National Aeronautics and Space Administration

SPACE LAUNCH SYSTEM

October 17, 2019

Space Launch System Thrust Vector Servoelastic (TVSE) Resonance

Jeb S. Orr, PhD NASA MSFC Control Systems Design and Analysis Branch Mclaurin Aerospace [Jacobs ESSCA]

Aerospace Control and Guidance Systems Committee Meeting #124 Williamsburg, VA 16-18 October 2019

Introduction

Space Launch System (SLS)

- NASA-developed, human-rated launch vehicle for largescale (exploration-class) crew and cargo access
- LEO: 95 t [~209 klbm] (Block I) / 130 t [~290 lbm] (Block II)
- TLI: 26 t [~57 klbm] (Block I) / 37 t [~80 klbm] (Block II)
- First uncrewed test flight (Artemis I) ~November 2020 (lunar)
- First crewed test flight (Artemis II) ~October 2022 (lunar)

Thrust Vector Servoelastic (TVSE) Resonance

- A thrust-driven servoelastic resonance manifests in the SLS Block 1 and 1B configurations in late boost flight (T70 -110 s)
 - Coupling of engine dynamics, TVC hydraulics, booster thrust, and bending
 - Driven by hydraulic actuator feedback (no software or avionics)
- With actuator hydraulic power vehicle bending can limit cycle near 90 s
 - Result of high thrust, lag effect of actuator, and booster flexibility
 - Stability is restored with active flight control

Mechanism Physics

Thrust vector servoelasticity (TVSE) is similar to aircraft aeroservoelasticity (ASE)

- 1. Inertial coupling of vehicle bending to engine (via gimbal) excites nozzle
- 2. Thrust vector lags bending acceleration due to actuator dynamics
- 3. Thrust force is partially in phase with velocity, providing an undamping effect

A combination of conditions must occur

- 1. Bending mode near TVC critical frequency (related to nozzle inertia)
- 2. High thrust and large bending gain at gimbal with unfavorable phase
- 3. Low structural mode damping

Flexible Vehicle

and the second

Relative Phasing of Bending

- At low frequency, thrust angle is in phase with bending displacement
 - Thrust force is 90 degrees from bending velocity
 - Force is orthogonal to velocity no net energy transfer to bending
- At high frequency, thrust angle is 180° out of phase with bending displacement
 - Thrust force still 90 degrees from bending velocity no net energy transfer
- TVC lag can add energy to mode if coupled with sufficient bending gain

TVC Critical Frequencies vs. SRB Bending

TVC critical frequency range coincides with antisymmetric mode frequency

- Fundamental bending of SRB case
- SRB mode is similar to a uniform beam
- Mode can exhibit high gain in FCS roll channel

TVSE Stability Analysis (Full model)

- Reduced-order model predictions confirmed by high-fidelity fully-coupled model
 - FRACTAL (Frequency Response Analysis and Comparison Tool Assuming Linearity)
 - Roll mode unstable from approximately 75-105 sec with no jet damping
 - Marginally stable with jet damping
 - Unstable with mass property and actuator performance dispersions

Plant with unstable high frequency bending cannot be robustly stabilized by FCS without dedicated sensors

[1] Orr, J. "Frequency Response Analysis and Comparison Tool Assuming Linearity (FRACTAL) Dynamics Engine," NASA MSFC, January 4, 2018.

Q&A

Has this occurred on a previous launch vehicle, e.g. Shuttle?

- To our knowledge, no. It is unique to SLS.
- STS had a lighter nozzle (23% lower l_{yy}) and ~1.5% antisymmetric modal damping in MVGVT (asymmetric structure)

Are there hardware mitigation options?

- Hardware options are cost/schedule/mass prohibitive or impractical
 - Forward skirt tuned mass dampers
 - Actuator hardware redesign (higher bandwidth) or hydraulics redesign
 - Lighter SRM nozzles

Are there software mitigation options?

- No, direct mitigation is not possible without dedicated sensors
 - TVSE is a hardware instability external to flight control
 - Coupled mode gain is too high to "notch filter" or gain stabilize; however
 - FCS influence is modest but favorable (enhances stability)
 - VM also deleted 2nd PTI to avoid exciting resonance

• What about nonlinear simulation?

 Targeted simulations in to excite TVSE in high-fidelity fully-coupled model show no significant adverse effects.

Fidelity Improvements

- Elastic jet damping model with supporting data from MSFC/ER51
 - Coriolis damping (turning of propellant flow) due to elastic/nozzle motion
 - Physics-based approach anchored to booster mass flow model data
 - Adds about 0.2%-0.3% damping to SRB bending

2. Nozzle ablation model with supporting data from MSFC/ER43

- Captures loss of nozzle mass (~9%) over burn due to liner ablation
- Vendor ablation model fitted to QM-2 nozzle erosion data
- Improves stability by increasing actuator bandwidth

Additional structural damping (above 0.5% viscous) based on STE analysis 3.

Elastic Jet Damping

Booster jet damping was applied to capture elastic coupling of gas flow dynamics

- Similar to approach used for rigid body damping in tactical missiles
- Same method used for core stage, EUS, and booster nozzles
- First principles analysis with conservative assumptions
- Flow turning effects to first order are captured
- Higher order terms in the velocity and mode shape derivatives verified to be negligible

Most significant jet damping effect occurs for same mode that drives TVSE

- Combined effect is about +0.2% to +0.3% damping to SRB bending
- Sufficient to stabilize TVSE in the nominal case

Simplified Planar Analysis

			SRB Sym	SRB Antisym			
T80 Case Jet Damping	$\Delta \zeta_i \approx$	0.0541%	0.0290%	+0.1361%	+0.0170%	-0.0069%	+0.0219%
T80 Nozzle Jet Damping	$\Delta \zeta_i \approx$	0.0659%	0.0109%	0.0958%	0.0090%	0.0195%	0.0069%

[3] Orr, J., "Jet Damping and Servoelasticity," MSFC CWG, June 28, 2017
 [4] Barrows, T., "Secondary Gas Flow Effects on SRB Flex Motion," MSFC-EV41, February 2018

Jet Damping - Case

Approximately uniform burning in region along the propellant volume

- Zero mass flow at the head end (FWD segment factory joint)
- Mass flow equal to propulsion model $\dot{m}(t)$ at nozzle throat (~gimbal point)
- The jet damping generalized force is equal to

$$Q_{\text{case}} = -\dot{m}_{\text{SRB}}(t) \frac{2}{L} \int_0^L x \bar{\Phi}_S(x) \hat{\mathbf{i}}^{\times} \Psi_S(x) \, dx \, \dot{\eta}$$

• The integral can be approximated using the piecewise eigenvectors and the non-uniform Δx along the booster using trapezoidal integration;

$$Q_{\text{case}} \approx -\dot{m}_{\text{SRB}}(t) \frac{1}{L} \sum_{i=1}^{N} (x_{i+1} - x_i) \left(x_{i+1} \bar{\Phi}_{Si+1} \hat{\mathbf{i}}^{\times} \Psi_{Si+1} + x_i \bar{\Phi}_{Si} \hat{\mathbf{i}}^{\times} \Psi_{Si} \right) \dot{\eta} = -\Delta \mathbf{D}_{\text{case}} \dot{\eta} \in \mathbb{R}^{k \times k}$$

- The delta-damping matrix can be added to the diagonal damping matrix.

Jet Damping - Nozzle

Constant flow is assumed in nozzle section

- Mass flow equal to propulsion model $\dot{m}(t)$ from gimbal point to exit plane.
- The angular rate of the nozzle has an elastic component and an actuator component.

$$Q_{\text{noz}} = -2\dot{m}_{\text{SRB}}(t) \int_{0}^{L_{n}} \bar{\Phi}_{\mathcal{G}i} \hat{\mathbf{i}}^{\times} \left(\Psi_{\mathcal{G}i} \dot{\eta} + [\mathbf{T}^{\mathcal{B}\mathcal{G}}] \omega_{\mathcal{G}i} \right) dx$$

- The elastic component also is a delta-damping matrix:

$$\Delta \mathbf{D}_{\text{noz}} = 2\dot{m}_{\text{SRB}}(t)L_n \bar{\Phi}_{\mathcal{G}i} \mathbf{i}^{\hat{\mathbf{x}}} \Psi_{\mathcal{G}i}$$

- The actuator component depends on the nozzle angular rates:

$$\mathbf{A}_{\text{noz}} = -2\dot{m}_{\text{SRB}}(t)L_n\bar{\Phi}_{\mathcal{G}i}\hat{\mathbf{i}}^{\times}[\mathbf{T}^{\mathcal{B}\mathcal{G}}]$$

- The effects combine due to (anti)symmetry.

Cumulative Jet Damping Effect

The damping is computed for the system coupled mode (closed servoloop)

 The cumulative effect is to shift the servoelastic resonance from ~0% to about +0.3% equivalent damping

Reviewing Modal Damping Assumptions

Orbiter stack SRB antisymmetric mode exhibited 1.5% modal damping in MVGVT

- Only about 1% damping (in addition to jet damping) is required to completely eliminate issue from consideration
- Similar frequencies to those predicted in SLS FEM at ~T90 condition
- These data and STE* parametric analysis using test-validated models of booster structure used to very slightly increase damping assumption

Test Mode			Analysis Mode				
Node No.	Freq (fiz)	Damp	Description		Freq. (Hz)	De cription	Percent Error
2	2.49	0.019	SRB Z Trans (0.45). and Roll (0.08). ORB Yaw (0.14) and Roll (0.11)		2.53	SRB Pitch (0.54), Roll (0.04), ORB Yaw (0.23) and Roll (0.03)	1.6
18.	3.98	0.015	SOB Pitch (0.60), OMS Y (0.05), V.T. and Wing Bend (0.00)			None	
20	4.19	0.015	SAB Yaw (0.36) ORB Yaw (0.17). Wing Bending (0.13)	7	4.48	SRB Yaw (0.45). ORB Yaw (0.34)	ŕ.9
8	6.82	0.023	FWD P(1, Y (0,21), FUS Y Bend (0,21), OMS POD Y (0,10)	10	6.10	FWD P.H. Y (0.54). FUS Y Bend (0.14)	10.6
10	7.329	0.016	SRB X Trans (0.34) and Y Bend (0.30). ET Y Bend (0.14)	17	8.41	SRB X (0.42). Y Hend (0.23). ET Y Bend (0.21)	11.7
-11	7.92	0.037	SRB Z Bend (0.24), Roll (0.23), ORB Y Bend (0.11), Torsion (0.08)	12	6.721	SRN Z Hend (0.23). Roll (0.00). Y Bend (0.00). OKB Y Bend (0.28). and Torsion (0.11)	15.1
10	8.49	0.016	Tuned on AFT Payload Y (0.04). SRB X (0.30). ORB Y (0.19)			None	
6	9.71	0.016	SRB Y Bend (0.37). ET Y Bend (0.15). AFT P/I. Y (0.07). ONS POD Y (0.07)	22	10.01	SRB 1st Y Bend (0.30), Z Bend (0.20). ET Y Bend (0.24)	3.1
22	11.86	0.013	SRB Z (0.24) and Y Bend (0.22). and LH ₂ Y Bend (0.32)			None	
12	12.52	0.009	ET Y Bending (0.90)	24	11.6	Elev Z (0.35), ET Y Bend (0.16)	7.4
17	13.35		LH ₂ Shell (0.34). SRB Y Bend (0.18). CC Y (0.02)	36	14.03	LH2 Shell (0.24), CC Y (0.08)	11.1

TABLE 17. MVGVT MODAL CORRELATION [CONFIGURATION - BURNOUT (ANTISYMMETRIC)]

*Space Launch System (SLS) Structures and Thermal Environments (STE) Group

Dispersed System Damping – No Jet Damping, No Nozzle Ablation, FCS Off

Dispersed System Damping – Jet Damping + Nozzle Ablation, FCS Off

With STE damping, 8 cases unstable in Monte Carlo without FCS loop closure
 Benign response with TTD > 60 s and -0.05% damping

FRACTAL Analysis With FCS On

- FCS roll feedback from RINU slightly enhances stability (phase stabilization)
 - Torsion mode is strongly sign-definite at IMU location

WoW: MAVERIC Time Domain RINU feedback inverted

SLS

Summary and Insights

Beware of applications of heritage hardware to a new structure/configuration

- Uncovered unexpected global coupling phenomenon
- Good example of a NASA lesson re-learned
- Same actuator frequency response, different structure & nozzle inertia

TVSE effects are a credible concern for high-thrust/high-flexibility boost systems

- Fully-coupled servoelastic/inertial coupling model required to assess
- Places additional constraints on FEMs (# modes, nozzles in/out, etc.)
- Very high-quality actuators may be more likely to couple adversely

Modeling of moveable mass component of ablating SRM nozzle is challenging

- Historical data focuses on total mass/inertia of element
- Ambiguity due to center of motion, disparate sources (FEM, MP, propulsion)

• Still difficult to justify >0.5% damping for control-structure interaction analysis

- Contrast with 1% damping assumption for coupled loads analysis
- Even with structural test data, STE/VM assumption is only slightly higher

Cautiously approach FCS phase stabilization of high-frequency dynamics

- Even with high-fidelity models, uncertainty in bending, latency, sensor dynamics, nonlinearities, etc.
- Verify system is still good under grossly incorrect conditions (sign inversion)

Backup: TVC Model Validation Example

- Booster and CSE TVC Simplex actuator models are accurate to at least 14 Hz
 - 30+ year heritage of hardware and model development, test, and validation

Backup: Modeling Methods

Prescribed Motion Model

- Output of TVC actuator is engine position and engine acceleration.
- TWD coupling is modeled, but no DWT.
- Used for early launch vehicle dynamic models, including Frosch and Vallely.

Standard Model

- System equations are written with the engine dynamics explicitly incorporated into the system as a set of angular degrees of freedom, under TVC actuator control.
- The engine mass is included in the FEM but "locked," simplifying the formulation.
- Challenging to determine engine constraint and the value of the backup stiffness.

Reduced-Body Model

- The engine mass is removed from the finite element model.
- Avoids double-bookkeeping concerns on backup stiffness.
- The TVC applies torques to a virtual grid, which may or may not use the backup grid eigenvectors.
- This is the approach used for the study of global vehicle dynamics in FRACTAL.

High-Fidelity Local Structural Model

- Substructure finite element model contains all modes, including the engine.
- The actuator dynamics are incorporated into the model as a force applied to the engine and backup grids.
- Fully coupled local thrust structure dynamics.
- High fidelity but requires typ. 500+ modes, plus static modes/residual modes.

Backup: Coupling Methods Review

Backup: Engine Coupling Dynamics

Engine coupling in FRACTAL uses a torque-torque model

- Extension of classical methods for inertial-elastic coupling
- Each rigid-body nozzle is included in the EoM and coupled to the thrust structure
- EoM formulation supports "engines in" or "engines out" configurations

• Elastic and inertial loads are coupled via modal accelerations at the gimbal point

- The "gimbal point" is the thrust structure including the actuators, which transfer loads between engine, backup structure, and thrust application point
- Gimbal mode slope appears in rigid equations with no-engine FEM

$$\left(\mathbf{I}_{k}+\bar{\Gamma}_{ei}m_{ei}\Gamma_{ei}+\bar{\Psi}_{\mathcal{G}i}\left(\mathbf{J}_{ci}^{\mathcal{G}}+m_{ei}\mathbf{r}_{\mathcal{G}ei}^{\times}\mathbf{r}_{\mathcal{G}ei}^{\times}\right)\Psi_{\mathcal{G}i}\right)\ddot{\eta}+\mathbf{D}_{\eta}\dot{\eta}+\Omega^{2}\eta$$

$$= -\bar{\Gamma}_{ei}m_{ei}\delta\dot{\mathbf{v}} + \left(m_{ei}\bar{\Phi}_{\mathcal{G}i}\left(\mathbf{r}_{\mathcal{G}i} + \mathbf{r}_{\mathcal{G}ei}\right)^{\times} + \bar{\Psi}_{\mathcal{G}i}\left(\mathbf{r}_{\mathcal{G}ei}^{\times}m_{ei}\mathbf{r}_{\mathcal{G}i}^{\times} - \mathbf{J}_{ci}^{\mathcal{G}}\right)\right)\delta\dot{\omega}$$

$$-\bar{\Phi}_{sj}m_{sj}\ddot{\rho}_{sj} - \left(\bar{\Psi}_{Gi}\mathbf{J}_{ei}^{G} - \bar{\Phi}_{Gi}m_{ei}\mathbf{r}_{Gei}^{\times}\right)\dot{\omega}_{Gi}$$

$$+R_{ei}\bar{\Phi}_{\mathcal{G}i}\left(\mathbf{u}_{ei}-\mathbf{u}_{ei}^{\times}\Theta_{\mathcal{G}i}\right)+Q_{jet}$$

	\mathbf{I}_k	Identity matrix	
	$m_{ei}, \mathbf{J}^{\mathcal{G}}_{ei}$	Mass/inertia of engine	1
	Γ_{ei}	Elastic coupling coefficient	
	$\Phi_{\mathcal{G}i}, \Psi_{\mathcal{G}i}$	Mode shape/slope at gimbal	
	$\mathbf{r}_{\mathcal{G}i},\mathbf{r}_{\mathcal{G}ei}$	Location of gimbal, location of engine CG	
	Φ_{sj}, m_{sj}	Sloshing mode shape and slosh mass	I
(R_{ei}, \mathbf{u}_{ei}	Thrust and thrust unit vector (body)	
13	il3		

Generalized force due to thrust
No-engine FEM
TWD-Flex
Slosh

- η Elastic generalized displacement
- $\delta \dot{\mathbf{v}}$ Rigid-body acceleration
- $\delta \dot{\omega}$ Rigid-body angular acceleration
- $\dot{\omega}_{Gi}$ Gimbal angular acceleration
- ρ_{sj} Slosh displacement
- Θ_{Gi} Engine angular displacement

Backup: Force-Based Virtual Grid

- Improved method constructs virtual grid $\Psi_{\mathcal{G}} \in \mathbb{R}^{3 \times k}$ from static equilibrium problem
 - Given applied torque τ_g , resolve torque into force components along actuator action lines \mathbf{u}_{bi} and force \mathbf{f}_g at gimbal
 - Gimbal torque component due to each actuator is $au_i = \mathbf{r}^{\times}_{\mathcal{G}bi} f_i \mathbf{u}_{bi}$
 - Forces must sum to zero: $\mathbf{f}_1 + \mathbf{f}_2 + \mathbf{f}_g = \mathbf{0}$

- Let unknowns be
$$\mathbf{x} = \left[egin{array}{c} f_1 \ f_2 \ \mathbf{f}_g \end{array}
ight] \in \mathbb{R}^5$$

- In matrix form,

SLS

$$\begin{bmatrix} \mathbf{r}_{\mathcal{G}b1}^{\times} \mathbf{u}_{b1} & \mathbf{r}_{\mathcal{G}b2}^{\times} \mathbf{u}_{b2} & \mathbf{0}_3 \end{bmatrix} \mathbf{x} = \mathbf{A}\mathbf{x} = \tau_{\mathbf{g}}$$
$$\begin{bmatrix} \mathbf{u}_{b1} & \mathbf{u}_{b2} & \mathbf{I}_3 \end{bmatrix} \mathbf{x} = \mathbf{C}\mathbf{x} = \mathbf{0}$$

- This is a linearly constrained LS problem that has a unique solution.

.24