

Structural Dynamic Analysis in Rocket Propulsion and Launch Vehicles

Andrew M. Brown, Ph.D.

NASA/Marshall Space Flight Center ER41/Propulsion Structures & Dynamic Analysis

University of Georgia Engineering Lecture Series, October, 2019

Agenda

- Introduction to NASA's new SLS and Artemis Program to the Moon!
- Description of Structural Dynamics, and how it applies to a rocket.
- Application of Structural Dynamics in all phases of the mission of a launch vehicle and its components:
 - Turbine Blades, Rocket Nozzle
 - Rocket Engine Loads
 - High Cycle Fatigue in Main Propulsion System
 - Launch Vehicle Structural Dynamic Characterization and Test Validation
 - Launch Vehicle Loads
- Will need to introduce various Structural Dynamics Analysis Methods throughout presentation.
- Questions

The Power of SLS and Orion

ORION

The only spacecraft capable of carrying and sustaining crew on missions to deep space, providing emergency abort capability, and safe re-entry from lunar return velocities

SLS

The only rocket with the power and capability required to carry astronauts to deep space onboard the Orion spacecraft SLS Block 1 is 321 feet high, 8.8 million lb thrust.

- 57,000 lbs to lunar orbit
- 100% more Payload.
 Volume, 50% more Mass than any other current launch vehicle (including SpaceX Falcon heavy).

5 main sections joined Sep. 19, 2019

Artemis Phase 1: To The Lunar Surface by 2024

Artemis II: First humans to orbit the Moon in the 2021 21st century Artemis I: First human spacecraft to the Moon in the 21st century Artemis Support Mission: First high-power Solar Electric Propulsion (SEP) system Artemis Support Mission: First pressurized module delivered to Gateway

eerine h

Artemis Support Mission: Human Landing System delivered to Gateway 2024 Artemis III: Crewed mission to Gateway and Junar surface

Commercial Lunar Payload Services - CLPS-delivered science and technology payloads

2023

Early South Pole Mission(s)

 First robotic landing on eventual human lunar return and In-Situ Resource Utilization (ISRU) site
 First ground truth of polar crater volatiles Large-Scale Cargo Lander - Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

LUNAR SOUTH POLE TARGET SITE

2024

- What is Structural Dynamics?
 - Quantify dynamic characteristics of structures
 - Enable prediction of response of structures to dynamic environment
 - Assess uncertainties in predictions.
- Why do we care?
 - Excessive vibration can cause excessive deformation.
 - Car noise, vibration, and harshness
 - Turbomachine rotordynamics (whirl)
 - Computer disk drives
 - Cutting machine chatter
 - Astronaut eyeballs and other sensitive parts due to thrust oscillation.
 - Excessive vibration can cause structural failure due to high dynamic stresses.
 - <u>Turbine blades</u>, other flow-path hardware
 - Buildings under earthquake load
 - Any structure or system undergoing dynamic loading responds differently than that system undergoing static loading only, which may be good or bad.
 - Space Vehicle loads
 - Airplane control surfaces

Basics

• Free Vibration, Undamped Single Degree of Freedom System

1) Steady State, simplest, worth remembering: Assume solution u=u(t) is of form

 $u(t) = A\cos(\omega t)$ $\dot{u}(t) = -A\omega\sin(\omega t)$ $\ddot{u}(t) = -A\omega^{2}\cos(\omega t)$

Now plug these equalities into eq of motion:

$$m(-A\omega^2\cos\omega t) + k(A\cos\omega t) = 0$$

$$A\cos\omega t(k-\omega^2 m)=0$$

For $A \cos \omega t = 0$, A has to = 0, i.e., no response ("trivial solution") Therefore, $k - \omega^2 m = 0$

$$\omega^2 = \frac{k}{m} \implies \omega = \sqrt{\frac{k}{m}} Rad/sec$$

Define $\lambda \equiv$ Eigenvalue = $\omega^2 \equiv$ Natural Frequency² So, solution for u= u(t) is where $A \cos(\sqrt{\frac{k}{m}}t)$

where A depends on the initial conditions

Frequency Response of Single Degree-of-Freedom (SDOF) Systems

Add damping and forcing function

 $m\ddot{u} + c\dot{u} + ku = F_o \cos(\Omega t)$

Define

$$\varsigma = \frac{c}{c_{critical}}$$
, if <1, underdamped

where

 $c_{critical} = 2\sqrt{k * m}$ = no oscillation in response

Gesbouse to initial displacement of time time Underdamped (ζ <1)

Dynamic response as function of Ω/ω is

$$\left| U(\Omega) \right| = \frac{Fo/k}{\sqrt{\left(1 - \left(\frac{\Omega}{\omega}\right)^2\right)^2 + \left(2\zeta\left(\frac{\Omega}{\omega}\right)\right)^2}}$$

Modal Analysis of Multiple DOF Systems

Solutions for Undamped, Free Vibration of MDOF Systems with N dof's. [mass M]{accel \ddot{u} }+[stiffness K]{displacement u}={0}

Assume solution of form (I spatial solutions = eigenvectors=modes) $\{u\}_i = \{\phi\}_i e^{j(\omega_i t + \alpha_i)}$

Examples: <u>https://www.youtube.com/watch?v=kvG7OrjBirl</u>

Continuous Discrete MDOF $w(x) = U_i(x) \iff \{\phi\}_i$

How a Rocket Engine Works, and why it needs Structural Dynamic Analysis

- Liquid Fuel (LH2, Kerosene) and Oxidizer (LO2) are stored in fuel tanks at a few atmospheres.
- Turbines, driven by hot gas created by minicombustors, tied with shaft to pump, suck in propellants, increases their pressures to thousands of psi, producing substantial harmonic forces at specific frequencies.

- High pressure propellants sent to Combustion Chamber, which ignites mixture with injectors, produces large forces in a wide band of frequencies, most of which are random.
- Hot gas directed to converging/diverging nozzle to give flow very high velocity for thrust.
- Both random and harmonic loads propagate through every component on the engine and last throughout engine operation, requiring SD analysis to verify structural integrity.

Main Tool is Finite Element Analysis

- Discretize continuous structures into hundreds of thousands elements.
- Structural response of each element calculated by differential equation of motion.
- Can model very small turbine blades to complete launch vehicles.

Liftoff - Rocket Engine Structural Dynamics

• Structural Dynamics play a critical role in design of Turbomachinery, Nozzles, and System Hardware. (ignition 13 sec, vibration 44sec))

Structural Dynamics of Flowpath Components in Turbopumps

Turbine Blades particularly problematic since they have tremendous KE.

Turbine Bladed-Disk

Inlet Guide Vanes

CFD needed to provide forcing functions

• Harmonic forcing function results from interaction of stationary and rotating components in flow-path. (wakes from upstream, potential field from downstream)

Modal Analysis is first step in Turbine Bladed-Disk Structural Dynamic Analysis

6.56+002

- Identify natural frequencies and mode shapes, compare with frequencies of forcing functions.
- Try to avoid resonant conditions ("triple crossover") during design.
- If can't avoid, frequently have to perform forced response analysis

Patran 2013 64-Bit 31-Oct-14 09:22:42

Fringe: LPSP LOX PUMP TURBINE BLISK 51ND, Mode 17:Freq.=84563., Eigenvectors, Translatio9al908 Deform: LPSP LOX PUMP TURBINE BLISK 51ND, Mode 17:Freq.=84563., Eigenvectors, Translatio102

For Cyclically Symmetric Structures with Coupling, Identification of Nodal Diameters in Modes also Required

- Each blade mode on the previous chart exists within a family associated with bladedisk "Nodal Diameter" modes.
- The Tyler-Sofrin Blade-Vane Interaction Chart tells us which Nodal Diameter family of blade modes can be excited.
 - E.G., 2 x Nozzles excites the 5ND family.

NASA

Modal Testing verifies Numerical Predictions

- Use Instrumented Impact Hammer to impart a quick impact onto structure (force time history measured), which contains broadband frequency content (Fourier!).
- Response is measured using an accelerometer or laser vibrometer, which measures velocity.
- A frequency analyzer performs Fourier Transforms of the excitation and response to get frequency domain.
- Mode shapes obtained from

 $\phi_{ijm} = \operatorname{Im}\left(\overline{FRF_{ij}}(\Omega) = \frac{u_i}{F_j} = \frac{\operatorname{Response at \ dof \ i}}{\operatorname{Harmonic \ excitation \ at \ dof \ j}}\right)$

• Match results with analysis, improve model (eg. <u>SSME</u>)

Now, if resonance, forced response required, need to know about Generalized Coordinates/Modal Superposition

• Frequency and Transient Response Analysis uses Concept of Modal Superposition using Generalized (or Principal Coordinates).

 $[M]{\ddot{u}}+[C]{\dot{u}}+[K]{u} = {P(t)}$

- <u>Mode Superposition Method</u> transforms to set of uncoupled, SDOF equations that we can solve using SDOF methods.
- First obtain $[\Phi]_{mass}$. Now, introduce coordinate transformation:

 $\{u\} = N\begin{bmatrix} M \\ \Phi \end{bmatrix} \{\eta\} M$ $[M] [\Phi] \{\ddot{\eta}\} + [C] [\Phi] \{\dot{\eta}\} + [K] [\Phi] \{\eta\} = \{P(t)\}$ $[\Upsilon_{\backslash}] \{\ddot{\eta}\} + [\aleph_{\backslash}] \{\dot{\eta}\} + [\kappa_{\backslash}] \{\eta\} = [\Phi]^{T} \{P(t)\}.$

Frequency Response of MDOF Systems can be Reduced to Solutions of multiple SDOF's

$$\left|\eta_{m}(t)\right| = \frac{\left\{\phi\right\}_{m}^{T}\left\{F\right\}}{\lambda_{m}} \frac{1}{\sqrt{\left(1 - \left(\frac{\Omega}{\omega_{m}}\right)^{2}\right)^{2} + \left(2\zeta_{m}\frac{\Omega}{\omega_{m}}\right)^{2}}}$$

For Example, Turbine Blade Forced Response Results

- Obtain alternating stresses during modal resonance.
- Combine with mean stress to give High Cycle Fatigue Safety Factor, SF_{HCF}
- Analysis for AMDE blades showed a blade damper needed.

"Side Loads" in Rocket Nozzles is Major Fluid/Structural Dynamic Interaction Issue

- Start-up, shut-down, or sea-level testing of high-altitude engines, ambient pressure higher than internal nozzle wall pressures.
- During transient, pressure differential moves axially down nozzle.
- At critical p_{wall}/p_{ambient}, flow separates from wall Free Shock Separation (FSS), induces "Side Load".

Mach number simulation from CFD

Calculation of Dynamic Forcing Function

- In-rushing ambient pressure at uneven axial locations causes large transverse shock load
- Caused failures of both nozzle actuating systems (Japanese H4 engine) and sections of the nozzle itself (SSME).
- Existing Side Load calculation method
 - Assumes separation at two different axial stations, integrates the resultant $\Delta P^* dA$ loads.
- Method calibrated to maximum and minimum possible separation locations to be intentionally conservative.

Primary Nozzle Failure Mode for most Rocket Engines is Buckling due to Side Loads during Start-Up and Shut-Down

Vulcain engine test, DLR Germany

MSFC Side Loads Research Program - 1998

- FASTRAC engine designed to operate in overexpanded condition during ground test.
- Didn't have funding to pay for vacuum clamshell.
- Test/analysis program initiated with goal of obtaining physics-based, predictable value.
- Strain-gauge measurements taken on nozzle during hot-fire test
- Flow separation clearly identified at Steady-State Operation.

FASTRAC Hot-Fire test - Strain time histories at 16 circumferential locations

Flow Separation

Designed Cold-Flow Sub Scale Tests to investigate Fluid/Structure Interaction & Feedback during Steady-State Separation.

 Video, Pressure and strain-gage data from thin-wall nozzle show self-excited vibration loop tying structural 2ND mode and flow separation.

- During steady-state operation, two types of dynamic force environments: sinusoidal (resulting from turbomachinery) and random (from combustion), which typically dominate.
- Structural dynamic model of entire engine required to calculate response "loads".
- With current level technology, impossible to quantify the forces with enough precision to conduct a true transient dynamic analysis.
- Methodology: measure dynamic environment (i.e., accelerations) at key locations in the engine. For a new engine, data from "similar" previous engine designs is scaled to define an engine vibration environment

Acceleration data is enveloped to capture uncertainties thus defining a vibration environment

Typical MC-1 Engine Load Set

Glue Bracket 3	Shear 1	Shear 2	Axial	Bending 1	Bending 2	Torque
GB-3	(lbs)	(lbs)	(lbs)	(in-lbs)	(in-lbs)	(in-lbs)
Sine X	97	7	0	3	78	72
Sine Y	91	7	0	3	98	70
Sine Z	119	5	0	2	78	52
Sine Peak (RSS)	178	11	0	5	148	113
3 sig Random X	450	113	0	16	25	1475
3 sig Random Y	781	66	0	9	41	828
3 sig Random Z	155	1	0	4	1101	6
Random Peak (RSS)	915	130	0	19	1102	1692
Stringer Bracket 3 (Lower Support)						
SB-6						
Sine X	18	8	11	8	17	2
Sine Y	12	4	10	7	11	1
Sine Z	11	12	8	3	28	3
Sine Peak (RSS)	24	15	17	11	34	4
3 sig Random X	35	333	6	85	1349	52
3 sig Random Y	60	192	10	145	775	29
3 sig Random Z	12	1	11	83	6	0
Random Peak (RSS)	70	384	16	187	1556	59
Stringer Bracket 3 (Upper Support)						
SB-5						
Sine X	59	7	21	81	9	21
Sine Y	58	5	21	80	6	26
Sine Z	43	4	16	59	5	25
Sine Peak (RSS)	93	9	34	129	12	42
3 sig Random X	44	447	117	93	1557	69
3 sig Random Y	76	256	202	160	893	38
3 sig Random Z	139	2	1002	322	4	0
Random Peak (RSS)	165	515	1029	371	1795	79

<u>https://www.youtube.com/watch?v=FlqSx</u> <u>ZQ7ji8</u>

- Oct. 28, 2014, Orbital ATK (now Northrup Grumman) launched Antares-130 with ISS cargo from Virginia.
- 15 seconds into flight, Main Propulsion System (engine and propellant feedlines) exploded. Damage to launch pad, no injuries.
- MSFC called to help determine cause of failure.
- AJ26 Engine, actually an old Russian NK-33 engine purchased by Aerojet with little understanding of design.

Very High Turbomachinery Vibration Levels

- Data taken on fuel propellant line close to tank showed very high acceleration levels, but unclear if that meant turbopumps themselves had excessive vibrations.
- MSFC Structural Dynamics team created/adapted finite element models of engines, feedlines, and tank, applied loads at turbopumps and reproduced measured response at accelerometer locations.

Finite Element Model of Main Propulsion System

- Conclusion: rotating turbopump components contacted housing, rubbed, caused ignition (easy in LOX).
- Possible root causes were manufacturing defect, foreign object debris, or inadequate turbine-end bearings.

2002 – Cracks found in Orbiter Main Propulsion System Feedline Flowliner

Flowliner Dynamic Analysis Results

- Dynamic analysis determined source of cracking was several modes excited by upstream inducer blade count and cavitation.
- Tested flowliner dynamic response to validate models.
- Performed fracture analysis and computed expected service life based upon observed crack sizes. Solution was improved and more frequent inspections.

Complex Mode Shapes 1000 to 4000 Hz

- Purpose calculate "gpa" (grid point accelerations) and resolved forces (shears and moments) at all points along vehicle structure during all phases of mission. These are generically called "loads".
- First must generate estimates of forces on vehicle
 - Transportation forces ground, shipping
 - Launch vibroacoustics (acoustic waves from engines rebounding off of launch area back onto vehicle structure)
 - Ascent wind and aerodynamic forces
 - Thrust from Engines
 - Stage Separation & Pyrotechnic Events
- Then calculate Structural Dynamic Response
 - "Coupled Loads Analysis" using "Component Mode Synthesis" primary technique
- Outputs
 - Random Vibration & Shock Criteria
 - Component Accelerations
 - Design Limit Loads
 - Aeroelasticity Assessments
 - Propellant Slosh Dynamics

SLS Europa Clipper Configuration – Y & Z Bending & Axial Modes Comparison - Liftoff

		<u>Liftoff</u>				
C1_SM1_Block1_Liftoff_T0_F100_Delivery_23-J	C1_SM1_Block1_Liftoff_T0_F100_Delivery_23-J	Vehicle	Mode Number	Freq (Hz)	Mode Shape	
7 1 4829 Hz	7 1 4937 Hz	DAC1 SM-1	31	1.48	1st Y-Bending	
1.402.0 112		DAC1 SM-1	32	1.49	1st Z-Bending	
5		DAC1 SM-1	35	2.09	2nd Y-Bending	
		DAC1 SM-1	34	2.01	2nd Z-Bending	
		DAC1 SM-1	114	9.95	Axial (ICPS+CS)*	
		VAC1R EM-1	30	1.36	1st Y-Bending	
		VAC1R EM-1	32	1.4	1st Z-Bending	
	10	VAC1R EM-1	39	2.4	2nd Y-Bending	
		VAC1R EM-1	37	2.25	2nd Z-Bending	
Scale: 5000x Rigid wall representation of centerline shape	Scale: 5000x	VAC1R EM-1	126	10.42	Axial 1 (CS)	
	Rigid wall representation of centerline shape	VAC1R EM-1	143	11.16	Axial 2 (MPCV+ICPS)	
		*Additional v	verification of th	nis mode pe	erformed (see backup	
C1_SM1_Block1_Liftoff_T0_F100_Delivery_23-J Mode 35 2.0909 Hz Scale: 5000x Rigid wall representation of centerline shape	C1_SM1_Block1_Liftoff_T0_F100_Delivery_23-J Mode 34 2.0106 Hz Y Scale: 5000x Rigid wall representation of centerline shape	SLS.	DAC1_SM1_Block1_Liftoff Mod 9.95 Scale: Rigid wall representat	_T0_F100_Delivery e 114 22 Hz	_23-Jan-2019	

Coupled Loads Cycles

 When Aerodynamic, Inertial, and other external forces applied to Structural Dynamic model and "Loads" (Shear X, Y, Z, Bending Moment X, Y, Z) obtained, used for design updates.

First 3 SLS Vehicle fundamental modes drive primary structure loads

- SLS Primary Structure loads are dominated by the first 3 bending mode pairs.
- The first 3 bending mode pairs also represent the most important modes for GNC stability.
- The beam-like response
 of SLS at low
 frequencies increases
 the likelihood of
 accurately capturing
 these modes during the
 Integrated Modal Test.

Component Mode Synthesis is Theory behind Coupled Loads

- Used to dynamically couple together "substructures" built by different organizations.
- Partition displacement vectors into internal and boundary DOF's.

$$\begin{cases} x_{internal} \\ x_{boundary} \end{cases} for the term is the$$

Solution of CMS using Craig-Bampton Transformation

lite

Partition M and K matrices of each substructure in same way:

$$\begin{bmatrix} M \end{bmatrix}^{ET} = \begin{bmatrix} M_{ii} & M_{ib} \\ M_{bi} & M_{bb} \end{bmatrix}^{ET} \text{ and } \begin{bmatrix} K \end{bmatrix}^{ET} = \begin{bmatrix} K_{ii} & K_{ib} \\ K_{bi} & K_{bb} \end{bmatrix}^{ET}$$

$$Craig-Bampton Transformation Matrix [CB]^{ET}$$

$$\begin{cases} u_i \\ u_b \end{pmatrix}^{ET} = \begin{bmatrix} \Phi^{\text{cantilevered}} & -K_{ii}^{ET^{-1}}K_{ib}^{ET} \\ 0 & I \end{bmatrix} \begin{bmatrix} \eta \\ u_b \end{bmatrix}^{ET}$$

$$= \begin{bmatrix} CB \end{bmatrix}^{ET^T} \begin{bmatrix} M \end{bmatrix}^{ET} \begin{bmatrix} CB \end{bmatrix}^{ET} + \dots + \begin{bmatrix} CB \end{bmatrix}^{orbiter^T} \begin{bmatrix} M \end{bmatrix}^{orbiter} \begin{bmatrix} CB \end{bmatrix}^{orbiter}$$

$$= \begin{bmatrix} CB \end{bmatrix}^{ET^T} \begin{bmatrix} K \end{bmatrix}^{ET} \begin{bmatrix} CB \end{bmatrix}^{ET} + \dots + \begin{bmatrix} CB \end{bmatrix}^{orbiter^T} \begin{bmatrix} K \end{bmatrix}^{orbiter} \begin{bmatrix} CB \end{bmatrix}^{orbiter}$$

$$= \begin{bmatrix} CB \end{bmatrix}^{ET^T} \{F(t)\}^{ET} + \dots + \begin{bmatrix} CB \end{bmatrix}^{ET^T} \{F(t)\}^{orbiter}$$

now solve

 $\left[M\right]_{sy}$

 $\begin{bmatrix} K \end{bmatrix}_{sv}$

 $\{F\}_{sys}$

$$\left[M\right]_{sys}\left\{\ddot{\eta}\right\}_{sys}+\left[B\right]_{sys}\left\{\dot{\eta}\right\}_{sys}+\left[K\right]_{sys}\left\{\eta\right\}_{sys}=\left\{F\right\}_{sys}$$

as you would any other MDOF system.

i.e., transform to generalized coordinates using new system matrices to obtain uncoupled equations of motion in $\{\eta\}$, solve time response numerically, back transform to $\{\eta\}_{sys}$, back transform again to get $\{u\}$.

Artemis-1 Dynamic Testing to Validate Models

properties of the CS

- Includes stand-alone crane testing to study boundary
- Identifies key modal properties of the ML
- Tower
- Platform
- Mount Mech

Identifies interface stiffness SLS/ML

- Aft skirt
- VSP
- Haunch/Girder

1st dynamic test of SLS elements on ML.

Dynamic validation of static I/F stiffness from previous test Fully Integrated Vehicle Model of SLS/ML

- SLS dynamics should be primary unknown in this test.
- Data feeds the tuned BME (Best Model Estimate)

- Each test builds upon the previous test results
- What is the probability that the flight model is "good", given that verification is only done on the ground?

- Structural Dynamics is one of the Critical Disciplines for the successful Design, Development, & Testing of Space Launch Vehicles.
- It is applied from the smallest component (turbine blades), all the way to the entire vehicle, and has to be calculated for every phase of a mission, from ascent and orbit to landing.
- Successful application of Structural Dynamics requires extensive knowledge of Fourier Techniques, Linear Algebra, Random Variables, Finite Element Modeling, and essentials of SDOF and MDOF vibration theory.
- Working knowledge of Fluid Dynamics, Statistics, and Data Analysis also extremely useful.
- This is <u>fun</u>!