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Mission Background

 The Jovian environment has high levels of ionizing
radiation, extreme temperatures and debris [1].

 NASA will embark on extensive studies and planning of
missions to explore Europa.

* Recurrent sightings of active water plumes spewing water
to the icy surface has garnered more interest around the
moon’s habitability aspect.

e The Europa Lander concept will be designed to carry a
miniaturized laboratory that will analyze Europan surface
samples for its chemical composition and other geological
data from the moon [2].

e The lander’s search for any biosignature might be
endangered by the lander’s own contaminated body, also a
contamination threat to any future landers to come from
other space agencies with similar astrobiological interest.

 C(Cleaning the systems poses a special challenge to
propulsion subsystem planning and manufacturing, since it
may introduce harsh bioreduction techniques to the
process of a motor that is destined to age.

Figure 1(a) Europa plumes found in 2016 (image)
and(b) Europa lander concept illustration [3,4].
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Mission Background

* The De-Orbit Stage of robotic exploration of far-away
bodies are historically assisted by SRMs due to their high
reliability and low-cost functionality.

e The Star 48B propellant for example, survived the
Magellan flight 15-month space storage and more than 5
years without material degradation in a long-duration
exposure facility (LDEF) [5].

e Aside from the challenges put forth by propulsion
subsystem flybys through a high-radiation Jovian
environment, raising the probabilities of motor aging,
Planetary Protection techniques will amplify any
material degradation or malfunction probability [6].

Figure 2. The De-Orbit Stage is part of the
De-Orbit Stage Vehicle[7].
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Mission Background

* The mission and philosophy of Planetary Protection is to
establish a levelled ground.

* NASA has a set of requirements specific for all mission
types, guided by COSPAR and the OSMA, with the
experience brought forth by missions to Mars [8].

e At KSCin 2003 two large spacecraft components used in i
MER underwent dry heat microbial reduction (DHMR) in @ oo L
“tolerable” environment conditions for the materials [9].

COMPLIANCE 15 MANDATORY

Planetary Protection Provisions for Robotic Extraterrestrial
Missions

* Trade-offs: At some point in the development of a Respeasible Office: Office of Safety aud Mission Assurance
propulsion subsystem these techniques are applied and CPECIAL ATTENTION: ONLY USE Nib S020.1094
modified to fit the requirements for Planetary Protection Missan 1o cction Provisionsfor Rebotic Extraterrestriat

without affecting system performance.
Figure 3. NPR 8020 by NASA.

e Building a Planetary Protection Plan and process for the
propulsion subsystems of a category IV mission to Europa
has never been done before, the biggest complications
being attached to the presence of large quantities of solid
rocket propellant in some of the larger SRMs.
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Figure 4. SRM make-up [10].
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Planetary Protection Process
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Figure 5. Mindmap of SRM PP.
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Planetary Protection Process
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Planetary Protection Process (Non-VHP)
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Planetary Protection Process
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Planetary Protection Techniques
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Figure 9. SRM PP simple techniques
applicable.
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Conclusions

e DHMR of the entire motor at once does not appear to be the way to achieve
targeted bioreduction for the braking motor’s propellant and liner.

e Scenarios with a sacrificial thermal liner inside the metallic case may benefit from
antimicrobial testing and irradiation pre-application.

* Inner-case: bagging procedures scenarios that occur can be used to the advantage
of Planetary Protection.

* No-grease design change: eliminating the use of greases and increasing the risk of
a rigid mated case unless greases are proven to cause a logarithmic reduction of
microbial load.

* Nozzle: sealing mechanisms should be used, and verification of sealant
performance and nozzle cap performance should be provided.

e Scenario with no VHP: component integration in a class 8 cleanroom environment
and components divided by material compatibility to PP techniques.
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Future Work

e Thermal models shall support the Planetary Protection deviation to use motor
firing as mode of sterilization in future studies.

e Aside from this, small quantities of propellant, insulation, nozzle and other
nonmetallics may be shipped and utilized in cryogrinding procedures to determine
initial encapsulated bioburden numbers, different from those assigned by the
Planetary Protection Provisions document.

e Future motor burning failure probability studies may corroborate if motor-firing is

a viable option for a final probability of contamination for the mission that remains
under less than 10-4 with unsterilized propellant.
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