

WFIRST Wide Field Infra Red Survey Telescope

Wide Field Infrared Survey Telescope (WFIRST) Wide Field Instrument (WFI) Overview

Art Whipple Deputy WFI Manager

Wide Field Instrument Organization

WFI is Planned to be the WFIRST Critical Path

Task name	CY 2018		CY 2019		CY 2020			CY 2021		CY 2022			CY 2023			CY 2024			CY 2025			
	Q1 Q2 Q3 0	Q4 Q1	Q2 Q3	Q4	Q1 Q2	Q3 Q4	i Q1	Q2 Q3 0	24	Q1 Q2	Q3	Q4	Q1 Q2	Q3 0	24 0	21 Q2	2 Q3	3 Q4	Q1	Q2	Q3 (Q4 Q
Project Phases	KDP-B			KDP	-C									KDP-D						1	CDP-E	_
Mission Milestones	1	Phase	В		> _		-	Phase	e C					<u></u>			Р	hase D			<u>()</u>	
	SRR/ 5/22			12/2	20									8/14							8/5	
	MDR		Ň											A A						∕sκ ∧		
	2/27			/ 10/28				6/14					4	/22					4	4/4	<u> </u>	12/5
Optical Telescope Assembly (OTA) *							1	nherited Telesco	be													
	SRR		PDR				CDR	Complete					Complete									
	P	Prelim Desi	jn 🔿		Detailed D	Design		,	Fab, /	Assy, Test			96d	7/14								
	0/21		8/22				2/9			^			2/28				9).1 Mon	nths (181 wo	ork day	s) of
Widefield Instrument (WFI)	SDD		DDD			סח							WFI	*0			L	Funde	d Cri	tical P	ath Mar	gin
			tailed	Design			Fab. A	ssv. 1	Test			99d 9/18			$\mathbf{>}$	Г						
	8/8		6/18		6/	/18		,		T			4/28		-		Primary Cri				cal Path	1
Coronagraph Instrument (CGI) *				_									CGI						Secor	ndary (ritical P	Path
	SRR	alim Daai	PDR		CDR Detailed Design		R	Fa	h 40	<u> </u>			Complete	7.24					00001	iddi y c	introdi i	
	5/8	enn. Desi	9/1	7		<u>11/1</u>	6	Га	D, AS	sy, rest			3/20					— т	ertiar	y Critic	al Path	
Instrument Carrier (IC)	0/0		3/1				°		IC				0/20									
	SRR		PDR		CDR			C	omple	e								11112	Proje	ct Conf	rolled F	SM
	Pre	lim. Dsgn	Deta	ailed D	sgn 🔿	Fa	ib, Ass	y, Test	$\leq >$	2/1 32d												
Payload Integration & Test	6/27		5/29		4/24				12/15)												
														₩ 🕇	23	d						
														P <mark>L I&</mark>	т	2/13						
Spacecraft (SC)	SRR			PDR				CDR					c	SC omplete								
	F	Prelim Des	gn	\Diamond	Deta	ailed Design		\diamond		Fab, Assy	, Test, In	teg	1	107d		2/28						
	4/25		1	10/28				5/11						7/26			v	/iho/				
Observatory Integration/Test & Launch																	EMI A	Acou TV	/ 5	Ship		
																	Obs	s I&T			LF 9/	RD /4
																				4/8 ^{44d}	15d	
Launch Vehicle (LV)																					LV	
											ATP		Award								Available	Ð
											\sim		\sim	Lau	nch V	ehicle P	rep.		-		\rightarrow	
											8/4		3/4								9/4	
Ground System (GS)			GS																		GS	
	SRR		Tag-Up			PDR		CDR			R1.0	_		MOR	9/26			R3.0	FOF		Read	У
	6/40		7/22			0/2			Rev	1 Dev.			Rev 2 Dev.		R	ev 3 Dev	/.					
	6/19		//23			8/3		8/11			8/17			R2.0 S	//20			10/17	3/5	o 6/5	9/4	

*Secondary critical path is occupied by the Optical Telescope Assembly (OTA) in lieu of the Coronagraph Instrument (CGI), which is designated as a technology demonstration

WFI in the Observatory Context

WFI Major Changes since WFI SRR/SDR (Aug 2018)

- Design synched to telescope prescription v8.5.5
 - Pupil mask changed from spherical to flat-tilted
- Facility Cryocooling Radiator eliminated in favor of Mosaic Plate Radiator (MPR)
 - Conduction Path to Radiator (CPR) 2 AlBeMet Conduction bars to MPR with 2 Pyrolytic Graphite (PG) straps from each AlBeMet bar to Mosaic Plate
- Latches to IC changed from horizontal to vertical configuration, 2-2-2 flexure design
- Element Wheel Thermal Assembly added to provide stable filter temperature and gradient in and out of optical beam
- FPE operating (baseplace) temperature increased to ~293 +/- 0.5K
- Sensor Control Electronics Assembly moved off Alignment Compensation Mechanism
- RCS design updated to single aperture between two integrating spheres, free-space projection to diffuser on EW, Light On / Light Off (LOLO) capability added
 - LOLO PDR baseline is reflection off of pupil masks
- Grism designed changed from 4-element to 3-element
- Labyrinth seal at AOM eliminated, cold "snout" with small overlap to Aft Optics Module ring added
- Mosaic plate stray light refinements
 - Rotated central row of SCAs 180° for stray light improvement
 - Individual SCA light shields now only cover wire bonds
 - Mosaic plate gold (stray light analysis showed black over-coat not required)
- Optical Bench and cold Enclosure changed from rectangular to octagonal geometry
- WFI-SC connector panel separated into 2 cold, 1 warm panel
- 2-element low resolution prism added for supernova redshifts and classification

- Cold Sensing Module (CSM)
 - Element Wheel Assembly (EWA)
 - Grism, Prism and Filters
 - Focal Plane System (FPS) consisting of:
 - Mosaic Plate (MPA), Sensor Control Electronics Assembly (SCEA), Focal Plane Electronics (FPE)
 - Alignment Control Mechanism (ACM)
 - Optical Bench, Cold Optical Baffle Assembly (COBA)
 - Latches, Outer Enclosure (OE) with Yoke frame
 - Bench Cryo Radiator (BCR), Mosaic Plate Radiator (MPR), Focal Plane Electronics Radiator (FPER)
 - Relative Calibration System (RCS) and Electronics
 - Connector Panels 1 cold, 2 warm, 1 fibers
 - Cold "Snout" to Aft Optics Module
- Warm Electronics
 - Instrument Command & Data Handling (ICDH)
 - Mechanism Control Electronics (MCE)

GSFC products shown in blue Ball products shown in black

WFI Cold Sensing Module

- WFI PDR held June 18-21, 2019 at Ball
- Review team noted several important strengths:
 - Experienced teams at both GSFC and Ball, good coordination, working well together
 - Use of existing designs from recent projects
 - Leveraging from JWST for Alignment Compensation Mechanism (ACM) experience
 - Very simple and straightforward optical system
 - Required detector performance has been demonstrated on multiple devices
- 8 Requests for Action, 15 Advisories; main issues and concerns:
 - Wavefront error stability not meeting requirements
 - Prism immaturity
 - Stimulus of Ray Cones (SORC) was not at PDR level of maturity
 - ACM requirements for range of motion and total lifetime usage (at ambient and at vacuum) should be clarified
- Overall, Goddard System Review Team recommended that WFI proceed to critical design
 - CDR planned for 6/16-18/2020

- Post-PDR Trades
 - CSM survival heater architecture to avoid battery draw before sun capture
 - Switched spacecraft service is an option
 - Possible change of EW from composite to solid metal (e.g. Be or Ti) to improve manufacturability and/or reduce mass
 - Possible change of ACM strongback from composite to solid metal (e.g. Ti)
 - Possible elimination of Enclosure heat pipes
- Post-PDR Open Work
 - Optimization of Instrument Carrier interface and latches
 - Assess impacts from possible elevated AOM temperature (~5K)
 - Update spacecraft-WFI wire harness to ensure PRT accuracy while minimizing thermal parasitics
 - Update stray light and thermal analysis for CDR pupil masks
 - Update thermal control to allow SCE ASIC additional 100mW, per SCE to improve Differential Non-Linearity
 - Revisit electrical isolation between FPE and FPE radiator
 - Revisit use of Point-of-Loads converters in FPE
 - Respond to new requirements for surface charging protection
 - Respond to new Design Limit Loads, if necessary, due to Integrated Payload Assembly axial mode

- SN prism properties
- Filter ripple spec re-assessment
- SNR performance
- Calibration plans, including Relative Calibration System
- Detector status
- Data compression
- Wavefront error stability

Backup Material

Acronyms

Α

ACM - Alignment Compensation Mechanism
AFIP – Alignment Focal Plane Interface Plate
AI&T - Assembly, Integration and Test
AOM – Aft Optics Module

В

BCR – Bench Cryo Radiator **BF**- Burst Factor

С

CAD – Computer Aided Design
CDR – Critical Design Review
CM – Configuration Management
CME – Cold Module Electronics
CMU-Cryo Multiplexer Unit
COBA – Cold Optics Baffle Assembly
CPR – Conductive Path to Radiator
CSM – Cold Sensing Module
CTE – Coefficient of Thermal Expansion

D

DLL – Design Limit Load **DOF** – Degree of Freedom

Ε

EPR - Engineering Peer Review EW – Element Wheel EWA – Element Wheel Assembly

F

FCP- Fracture Control Plan
FCR – Facility Cryogenic Radiator
FEA – Finite Element Analysis
FEM – Finite Element Model
FPA – Focal Plane Assembly
FPE – Focal Plane Electronics
FPS – Focal Plane System

Acronyms

G

GCE – Gimbal Control Electronics
GFE – Government Furnished Equipment
GFP – Government Furnished Property
GPR – Goddard Procedural Requirements
GSE – Ground Support Equipment

I

IC - Instrument Carrier
 ICD – Interface Control Document
 ICDH – Instrument Command & Data Handling
 IM – Integrated Modeling

Μ

MAC – Mass Acceleration Curve

MCE – Mechanism Control Electronics

- MGSE Mechanical Ground Support Equipment
- MICD Mechanical Interface Control Document
- **MP** Mosaic Plate
- MPA Mosaic Plate Assembly
- MPR Mosaic Plate Radiator

Ν

NTE – Not to Exceed

0

OB - Optical Bench
OBA – Optical Bench Assembly
OE – Outer Enclosure
OM- Output Module
OTA – Optical Telescope Assembly

Ρ

- PCS Payload Coordinate System
- **PDR** Preliminary Design Review
- PDU Power Distribution Unit
- **POC** Point Of Contact
- **PSE –** Power System Electronics
- **PSF** Point Spread Function

Acronyms

R

RCS – Relative Calibration System
 RCSE – Relative Calibration System Electronics
 RFA – Request for Action
 RWA – Reaction Wheel Assembly

S

S/C – Spacecraft
SCEA – Sensor Cold Electronics Assembly
SDR – System Design Review
SERDES - Serializer/Deserializer
SMR – Spherical Mounted Retro-reflector
SRR – System Requirements Review
SRS – Shock Response Spectrum
STOP – Structural, Thermal, Optical Performance

Т

TBA –Thermal Bus Assembly **TCE** – Telescope Control Electronics

W

WBS – Work Breakdown Structure
WCE - WOMA Control Electronics
WCP – WFI Connector Panel
WDE – Wheel Drive Electronics
WEM – Warm Electronics Module
WFI – Wide Field Instrument
WFIRST – Wide–Field Infrared Survey Telescope
WOMA – WFI Opto-Mechanical Assembly
WIAT – WOMA Interface Alignment Tool