70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019

A Conceptual Design Study for An Unmanned, Reusable Cargo Lunar Lander

IAC-19-D1.4B.1

Dr. Bradford Robertson School of Aerospace Engineering Georgia Institute of Technology United States of America

EDS

Background/Motivation

NASA's Artemis program targets a manned lunar mission by 2024 and sustainable missions by 2028

As part of the overall program, roles for different classes of lunar lander have been identified

- Small landers (~10 kg) land small scientific and demonstration payloads
- Mid-sized landers (500 1000 kg) land larger payloads and act as technology demonstrators
- Human landers (9000 12000 kg) land 4 astronauts and an ascent stage
- > NASA has also identified several technological goals
 - Reusability, cryogenic fluid management, cryogenic refueling
 - Need to be demonstrated on unmanned missions

Multi-Mission Lunar Lander

- Artemis proposes using a three stage lunar lander
 - Transfer stage: NRHO \rightarrow LLO
 - Descent stage: LLO \rightarrow Surface
 - Ascent stage: Surface \rightarrow NRHO
- All elements can be launched on commercial vehicles and are staged at Gateway
- This study examines utilizing the Artemis descent stage as a multi-mission lander
 - Operate as a mid-sized reusable cargo lander with a useful payload capacity
 - Enable technology demonstration flights and evolution of descent stage
 - Cryogenic fluid management (CFM) as a key technology

Sizing Missions

Mid-sized lunar lander cargo mission

- Deployment Mission
 - Launch Vehicle places lander in TLI
 - Lander delivers a deployment payload
 - After delivery lander returns to gateway
- Reuse Cycle
 - Lander departs from gateway
 - Delivers reuse payload
 - Lander returns to gateway with a return payload
- Human Landing Mission
 - Launch vehicle places lander in TLI
 - Fast or slow transfer to Gateway
 - Lander inserts into NRHO
 - Lander waits for ascent stage and crew
 - Lander performs descent and landing maneuvers with ascent stage as payload

Georgia Aerospace Systems Tech Design Laboratory

Cargo Mission

Human Landing Mission

Vehicle and Mission Trade Space

- Discrete and Continuous Trade space
- > 28 Vehicle Architecture options
 - Only considering pressure fed NTO/MMH
 - NTO/MMH not eligible for active CFM
 - LOX/LCH4 only allowed ZBO
- Two mission architecture options
 - Fast or slow transfer to Gateway
- > 56 total discrete vehicle/mission combinations
- For each architecture, 9 continuous variables
 - 3 vehicle design parameters
 - 4 payload parameters
 - 2 mission parameters

MPS	LOX/LH_2	LOX/LCH_4	NTO/MMH
Propellant Feed	Pı	ump Pi	ressure
Engines		1	3
MPS Fuel&Ox Tanks	2	&2	1&4
\mathbf{CFM}	Passive	RBO	ZBO

Variable	Min	Max	Units
Total Thrust	35	150	kN
Fuel Tank L/D Ratio	1	5.0	_
Ox. Tank L/D Ratio	1	5.0	_
Deploy. Payload, m_{pl_1}	1	1,750	kg
Reuse Payload, m_{pl_2}	1	3,500	kg
Returned Payload, m_{pl_3}	1	3,500	kg
Ascent Element, m_{pl_4}	9,000	$15,\!000$	kg
Surf. Stays, $\Delta t_1 = \Delta t_2$	7	30	days
Stay at Gateway, Δt_3	30	120	days

Cryogenic Fluid Management

¹Plachta, D. W., et al. "Cryogenic Propellant Boil-Off Reduction System." *AIP Conference Proceedings*. Vol. 985. No. 1. AIP 2008.

LOX/LCH4 ZBO: 90 K cryocooler LOX + dedicated shield (@ 90 K)
+ 90 K cryocooler LCH4 + dedicated shield (@ 90 K)

LOX/LH2 RBO: 90 K cryocooler LOX + dedicated shield (@ 90 K)
+ 90 K cryocooler LCH4 + dedicated shield (@ 90 K)

LOX/LH2 ZBO: 90 K cryocooler LOX + dedicated shield (@ 90 K)
+ 90 K cryocooler LCH4 + dedicated shield (@ 90 K)

Analysis Framework and Methodology

Study performed utilizing the Dynamics Rocket EQuation Tool (DyREQT)

 Specialization of OpenMDAO for space transportation systems

➢ 6 Contributing Analyses

Avionics	Structures	Power
Propellant Tanks	Engine	Thermal Control

- Thermal control based on NASA's CryoSIM
 - Passive boiloff calculations
 - Cryocooler power and mass relations

Georgia Aerospace Systems Tech Design Laboratory Ran Design of Experiments (DoE) for each architecture

- Over 560,000 cases
- ~48 hours to run on a high end workstation

Trained Neural Networks

- Two fully connected layers of 45 nodes each
- Neural networks needed because of the multi-modal complex design space
 - Different payloads size lander
 - Lander can launch partially fueled

0

0.

Results

- NSGA-II produced the best of breed architecture for each propulsion system
 - Minimum in-space loiter times

For Launch Vehicle 1

- Pump-fed NTO/MMH provides excellent performance, exceeding the payload requirements outlined in NextSTEP-2
- RBO LH2 greatly exceeds NextSTEP-2's payload requirements
- With a fast transit to Gateway, LH2 Passive also exceeds NextSTEP-2's payload requirements
- ZBO CH4 architecture does meet the cargo payload requirements.
- Neither ZBO LH2 nor Pressure-Fed NTO/MMH meet payload requirements

Launch Vehicle 1

- LH2 RBO 4 Tank [Slow]
- LH2 RBO 4 Tank [Fast]
- LH2 Passive, 5 Tank [Fast]
- NTO/MMH 4 Tank (Pump-fed) [Slow]
- LCH4 ZBO 4 Tank [Slow]

Results

- NSGA-II produced the best of breed architecture for each propulsion system
- Changes due to using a less capable launch vehicle
 - Fewer architectures are feasible vs. LV1.
 - Pump-fed NTO/MMH and RBO LH2 architectures are feasible among both LVs
 - slightly reduced performances on LV2.

Key tradeoff: pump fed NTO/MMH

Georgia Aerospace Systems Tech Design Laboratory

Launch Vehicle 2

- LH2 RBO 4 Tank [Slow]
- LH2 RBO 4 Tank [Fast]
- LH2 Passive, 5 Tank [Fast]
- NTO/MMH 4 Tank (Pump-fed) [Slow]
- LCH4 ZBO 4 Tank [Slow]

Hydrogen Landers

- Best-of-breed analysis shows that RBO LH2 landers outperform NTO/MMH systems
 - Difficult to baseline a cryocooler for a 2024 flight
 - Need a demonstration mission
- Passive LH2 systems can meet minimum NextSTEP-2 requirements
 - 5 tank system can meet
 - 4 tank system needs additional technology infusion to reduce boiloff
- 4-tank RBO LH2 beats 5-tank RBO LH2
 - Additional cryocooler mass penalizes 5-tank RBO
- Possible evolutionary path exists

Utilizing Off-the Shelf Engines

- Examined off-the-shelf engines to support 2024 landing date
 - 1 RL10C-1 for hydrogen landers
 - 1 RS-72 for NTO/MMH landers

Observations

- 4-tank LH2 RBO provides superior crewed mission performance
- NTO/MMH provides superior cargo performance
- Performance difference due to additional mass of cryocoolers needed for RBO system

Conclusion

- Exercised DYREQT to perform a multi-mission analysis of alternatives
- Showed the ability of the descent stage of the human landing system to be used as a stand-along mid-sized lander
- Key trade: RBO LH2/LOX vs Pump-Fed NTO/MMH
 - Passive LH2/LOX can be used for 2024 mission
 - Evolvable to RBO system
 - Utilize capability as a cargo lander to fly technology demonstration missions

References

[1] Plachta, D. W., et al. "Cryogenic Propellant Boil-Off Reduction System." *AIP Conference Proceedings.* Vol. 985. No. 1. AIP 2008.