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• The Jovian environment has high levels of ionizing 
radiation, extreme temperatures and debris [1]. 

• NASA will embark on extensive studies and planning of 
missions to explore Europa. 

• Recurrent sightings of active water plumes spewing water 
to the icy surface has garnered more interest around the 
moon’s habitability aspect.

• The Europa Lander concept will be designed to carry a 
miniaturized laboratory that will analyze Europan surface 
samples for its chemical composition and other geological 
data from the moon [2]. 

• The lander’s search for any biosignature might be 
endangered by the lander’s own contaminated body, also a 
contamination threat to any future landers to come from 
other space agencies with similar astrobiological interest. 

• Cleaning the systems poses a special challenge to 
propulsion subsystem planning and manufacturing, since it 
may introduce harsh bioreduction techniques to the 
process of a motor that is destined to age. 
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Mission Background

Figure 1(a) Europa plumes found in 2016 (image) 
and(b) Europa lander concept illustration [3,4].
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Mission Background

• The De-Orbit Stage of robotic exploration of far-away 
bodies are historically assisted by SRMs due to their high 
reliability and low-cost functionality. 

• The Star 48B propellant for example, survived the 
Magellan flight 15-month space storage and more than 5 
years without material degradation in a long-duration 
exposure facility (LDEF) [5]. 

• Aside from the challenges put forth by propulsion 
subsystem flybys through a high-radiation Jovian 
environment, raising the probabilities of motor aging, 
Planetary Protection techniques will amplify any 
material degradation or malfunction probability [6].

Figure 2. The De-Orbit Stage is part of the 
De-Orbit Stage Vehicle[7].
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Mission Background

• The mission and philosophy of Planetary Protection is to 
establish a levelled ground. 

• NASA has a set of requirements specific for all mission 
types, guided by COSPAR and the OSMA, with the 
experience brought forth by missions to Mars [8].

• At KSC in 2003 two large spacecraft components used in 
MER underwent dry heat microbial reduction (DHMR) in 
“tolerable” environment conditions for the materials [9].

• Trade-offs: At some point in the development of a 
propulsion subsystem these techniques are applied and 
modified to fit the requirements for Planetary Protection 
without affecting system performance.  

• Building a Planetary Protection Plan and process for the 
propulsion subsystems of a category IV mission to Europa 
has never been done before, the biggest complications 
being attached to the presence of large quantities of solid 
rocket propellant in some of the larger SRMs. 

Figure 3. NPR 8020 by NASA.
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Planetary Protection Process

Figure 5. Mindmap of SRM PP.
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Planetary Protection Process

Figure 6. Roadmap of SRM PP procurement 
requirements [11].
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Planetary Protection Process (Non-VHP)
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Planetary Protection Process
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Planetary Protection Techniques

Figure 9. SRM PP simple techniques 
applicable.
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Conclusions

• DHMR of the entire motor at once does not appear to be the way to achieve 
targeted bioreduction for the braking motor’s propellant and liner.  

• Scenarios with a sacrificial thermal liner inside the metallic case may benefit from 
antimicrobial testing and irradiation pre-application. 

• Inner-case: bagging procedures scenarios that occur can be used to the advantage 
of Planetary Protection.

• No-grease design change: eliminating the use of greases and increasing the risk of 
a rigid mated case unless greases are proven to cause a logarithmic reduction of 
microbial load. 

• Nozzle: sealing mechanisms should be used, and verification of sealant 
performance and nozzle cap performance should be provided. 

• Scenario with no VHP: component integration in a class 8 cleanroom environment 
and components divided by material compatibility to PP techniques.
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Future Work

• Thermal models shall support the Planetary Protection deviation to use motor 
firing as mode of sterilization in future studies. 

• Aside from this, small quantities of propellant, insulation, nozzle and other 
nonmetallics may be shipped and utilized in cryogrinding procedures to determine 
initial encapsulated bioburden numbers, different from those assigned by the 
Planetary Protection Provisions document.

• Future motor burning failure probability studies may corroborate if motor-firing is 
a viable option for a final probability of contamination for the mission that remains 
under less than 10-4 with unsterilized propellant. 
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