

WFIRST Wide Field Infra Red Survey Telescope

WFI Calibration

Maxime Rizzo WFI Systems/Calibration WG

- Overall calibration strategy defined by consensus between Science, SOC and WFI Systems teams
 - Science Operations Plan released by ~Mission PDR (owned by SOC/SITs)
 - Science Commissioning Plan released by ~Mission PDR (owned by SOC/SITs)
 - Ground C&C plan has been released and is the subject of this presentation
- Weekly Calibration WG meetings https://outerspace.stsci.edu/x/74HnAQ
- Holding a Calibration Workshop series since ~December
 - Share info between SITs, SOC, and Instrument Systems
 - Develop test plan together so everyone has buy-in

- Inspired from successful HST/WFC3 C&C Plan
- WFI will perform characterizations at component and sub-assembly levels in the natural build-up of the instrument
 - Provide earliest possible feedback and insights
 - Evaluate & track the progress of the instrument throughout the project phases (help avoid problems at later stages)
 - Identify areas of high priority for characterization at higher levels
 - Help confirm science requirement flowdown
 - Help define on-orbit Calibration operations & frequency (e.g. Count rate non-linearity)
- WFI will perform instrument-level C&C during TVAC campaign
 - Correlate lower-level characterizations and models
 - Gain confidence that there is no showstopper to meet on-orbit science requirements
 - Provide initial data for data pipeline
- Payload/Observatory will perform minimum test/verification after Instrument AI&T
 - Tie together Instrument-level products with Telescope & Observatory models
 - Very little further characterization expected at this stage (focus is on optical alignment and verification – more work is planned on this in the coming months)

Comprehensive WFI Ground C&C Plan is captured in WFIRST-WFI-PLAN-0100

Level	Element	Comments	
	Filters	Individual verification/characterization plans are established at the different levels (e.g. SCA characterization plan) Activities are tracked in Ground C&C Plan	
Component	Prism/Grism		
	SCAs		
Sub-assembly	EWA		
	FPS		
	RCS		
Instrument	WFI	WFI Systems is responsible for Instrument- level C&C during Ball's TVAC campaign	
Payload	WFI + Telescope	Responsibility of Payload with assistance of WFI team, monitored by WFI systems & with inputs from science team	

- A notional 30-day cryo calibration campaign is budgeted for in the schedule
 - Will occur at Ball but WFI is responsible for it
 - A GSFC-furnished Optical Stimulus (SORC) will be used to provide point source and flat field illumination at the right optical prescription (used both for verification and calibration)
 - The SORC will be calibrated at GSFC and verified at Ball before the campaign
- Cryo calibration activities will be interlaced with verification and other trending activities as needed
- The goals of the instrument C&C are:
 - Measure the characteristics of the instrument over the range of operational parameters and configurations
 - Correlate lower-level characterizations and models
 - Gain confidence that there is no showstopper to meet on-orbit science requirements
 - Provide initial products for data pipeline

Stimulus schematic

Image courtesy: Stimulus team

׼z

- Can be articulated in both axis:
- ±6° about WFI-CS X-axis shown
- ±10° about WFI-CS Y-axis shown

Image courtesy: Stimulus team

Stimulus model

Category	Descriptions
FPS	Darks, total noise, thermal background, out-of-band rejection, thermal transient characterization, persistence, linearity, science modes testing, science trending test
RCS	Flatness, Self-cal, Count-rate non-linearity, Lamp-on/lamp-off, stability
Flatfields	Broadband and narrow band flatfields
Stray light	Stray light and vignetting
Geometric calibration	Registration across filters, distortion

- ~20 characterization tests identified & their importance was prioritized
- Grassroots campaign time estimate fits into ~30 day calibration allocation

Science input on test definition is very much welcome!

Science Data Handling for WFI I&T

Data Deliverables to Science Operations Center

Calibration product	Name in JWST pipeline	Product details & description	Name(s) of test(s) that will acquire data for this product
Bias images	Superbias	2-D image of the detector bias ("zeroth" read) structure.	WFI_DARK_BASELINE
Instrument Dark	Dark	Dark calibration images for all modes of detector operation/ Pixel-by-pixel and frame- by-frame dark current values for a given detector readout mode.	WFI_DARK_BASELINE, WFI_THERM_BKGD
Flatfields	Flat	Pixel-by-pixel detector response values	FLATFIELD_SWEEP, FLATFIELD_BROAD
Saturation	Saturation	Pixel-by-pixel saturation threshold values.	SCA_LINEARITY
	Trapdensity	Pixel-by-pixel map of the trap density for persistence correction	SCA_PERSISTENCE
Persistence	Persat	Pixel-by-pixel map of the persistence saturation threshold for persistence correction	SCA_PERSISTENCE, WFI_PERSISTENCE
	Trappars	Default parameter values used in the persistence correction.	SCA_PERSISTENCE
Linearity	Linearity	Pixel-by-pixel polynomial correction coefficients.	SCA_LINEARITY, FPS_LINEARITY
Crosstalk	-	Any prior knowledge of the cross-talk	FPS_CROSSTALK
Read noise map	Readnoise	Pixel-by-pixel map of read noise, which is used in estimating the expected noise in each pixel.	FPS_TOTAL_NOISE, WFI_DARK_BASELINE

 SOC provided the data product needs for their calibration pipeline (which is based on JWST's), and were mapped onto tests in the C&C plan **RCS Use cases**

Activity	Description	Approx. Frequency	Approx. Duration
Pixel-to-pixel flats	Illuminate the FPA with high-flux flatfields to characterize the pixel-to-pixel response and its variation over time and wavelength	Weekly	~1-6 hr
Persistence	Characterize the FPA persistence and its evolution with time by illuminating the FPA beyond saturation	Quarterly	<1 hr
LOLO	Characterize the CRNL using the LOLO method, by illuminating the FPA during science exposures	Monthly	~ 5 hr (F184 only)
CRNL	Full characterization of the CRNL using the direct method; requires precise knowledge of flux ratios	Quarterly	<24 hr

RCS Status

Temp Sensor Heater Sphere 1 Sphere 2 Monitors (Si & InGaAs) (Si & InGaAs) Heater Temp Sensor Monitors (Si & InGaAs) (Si & InGaAs) Heater Temp Sensor

The technical information contained in this slide does not contain "technology" as defined by the "General Technology Note" (Supplement number 2 to Part 744) in the Export Administration Regulations.

Courtesy Ball Aerospace

Courtesy Ball Aerospace

The technical information contained in this slide does not contain "technology" as defined by the "General Technology Note" (Supplement number 2 to Part 744) in the Export Administration Regulations.

- RCS has its PDR Aug 28-29th
 - LED candidates currently being selected
 - Design maturing but still not clear we can meet the 0.14% flux ratio knowledge requirement
 - Calibration WG is investigating possible requirements relaxation
- GSFC has started a Count-rate Non-Linearity working group
 - Define the test that all flight candidates will go through
 - Inform what the appropriate Concept of Operations should be to determine CRNL
 - Determine wavelength-dependence and angle of incidence dependence
 - Inform the RCS design and on-orbit time
 - CRNL data gathered by DCL testbed (which has similarities to the RCS) with flight candidates
 - CRNL Data is shared on ADAPT
- ADAPT sign-up:
 - <u>https://outerspace.stsci.edu/x/i4VGAg</u>