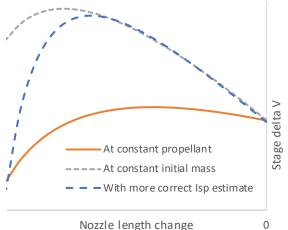

Principles from Two Small SRM-Based Launcher Design/Developments

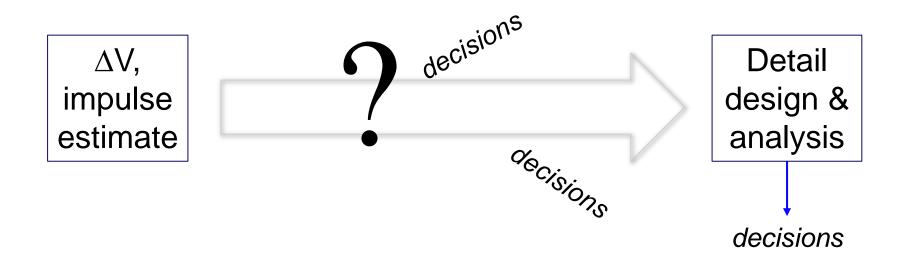
Tim Kibbey

Jacobs Space Exploration Group


October 2019

Trade studies have benefited from developments in understanding sensitivities and approximate modeling

PRINCIPLE I: Identify mission-specific key design drivers — particularly interactions


PRINCIPLE II: Agility — don't lock down your derived requirements early

PRINCIPLE III: Use multi-fidelity tools as needed to support decisions

Improve "understanding value generated per modeling effort cost." → enabling decisions

Launch Vehicle Architectures considered

			2-stage MAV	4-stage CEL
	Payload Target	kg	16	10
	Injected Mass	kg	64	24
	Total/nth stage DV	m/s	3990 / 1690	9300 / 3110
~	Non-prop inerts	kg	34	2
Stage	inert	kg	14	12
ta	propellant	kg	54	51
0)	Comments		Accuracy-driven	Inert Mass-driven, burntime-limited
7	Non-prop inerts	kg	14	28
e) X	inert	kg	46	25
Stage k-1	propellant	kg	216	226
St	Comments		Boost-sustain reqd	Burntime-limited, control systems here
7	Non-prop inerts	kg		10
e) Ž	inert	kg		77
Stage k-2	propellant	kg		540
	Stage k-3 propellant	kg		650
	Comments	Č		Set by partner

PRINCIPLE I: MAV and CEL have different mission values, which drives different decisions

Mars Ascent Vehicle (MAV):

limit GLOM, overall length, diameter have high reliability limit orbital uncertainty launch to a single orbit

Cubesat Earth Launcher (CEL):

limit individual stage length, diameter limit max acceleration have low cost attempt medium reliability allow launch to multiple orbits

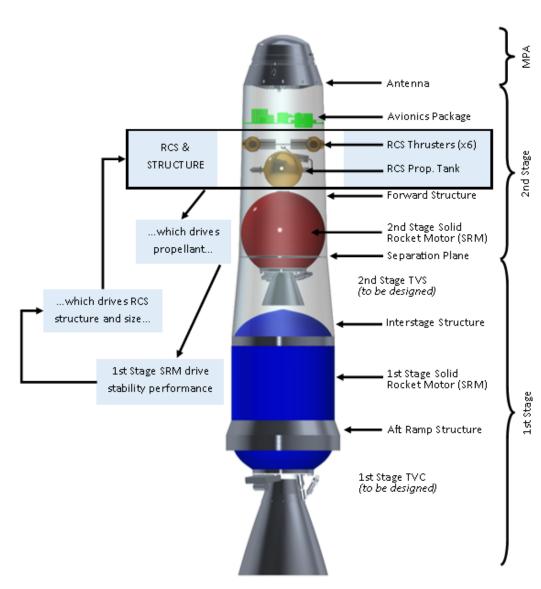
"derived architectural decisions"

Use pedigreed, refined motor manufacturer/methods use thrust vector controlled motors plus RCS system

Use "low-cost" small manufacturer

invoke spin-stabilization with steering between burns

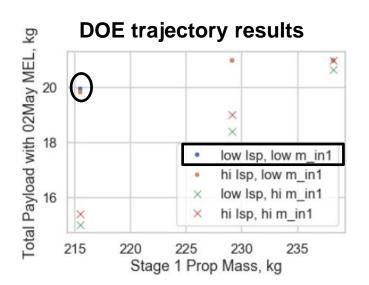
design to "bend the cost-performance curve"


Optimize for mass by putting control system on 3rd stage instead of upper stage

Drives saving 2nd stage mass at the expense of 1st stage mass

max accel proves a driving limitation

MAV architecture drove key interaction between Stage 1 motor and RCS on Stage 2



- Pushed SRM1 burn time longer than typical to limit RCS size
- Survey of existing motors
 - STAR15G to stretch and scale
 - boost-sustain motor will have a lower mass fraction
 - Previous efforts had defined full end-burning motors, which had an even lower mass fraction.
- Understand effect of motor gross parameters on burn times and thrust levels.
- Look at grain design features that could generate a boostsustain and further customize.

PRINCIPLE II: Agility with requirements — keep trading, and characterizing sensitivities.

- Be skeptical of requirements early
- "early and often," identify of interactions between (traditionally separated) disciplines and components.
- Let analysts to be designers and designers to be (0th-order, anyway) analysts
- one pass through the integrated design assessment is unlikely to yield the perfect answer.

Provides delta propellant mass as function of other things

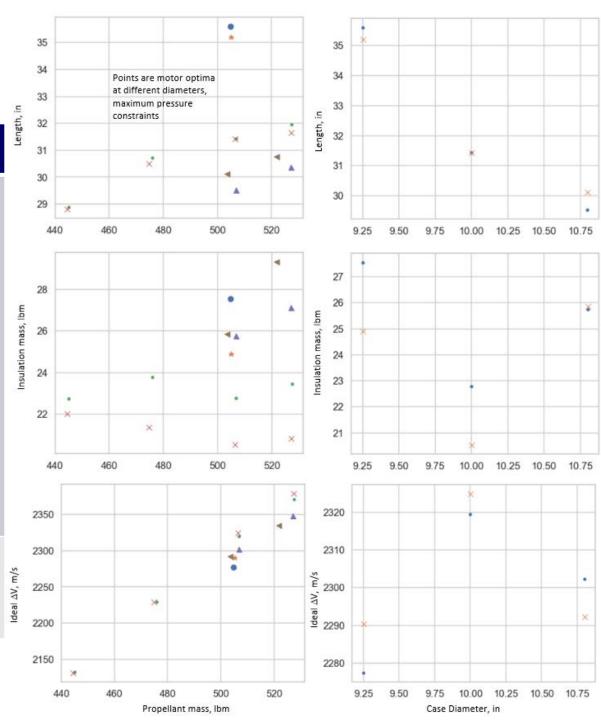
	coef	std err	t	P> t	[0.025	0.975]
Intercept	280.8219	3.657	76.794	0.000	273.070	288.574
M_Margin	3.8693	0.108	35.784	0.000	3.640	4.098
ctrl_mcase	17.5663	0.766	22.939	0.000	15.943	19.190
ctrl_lsp	-1.6724	0.596	-2.805	0.013	-2.936	-0.408
mp2_lbm	-0.6376	0.033	-19.123	0.000	-0.708	-0.567

PRINCIPLE III: Use multi-fidelity tools: MAV Custom Fidelity Ladder

		MAV steps of increased fidelity	MAV application		
	4	 consider mass on multiple stages and solve for max payload (or minimum GLOM) at constant ΔVs know likely payload mass and maximize ΔV OR set ΔV and maximize payload mass estimate Isp of expansion ratio calibrated to reference estimate "local" inert mass change per unit propellant mass change estimate structural thicknesses/materials 	At constant propellant At constant initial mass With more correct Isp estimate Nozzle length change 0		
		Model length, diameter range from a baseline	shorten 2nd stage nozzle to maximize ΔV		
	3	all-solids modified by features similar to certain motors	calibrate to catalog boost-sustain motor		
	2	all-solids mass modeling	too small for 0.9		
}	1	textbook or searched mass fraction and lsp to use	use 0.9 prop mass fraction		

PRINCIPLE III: MAV Ladder

MAV steps of increased fidelity

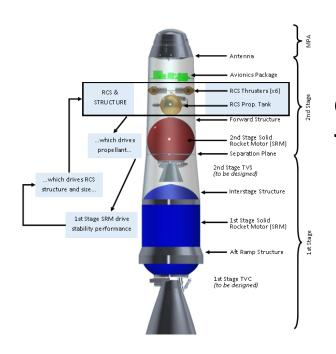

- then, running
 propellant grain
 designs, what is
 the best at each
- setting?
 first, understand
 what are the
 gross effects
 consider effect of
 pressure on case,
 insulation and
 nozzle masses, and
 Isp

Develop more particular design constraints

MAV application

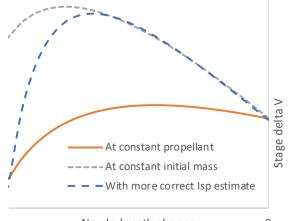
Compute consistent set of grain designs at different diameters, pressures, and propellant masses

quantify "boostsustainness"



PRINCIPLE III: Use multi-fidelity tools: CEL Custom Fidelity Ladder

	CEL steps of increased fidelity	CEL application
6	Develop more particular design constraints B	Optimize ins/nozzle contours
-	 balance diameter-driven masses with other constraints generate full grain designs to test ability to customize for acceleration 	Get the most out of the upper stage, which was found to be most driven by
4	 Develop more particular design constraints A model across multiple stages: solve for max payload assuming constant total DV estimate lsp of ER calibrated to reference estimate lengthening/ shortening of all stages Model nozzle/stage mass, lsp to trade 	constraints updates marginal inert mass per unit propellant mass, then enables multi-stage trades
3	all-solids modified by features similar to certain motors	heavier because of acceleration constraint
2	all-solids mass modeling	also be at the lower end for "affordable"
1	Textbook/searched mass fraction and Isp to use	



Trade studies have benefited from developments in understanding sensitivities and approximate modeling

PRINCIPLE I: Identify mission-specific key design drivers — particularly interactions (and focus knowledge-development on those).

PRINCIPLE II: Agility — don't lock down your derived requirements early — keep trading, and characterizing sensitivities

PRINCIPLE III: Use multi-fidelity tools to improve "understanding value generated per modeling effort cost."

Questions??

Nomenclature

Nomenclature

Isp specific impulse ΔV change in velocity

A_t throat area

C_f thrust coefficient

F thrust

k number of stages in the vehicle

m mass

m_p propellant mass m mass flow rate

n burn rate exponent

P pressure

P_{ref} reference pressure

r burn rate

reference burn rate

t time

Acronyms/Abbreviations

CEL Cubesat Earth Launcher
ERO Earth Return Orbiter
GLOM gross liftoff mass

MAV Mars Ascent Vehicle

MSR Mars Sample Retrieval

RCS reaction control system

SRL Sample Retrieval Lander

SRM solid rocket motor

Jacobs

Challenging today. Reinventing tomorrow.

