM, Aqua (MCTA) product
 - over land GPCP adjustment provides a first cut at the adjustment to gauges used in the Final

Half-hourly data file (Early, Late, Final)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[multi-sat.] precipitationCal</td>
</tr>
<tr>
<td>2</td>
<td>[multi-sat.] precipitationUncal</td>
</tr>
<tr>
<td>3</td>
<td>[multi-sat. precip] randomError</td>
</tr>
<tr>
<td>4</td>
<td>[PMW] HQprecipitation</td>
</tr>
<tr>
<td>5</td>
<td>[PMW] HQprecipSource [identifier]</td>
</tr>
<tr>
<td>6</td>
<td>[PMW] HQobservationTime</td>
</tr>
<tr>
<td>7</td>
<td>IRprecipitation</td>
</tr>
<tr>
<td>8</td>
<td>IRkalmanFilterWeight</td>
</tr>
<tr>
<td>9</td>
<td>[phase] probabilityLiquidPrecipitation</td>
</tr>
<tr>
<td>10</td>
<td>precipitationQualityIndex</td>
</tr>
</tbody>
</table>

Monthly data file (Final)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[sat.-gauge] precipitation</td>
</tr>
<tr>
<td>2</td>
<td>[sat.-gauge precip] randomError</td>
</tr>
<tr>
<td>3</td>
<td>GaugeRelativeWeighting</td>
</tr>
<tr>
<td>4</td>
<td>probabilityLiquidPrecipitation [phase]</td>
</tr>
<tr>
<td>5</td>
<td>precipitationQualityIndex</td>
</tr>
</tbody>
</table>
1. IMERG – V06 Upgrades

Morphing vector source switched to MERRA-2/GEOS FP

Morphed precip extended from 60° N-S (V05 and earlier) to 90° N-S, but
• masked out for icy/snowy surfaces

Half-hourly Quality Index modified
• t=0 values estimated (set to 1 in V05)
• shifted to 0.1° grid (0.25° in V05)

Full intercalibration to Combined Radar-Radiometer Algorithm (CORRA)
• V05 took shortcuts

Modifications for TRMM era
• compute calibrations for older satellites against TRMM
 • compute TRMM-era microwave calibrations in the band 33°N-S and
 • blend with adjusted monthly climatological GPM-era microwave calibrations over 25°-90° N and S

Revisions to internals raises the maximum precip rate from 50 to 200 mm/hr and no longer discrete
• files bigger due to less compressibility
• allows really tiny numbers
2. Early Results – Calibration

Calibration sequence is
- CORRA climatologically calibrated to GPCP over ocean outside 30ºN-S
- GMI calibrated to monthly CORRA
- GPM constellation climatologically calibrated to GMI

Adjustments working roughly as intended
- CORRA is low at higher latitudes
- adjustments in Southern Ocean are large and need analysis
 - IMERG subsetted to coincidence with CORRA is much closer to (adjusted) CORRA
2. Early Results – Ocean (50ºN-S) Precip Timeseries

V06 Final Run starts June 2000

V06 is higher than 3B43 (TMPA) and GPCP over ocean

TRMM-era IMERG has a strong semi-annual signal
 • GPM-era IMERG and 3B43 dominated by the annual cycle

Interannual variation
 • has similar peaks/troughs for all datasets
 • GPCP (passive microwave calibration) lags phase of 3B43 (through 2013), IMERG (both PMW/radar calibration)
 • after September 2014, 3B43 (PMW calibration) matches GPCP phase

Additional multi-year variations
 • IMERG and 3B43 are High Resolution Precipitation Products, not CDRs
2. Early Results – Tropical Ocean (20°N-S) Monthly Precip

Histogram of Final Run monthly tropical oceanic precip on
0.1° grid, 20° N-S (top)

• log(counts) to help draw out small values

Anomaly helps guide interpretation (bottom)

• log scale in both directions from zero
• filtered in time to emphasize main features

Initial impressions

• mid-to-high rates sometimes (2009-10) vary together, but
 not always (2006-07)
• lower rates tend to vary in the opposite direction
• start of GPM calibration (June 2014) seems to shift the
 PDF to lower rates
• persistent mid-range positive anomalies in 2009-14 remain
 to be explained

This discussion will help determine reliability for trend
analysis
2. Early Results – Late Run, September-November Diurnal Cycle, Maritime Continent

Average September-November for 2001 to 2018, Late Run
- day/night shading
- Blue Marble land
- smoothed in space and time
 - even 18 years of seasonal data still has lumps

Reminiscent of IMERG V05, but
- less “flashing” due to inter-satellite differences and morphing
- better data coverage at higher latitudes (not seen here)

Reminiscent of TMPA, but
- more detailed, broader spatial coverage
- no interpolations between the 3-hourly times
- less IR-based precip used (which tends to have a phase lag)
Average June-August for 2014 to 2018 (5 summers) for 6 states, Final Run

Compared to Multi-Radar Multi-Sensor (MRMS, dashed), Final (solid) shows:

- lower averages (despite use of gauge data)
- lower amplitude cycle in Colorado
- higher amplitude cycle in Iowa
- very similar curve shapes, peak times

This version of MRMS only starts in 2014, so an extended comparison requires different data.
2. Early Results – IMERG Final, Monthly for Atolls

Monthly accumulations for tropical Pacific atolls

- Pacific Rainfall Database (PACRAIN)
- match of gauge to encompassing 0.1° grid box
- all useful months
 - stations have various periods of record (potentially changing the regions sampled)
 - 53 “good” atolls, averaging ~11/month
- bias varies with precip rate
 - IMERG under-(over-)estimates at low(high) rates
 - atoll gauges lack undercatch correction
 - likely ~5-10%, so overall IMERG bias is (amazingly) good, but rate biases remain
3. Schedule and Final Remarks (1/2)

IMERG V06B is fully operational
- 19+ years, starting June 2000
- TMPA will end with December 2019

Development Work for V07
- multi-satellite issues
 - improve error estimation
 - develop additional data sets based on observation-model combinations
 - work toward a cloud development component in the morphing system
- general precipitation algorithmic issues
 - introduce alternative/additional satellites at high latitudes (TOVS, AIRS, AVHRR, etc.)
 - evaluate ancillary data sources and algorithm for Prob. of Liq. Precip. Phase
 - work toward PMW retrievals that work over snow/ice
 - work toward improved wind-loss correction to gauge data
 - more-advanced IR algorithm

Version 07 release should be in “about 2 years” (2022?)
IMERG is now V06B
- the product structure remains the same
 - Early, Late, Final
 - 0.1°x0.1° half-hourly (and monthly in Final)
- new source for morphing vectors
- higher-latitude coverage
- extension back to 2000 (and eventually 1998)
- improved Quality Index
- TMPA ending in December

See https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4285
Presently 3-hourly observations >90% of the time, globally.

The current GPM constellation includes:
- 5 polar-orbit passive microwave imagers
- 5 polar-orbit passive microwave sounders
- Input precip estimates
 - GPROF (LEO PMW) + PRPS (SAPHIR)
 - PERSIANN-CCS (GEO IR)
 - CORRA (combined PMW-Ku radar)
 - GPCP SG (monthly satellite-gauge)

The constellation is evolving
- Launch manifests are assured for sounders, sparse for imagers
2. IMERG – Examples of Data Fields

PMW sensor
PMW time into half hour
PMW precip
IR precip
IR weight
2 July 2015 0030 UTC

cal precip (uncal precip)
probability of liquid phase
Quality Index

Cases
Locations
Half-hourly QI (revised)

- approx. Kalman Filter correlation
 - based on
 - times to 2 nearest PMWs (only 1 for Early) for morphed data
 - IR at/near time (when used)

\[QI_h = \tanh\left(\sqrt{\sum \text{arctanh}^2 (r_i)} \right) \]

- where \(r \) is correlation, and the \(i \)'s are for forward propagation, backward propagation, and IR
- or, an approximate correlation when a PMW is used for that half hour

- revised to 0.1° grid (0.25° in V05)
- thin strips due to inter-swath gaps
- blocks due to regional variations
- snow/ice masking will drop out microwave values

The goal is a simple “stoplight” index

- ranges of QI will be assigned
 - good \(0.6-1 \)
 - use with caution \(0.4-0.6 \)
 - questionable \(0-0.4 \)
 - is this a useful parameter?
2. IMERG – Quality Index (2/2)

Monthly QI (unchanged)

- **Equivalent Gauge** (Huffman et al. 1997) in **gauges / 2.5°x2.5°**
 \[QI_m = (S + r) \times H \times (1 + 10 \times r^2)/e^2 \]
 - where \(r \) is precip rate, \(e \) is random error, and \(H \) and \(S \) are source-specific error constants
 - invert random error equation
 - largely tames the non-linearity in random error due to rain amount
 - some residual issues at high values
 - doesn’t account for bias
 - the stoplight ranges are
 - good > 4
 - use with caution 2-4
 - questionable < 2
 - note that this ranking points out uncertainty in the values in light-precip areas that nearly or totally lack gauges (some deserts, oceanic subtropical highs)
Following the CMORPH approach

- for a given time offset from a microwave overpass
- compute the (smoothed) average correlation between
 - morphed microwave overpasses and microwave overpasses at that time offset, and
 - IR precip estimates and microwave overpasses at that time offset and IR at 1 and 2 half hours after that time offset
- for conical-scan (imager) and cross-track-scan (sounder) instruments separately
- the microwave correlations drop off from t=0, dropping below the IR correlation within a few hours (2 hours in the Western Equatorial Pacific)
Following the CMORPH approach
• for a given time offset from a microwave overpass
• compute the (smoothed) average correlation between
 • morphed microwave overpasses and microwave overpasses at that time offset, and
 • IR precip estimates and microwave overpasses at that time offset and IR at 1 and 2 half hours after that time offset
• for conical-scan (imager) and cross-track-scan (sounder) instruments separately
• the microwave correlations drop off from there, dropping below the IR correlation within a few hours (2 hours in the Western Equatorial Pacific)
• at $t=0$ (no offset), imagers are better over oceans, sounders are better or competitive over land

3. Some Details – Key Points in Morphing (2/3)

L2 correlation at $t=0$ Aug.-Oct. 2017
J. Tan (USRA; GSFC)
3. Some Details – Key Points in Morphing (3/3)

Tested vectors computed on a 5°x5° template every 2.5°, interpolated to 0.1°x0.1° based on
- MERRA2 TQV (vertically integrated vapor)
- MERRA2 PRECTOT (precip)
- CPC 4-km merged IR Tb (as in V05 IMERG)
- NULL (no motion)

On a zonal-average basis, compute the Heidke Skill Score for
- merged GPROF precip (HQ) propagated for 30 min.
- compared to HQ precip observed in the following 30 min.
- TQV is consistently at/near the top
- further research is expected for V07

J. Tan (USRA; GSFC)
Harvey loitered over southeast Texas for a week

- MRMS considered the best estimate
 - some questions about the details of the gauge calibration of the radar estimate
 - over land
- Uncal (just the intercalibrated satellite estimates) under(over)-estimated in Area 1(2)
 - should be similar to Late Run
- Cal (with gauge adjustment) pulls both areas down
- microwave-adjusted PERSIANN-CCS IR has the focus too far southwest
IMERG largely driven by microwave overpasses (dots)
• except duplicate times
• not just time interpolation
 • systems move into / out of the box between overpasses
• satellites show coherent differences from MRMS
 • microwave only “sees” the solid hydrometeors (scattering channels), since over land
 • IR looks at Tb within “clustered” data
 • both are calibrated to statistics of time/space cubes of data
 • Cal is basically (Uncal x factor)
 • short-interval differences show some cancellation over the whole event
 • but several-hour differences can be dramatic

2. Early Results – Hurricane Harvey, 25-31 August 2017, IMERG and MRMS (2/2)