
eddy Users Manual

Scott M. Murman, Laslo T. Diosady, Anirban Garai, Corentin
Carton de Wiart, Patrick J. Blonigan, and Dirk Ekelschot

NASA Ames Research Center, Moffett Field, CA, USA

June, 2018

Contents

1 Install 1
1.1 Introduction . 1
1.2 Compiling . 2
1.3 Conventions and Nomenclature 2

2 Pre-processing 4
2.1 Defining a Mesh . 4

2.1.1 Unstructured Mesh . 4
2.1.2 Higher-order meshes 5
2.1.3 Mesh2Domain2Mesh 6

3 Running eddy 8
3.1 Input files . 8

3.1.1 Single region . 10
3.1.2 Multiple regions . 11
3.1.3 Optional Inputs . 12

3.2 Running a solver . 13
3.2.1 Eddy Command Line Arguments 13

3.3 Test Cases . 14

4 Post-processing 15
4.1 Diagnostics . 15

4.1.1 Instantaneous data, restart files and full space-time so-
lution . 15

4.1.2 Data integrated in space and/or in time 16
4.1.3 Residual norm . 17

4.2 Flow visualization . 18
4.2.1 plotter . 18

1

CONTENTS 2

4.2.2 plotvisit . 19

5 Available solvers in eddy 20
5.1 Advection-diffusion . 20
5.2 Navier-Stokes . 21

5.2.1 Shock-capturing . 25
5.2.2 Variational Multiscale Modeling (VMM) 25
5.2.3 Perfectly Matching Layer (PML) 25

5.3 Wall model . 26
5.4 Linear Elasticity . 26
5.5 Linear Shell . 28
5.6 6DoF . 30

Chapter 1

Install

1.1 Introduction
eddy is a collection of tools - nonlinear solvers, meshing, post-processing, vi-
sualization, optimization, etc. - for performing scale-resolving simulations of
multi-physics applications. The framework is designed to enable advanced
R&D on a variety of topics by leveraging a mature capability for scale-
resolving simulations, and simultaneously be an appropriate tool for appli-
cation analysis and support. Currently, eddy is at a relatively low technical-
readiness level (TRL), and users and developers should maintain appropriate
expectations.

The technical details behind eddy are outlined in several publications
which can be consulted for more information [1–10]. The solvers are built
around an unstructured high-order capability, and heavily utilize the tensor-
product sum-factorization approach for efficiency. The unsteady formula-
tion utilizes a fully implicit space-time approach with a matrix-free Newton-
Krylov method. A primitive steady-state solver is available for testing pur-
poses, but is not expected to converge for all but simple verification cases.
The Navier-Stokes fluid solvers do not support either RANS or hybrid-RANS
capability, only LES and wall-modeled LES approaches.

All of the solvers within eddy support three modes of operation: a primal
solve of the full nonlinear problem, and two linearization approaches of the
primal solve - the adjoint and the tangent solution. Details on how to select
and use these three modes are outlined in Sec. 3.

1

CHAPTER 1. INSTALL 2

1.2 Compiling
eddy is written in C, and relies upon several 3rd-party libraries listed below,

• MPI

• hdf5 - must set -enable-parallel

• parmetis

• glib

• libyaml

• cgns - must set CGNS_ENABLE_64BIT, CGNS_ENABLE_HDF5,
CGNS_ENABLE_SCOPING, and HDF5_NEED_MPI

• visit (optional)

In addition, eddy builds an optimized library to support the tensor-
product operations. This is located in the gen directory and must be compiled
and installed before building eddy .

eddy uses a standard Makefile build system. Machine-dependent cus-
tomizations, such as the location of the libraries listed above, compiler op-
tions, etc. , are specified in a file machine.mk in the src sub-directory. Ex-
amples of several customizations are provided for OSX, linux, etc. and these
can be copied or linked to machine.mk. Running make install will locate bi-
naries and libraries in standard bin, lib, include paths relative to the top-level
directory.

All of the binaries built within eddy support the --help command-line
option which will list a description of the program, the available command-
line options, and immediately exit.

1.3 Conventions and Nomenclature
All of the input files for eddy are in YAML format, to support syntax high-
lighting and provide a structure for the input data.

All of the inputs in the YAML file can be parsed with a (relatively) general
function parser. For example, it is possible to define variables, and then use
those variables in mathematical expressions, as in

CHAPTER 1. INSTALL 3

Mach: 0.69
Alpha: 5*pi/180.0
Velocity:
Uref: Mach*cos(Alpha)
Vref: Mach*sin(Alpha)
Wref: 0

The output that the executable translates this to, ignoring the temporary
variables, is printed to standard output. All of the variables that can be set
in the YAML input file, including any unset defaults, are printed to standard
output.

eddy is a multi-physics solver, and each set of different physics (governing
equations) is termed a region. Thus the computational domain is split into
multiple regions, and then the separate regions are coupled together. Further,
each region may require the specification of physical boundary conditions.
A single physics simulation follows this same paradigm, specifying a single
region without any couplings specified.

The binary data for the mesh, simulations reults, etc. is stored in special-
ized HDF5 files. Currently, a single mesh, flow solution, etc. is created for
each physics region, as outlined in Sec. 2.

Chapter 2

Pre-processing

2.1 Defining a Mesh
In order to define a mesh we need:

1. information about the topology/connectivity which describes how dif-
ference entities (vols/faces/edges/vertices) are connected to one an-
other

2. the coordinates which describe the actual geometry of the problem at
hand

For high-order meshing it is convenient to think of these as two somewhat
separate things.

Within eddy we describe the mesh in terms of a topology/connectivity
and an oracle which we can query to obtain geometry information to whatever
fidelity is required (i.e. high-order geometry representation).

There are currently two paths for generating meshes that eddy can un-
derstand

• using a 2nd-order unstructured mesh

• building a higher-order mesh based on a structured oracle

2.1.1 Unstructured Mesh
Currently the only support for general unstructured meshes is through read-
ing unstructured CGNS files. In the eddy/bin directory there is a utility

4

CHAPTER 2. PRE-PROCESSING 5

cgns2mesh which converts an unstructured cgns mesh to an eddy supported
mesh.h5 file. Currently only single zone, linear, 3D, unstructured meshes are
supported at this time. There is no oracle (i.e. the oracle is an identity
mapping).

2.1.2 Higher-order meshes
In order to generate curved higher-order meshes we use an oracle based on
a structured multi-block mesh. The process of generating an oracle involves
two steps:

1. calling cgns2oracle to generate an oracle.h5

2. calling oracle2mesh to generate a mesh.h5.

cgns2oracle takes the following arguments

• -i inputfile : the filename of the input cgns file containing the multiblock
grid

• -o outputfile: the file to write the oracle to (usually oracle.h5)

• –PerJ/–PerK/–PerL : flags indicating periodic boundary conditions on
all blocks in the J/K/L direction.

Additionally cgns2oracle reads inputs from the file oracle.yaml. The addi-
tional inputs that can be read are additional periodic connectivities which
can be specified using the following:

- connection
block_one: name1
con_plane_one: 1
block_two: name2
con_plane_one: -1
orientation: 0
is_periodic: 1

A block of this form must be added for every desired additional connec-
tion. Here name1/name2 correspond to the zone names in the cgns file,
plane1/plane2 correspond to the direction index of the normal (i.e. 1/2/3 ->
J/K/L) while the sign denotes the start/end. Orientation is a number from

CHAPTER 2. PRE-PROCESSING 6

[0,7] which denote the relative orientations of the two faces of the blocks. Pe-
riodic is set to 1 if this is a periodic boundary, or 0 if this involve a one-way
coupling from block1 to block2.

oracle2mesh creates mesh.h5 starting from an oracle by splitting each
zone into a number of hexahedral elements. The number of elements on each
zone is specifies in the file mesh.yaml which has the following form:

- Zone : name1
Nj : 2
Nk : 3
Nl : 4

- Zone : name2
Nj : 3
Nk : 4
Nl : 1

where a “-Zone” must be specified for each block in the multi-block mesh,
corresponding to the given name. Nj/Nk/Nl correspond to the number of
elements in each direction. Hanging nodes are not allowed and some minimal
error checking occurs to ensure that you have specified a valid mesh.

Note that at this point the coordinates of the higher-order mesh (and
geometry order) have not been specified. These are determined at run time.

2.1.3 Mesh2Domain2Mesh
For multiphysics simulations we currently generate a separate mesh.h5 file
for each region. Typically we start from a single mesh.h5 which we want to
split. The utility which can accomplish this is called mesh2domain2mesh.
The utility has two functions:

1. allows you to name topologies within a domain (which Pointwise can’t
seem to do for us)

2. write a mesh file for a single region.

The input formesh2domain2mesh is the file mesh2domain2mesh.yaml and
has the following form:

CHAPTER 2. PRE-PROCESSING 7

MeshFile: mesh.h5

Maps:
- Map: surfacename1

Parent1 : volumename1
Parent2 : volumename2

- Map: surfacename2
Parent1 : volumename2
Parent2 : volumename3

Regions:
- Region: volumename2

MeshFile denotes the input file. The input file will read all “volume condi-
tions” and “boundary conditions” that were specified in the cgns file. How-
ever, we may need to name certain interior boundaries or lower order entities
(i.e. edges) which pointwise does not allow us to do. We name these entities
by creating “maps” where each “map” corresponds to a newly named entity,
which are defined as the intersection of two parents. A region can corre-
spond to any map provided we have also created maps (i.e. named) all of its
boundaries. For each region we construct a mesh_regionname.h5 file which
is read by eddy. For example, the above input would create a file named
mesh_volumename2.h5.

Chapter 3

Running eddy

The following section discusses how to run a case with eddy for a given mesh.
The working directory in which you wish to run eddy should contain the
mesh.h5 file(s) and the necessary YAML input files.

3.1 Input files
Running eddy requires at least two YAML input files. The first file needs
to be named eddy.yaml and it should contain global information about the
case you are running, such as the number of time iterations, time stepping
scheme, and the name of the region(s) included in the domain.

Firstly, the temporal discretization needs to be specified in the Un-
steadyControl section:

UnsteadyControl:
Scheme: # Time Stepping Scheme.
TimeStep: # Time step size.
Iterations: # Number of time iterations.

The time stepping scheme options are currently Steady, ExplicitRK, Im-
plicitRK, or SpaceTime. The option Steady corresponds to a steady
state solver and it ignores the TimeStep and Iterations inputs. Note that
the space-time scheme performs an integral over a polynomial basis in the
temporal direction of the space-time element, akin to the typical spatial
finite-element scheme. As such, there is a distinction between data stored
within the temporal projection of the space-time element, which we refer to

8

CHAPTER 3. RUNNING EDDY 9

as a time slab and contains Nt volume states corresponding to the temporal
dof, and the projection in the temporal direction to the end of the time slab,
which contains a single volume state.

The other mandatory entry in eddy.yaml is the Regions section:

Regions:
- Region: # Region Name (Mandatory)

Additional options under Partition depend on whether the domain is a
single region or contains multiple regions. These will be discussed in sections
3.1.1 and 3.1.2.

In addition to the eddy.yaml file, one input file is needed for each region.
This file should be named region-name.yaml, where region-name is the re-
gion name specified in eddy.yaml. The region input file region-name.yaml
should contain information specific to a given region, such as the discretiza-
tion scheme, the physics module to be used, and any boundary conditions.

The first entry to region-name.yaml should be the mesh file name:

MeshFile: # mesh file name

The discretization scheme is specifed as follows:

Discretization:
DiscretizationType:
BasisType: # LagrangeGauss (default) or LagrangeGLL
SpatialDealias: # 1.0 collocation (default), > 1.0 dealiasing
TemporalDealias: # 1.0 collocation (default), > 1.0 dealiasing
N: # number of 1D basis functions (p+1) ,

a/k/a spatial order of accuracy
Nt: # number of temporal basis functions (only used for space-time)
N_geom: # N (default) or some other order of accuracy

for the mesh curvature
Nt_geom # Nt (default) or some other order of accuracy

for the mesh curvature in time

Note that the spatial and temporal orders of accuracyN andNt are typically
set to multiples of 2 since the low-level matrix math kernels used by eddy are
optimized for these accuracy orders.

The Equation section specifies the physics solver for a region, sets its
important parameters (under ReferenceConditions), and sets the initial
conditions.

CHAPTER 3. RUNNING EDDY 10

Equation:
EquationType: # Physics module to be used
ReferenceConditions: # Parameters for physics module

(e.g. Reynolds Number)
InitialConditions: # Specify Parameters and/or spatial functions,

depending on physics module
VolumeOutputs: # quantities of interest to be computed

on the region volume (e.g. kinetic energy)

The entries in the ReferenceConditions, InitialConditions and Vol-
umeOutputs sections depend on the physics module specified in Equation-
Type. Consult chapter 5 for specific details on each physics module/solver.
Finally, Boundary conditions are specified in the BCs section:

BCs:
- Boundary: # Boundary name

Type: # Boundary type (e.g. Dirichlet)
depends on physics module

Outputs: # outputs to be computed on this boundary
(e.g. shear stess)

The boundary name in the YAML file needs to correspond to the boundary
name in the mesh file. There should be a Boundary entry for each boundary
in the region. Each boundary type may have additional input parameters.
For example, the NavierStokes boundary condition FullState can specify all
five primitive states (Rho,Uref,Vref,Wref,P) to over-ride the default values
specified in the ReferenceConditions subsection of Equation.

3.1.1 Single region
To run eddy for a single region domain, only two input files are needed,
eddy.yaml and region-name.yaml.

Regions:
- Region: # Region Name (Mandatory)

Partition: # Optional
NProcs: # Number of cores to be used by this region
DedicatedIO: # (Optional) Number of cores dedicated

to concurrent IO (Default 0)

CHAPTER 3. RUNNING EDDY 11

DedicatedDiag: # (Optional) Number of cores dedicated
to concurrent diagnostics (Default 0)

It is not necessary to specfy anything other than the region name after -
Region: for a single region domain. However, if one wants to used dedicated
cores for concurrent IO or diagnostics, the fields under Partition need to be
specified. NProcs should be the total number of core to be used and must
match the number of cores specified for MPI at run time. DedicatedIO and
DedicatedDiag are the number of cores out of the Nprocs cores specified
for the region that will run concurrent IO and diagnostics while the solver
runs on the remaining cores.

3.1.2 Multiple regions
To run eddy for a domain with multiple regions, one eddy.yaml file is required,
along with one region-name.yaml for each region. In eddy.yaml’, theRegions
section must have a - Region entry for each region with the following:

Regions:
- Region: # Region Name (Mandatory)

Partition:
NProcs: # Number of cores to be used by this region
DedicatedIO: # (Optional) Number of cores dedicated

to concurrent IO (Default 0)
DedicatedDiag: # (Optional) Number of cores dedicated

to concurrent diagnostics (Default 0)

Each region must have a number of cores NProcs specified and the sum of
the NProcs entry for each region must match the number of cores specified
for MPI at run time. The entries DedicatedIO and DedicatedDiag are
the number of cores out of the Nprocs cores specified for the region that
will run concurrent IO and diagnostics while the solver runs on the remaining
cores.

In addition to the entries discussed previously, eddy.yaml needs to include
a Couplings section that specifies how the regions are coupled:

Couplings:
- Coupling: # specify name here

Type: # type of coupling

CHAPTER 3. RUNNING EDDY 12

(e.g. Riemann for NavierStokes to NavierStokes)
Region1: # Pair of regions to be coupled
Region2: #
Interface: # name of boundary or volume

on which coupling takes place

There should be one - Coupling: entry for each coupling between two
regions.

Note that any boundaries that act as interfaces for a coupling should be
included in the BCs section of the region-name.yaml file with Type set to
Coupling:

BCs:
- Boundary: # Interface boundary name

Type: Coupling

3.1.3 Optional Inputs
Nonlinear and linear solver parameters can be specified in the Nonlinear-
Solver section:

NonlinearSolver:
LinearSolver: # linear solver type (Default GMRES)
nNonlinearIter: # Maximum number of Newton iterations

(Default 35)
nGMRESInner: # Number of Linear solver iterations for

each Newton iteration (Default 100)
NonlinearTol: # Absolute residual tolerance

(Default 1E-14)
InitialGlobPar: # Initial values of globalization parameter

(Default 1.0)
LambdaIncrease: # Rate to increase globalization parameter by

(Default 10.0)
ForceUpdate: # Ignore convergence status of linear solver

(Default False)

Current linear solver options include GMRES, Conjugate Gradient (Con-
jugateGradient), and the Biconjugate gradient stabilized method (BiCGStab).

CHAPTER 3. RUNNING EDDY 13

Parameters for computing and outputing Volume outputs, boundary out-
puts, and mean files (with time-averaged variables) can be specified in the
CheckpointControl section:

CheckpointControl:
WriteInterval: # Frequency that the solution at the end

of a time slab should be written to disk
TimeSlab: # Boolean: true if all time slabs should saved to disk

(Need to save these to run tangent or adjoint)
AverageStart: # end of averaging window in eddy time units
AverageEnd: # end of averaging window in eddy time units
AverageWindow: # type of averaging window:

Square, Hann, or HannSquare

Note that “eddy time units” refers to the time units used by the solver and
should be consistent with the time step size specified in eddy.yaml under
TimeStep. If AverageStart is specified, eddy will compute and save an
hdf5 file to disk containing the mean of the quatities specified in the Vol-
umeOutputs field of the Equation section in each region-name.yaml. If
no AverageEnd is specified, the mean will be a running average.

3.2 Running a solver
The eddy solver executable must be run with MPI in the working directory
containing the input files and the mesh file.

3.2.1 Eddy Command Line Arguments
By default, eddy will run from the initial condition specified in your input
files for the number of iterations specified in eddy.yaml. These defaults can
be overwritten using the arguments in table 3.1.
For example, to run eddy on 4 cores starting from step 10 and finishing on
step 20:

mpiexec -np 4 eddy -r 10 -t 20

CHAPTER 3. RUNNING EDDY 14

Flag Short Flag Description
ndt t Specify time step to run to

reload r Specify time step to restart from
adjoint N/A Run adjoint solver
tangent N/A Run tangent solver

Table 3.1: Command line arguments for eddy . Note that the ndt (t) flag
overrides the number of iterations specified in the eddy.yaml file.

3.3 Test Cases
There are two main types of software testing distributed with eddy: unit tests
which verify the implementation, and regression (QA) tests which examine
algorithm behavior, model assumptions, timing, etc.

The units tests are run using the command make check from the src
directory.

The regression tests use a script system to run the jobs in parallel.
The cases directory contains the QA tests which are run. The directory
utils/regression_test contains scripts which can run these cases interactively,
or on NASA’s pleiades supercomputer using PBS. Note that different hard-
ware and compiler optimizations are likely to lead to floating-point differ-
ences in the results from these regression tests, but these machine precision
differences are not of concern.

Chapter 4

Post-processing

This chapter describes the post-processing tools attached to eddy and how
to extract data from your simulations. The first section lists all the ouputs
and diagnostics available in eddy and how to specify them in the input file.
The second section is dedicated to flow visualization and how to transform
the high-order output fields into a format that can be read by standard flow
visualization tools, such as FieldView, VisIt or ParaView.

4.1 Diagnostics
This section describes how to extract data from the simulation and write
them to disk. These files can be monitor files (residual, volume integral,
etc.) or files containing the full field (full time slab, instantaneous, or mean
data).

4.1.1 Instantaneous data, restart files and full space-
time solution

To export the solution at a given time, you need to specify the output fre-
quency in the region yaml file, in the CheckPointControl section.

If you want to output the solution every 100 steps, it will give:

CheckpointControl:
WriteInterval: 100

15

CHAPTER 4. POST-PROCESSING 16

The solution obtained at the end of the time-slab will be stored using the
following naming convention: soln_region_000100.h5, with region the name
of the region. This file can then be use to restart the simulation using the -r
step argument.

To export the full space-time solution (slab) at every time step, you need
to add the following line in the eddy yaml file:

CheckpointControl:
WriteInterval: 100
TimeSlab: True

This for instance, will export the full slab every time step and the instan-
taneous solution every 100 steps. The full slab solution will be stored using
the following naming convention: slab_region_000001.h5.

4.1.2 Data integrated in space and/or in time
Integral of data in space and/or in time on the volume or at a boundary
can be specified in the region yaml file. When available for your equation
type, you can specify the volume output groups you want to export using
the VolumeOutputs key. For instance:

Equation:
EquationType: NavierStokes
ReferenceConditions:

...
InitialConditions:

...
VolumeOutputs: "Primitive, ReynoldsStress, Vorticity"

If available for your boundary conditions, you can also export quantities of
interest on your boundaries by specifying them in the region.yaml file as well,
by using the Outputs key in the boundary block. For instance:

BCs:
- Boundary: wall

Type: AdiabaticWall
Outputs: "Geometry, Flux, y+"

CHAPTER 4. POST-PROCESSING 17

For data integrated in time (objectives, mean fields, etc.), a windowing
can be specified in the eddy.yaml file. Here is an example of input to define
a window in the yaml file:

CheckpointControl:
AverageStart: 10.5
AverageEnd: 15.5
AverageWindow: Square

When no window is specified, only data integrated in space will be exported.
For volume outputs, the temporal evolution of the integrated quantities

will be written to a file region.volume, with region the name of your region.
For boundary outputs, the data will be exported to a file wall.boundary,
where in this case wall being the name of the boundary. For both the bound-
ary and the volume outputs, the name of the quantities in the file will be
written in the header. As we are using a space-time finite element method,
the space integral quantities are computed at every temporal Gauss points
of each time slab (using 2Nt pionts).

Specifying a window in the input file will give access to two more out-
puts. Firstly, a file containing quantities integrated in time and space will
be created. The results are stored in a .tavg file (e.g. region.volume.tavg,
wall.boundary.tavg, etc.), containing one sample per time slab (correspond-
ing at the total integral at the end of the time slab). Note that the objective
computed is the integral of the quantity of interest in time, not the average.
Secondly, the temporal average of the quantities of interest will be exported
using the same frequency as the solution/restart file. The average data, both
on the volume and on the boundaries, will be stored in files using the follow-
ing name convention: mean_region_000100.h5 (here for the timestep 100).
You can then visualize the average data using our post-processing tools (see
next section).

4.1.3 Residual norm
When running a case, a residual file, called eddy.resid will systematically be
created in order to check the convergence of the system. The file is structured
as follow:

step 1 time 0.1

CHAPTER 4. POST-PROCESSING 18

outer = 0, Rnorm = 3.5717752097e-05, ...
gmres-iter = 0, Rnorm = 3.5717752097e-05
gmres-iter = 1, Rnorm = 2.3685488690e-05
...

outer = 1, Rnorm = 3.4586197307e-05, ...
gmres-iter = 0, Rnorm = 3.4586197307e-05
gmres-iter = 1, Rnorm = 1.7008026260e-05
...

step 2 time 0.2
...

The outer lines represent the non-linear residual, the gmres-iter the linear
residual. Some tools are available in the eddy/utils directory to process the
residual file. For instance, the gnuplot script liveplot.gnu allows to plot in
real time the evolution of the residual.

4.2 Flow visualization
To visualize a field, two utilities are available. The first one is called plotter
and will convert a restart file or a mean file into the OVERFLOW file format,
provided that the case has a structured multi-block oracle. The second tool,
plotvisit, allows you to connect to a visit client, even remotely. You can then
directly visualize the data on the supercomputer without downloading the
files. Currently plotvisit is exceedingly slow for cutting planes, hence the
continued support for the legacy plotter tool.

4.2.1 plotter
The plotter tool is part of the eddy executables. The options to run

Usage:
plotter [OPTION?] Plotter

Help Options:
-h, --help Show help options

CHAPTER 4. POST-PROCESSING 19

Application Options:
-s, --SaveFiles Save window to outputfile when timestepping
-r, --reload reload step (-1 for outputting mesh only)
-m, --mean process mean flowfied
-a, --adjoint load adjoint if it exists
--output output you desire to save in p3d format
--dealias output you desire to save in p3d format

The –output allows you to specify which type output group you want to ex-
port. Typically, for Navier-Stokes, the Conservative output group is specified
and then the other quantities are reconstructed in FieldView or Paraview.

4.2.2 plotvisit
Usage:

plotvisit [OPTION?] PlotVisit

Help Options:
-h, --help Show help options

Application Options:
-s, --SaveFiles Save window to outputfile when timestepping
-r, --reload reload step (-1 for outputting mesh only)
-f, --frequency frequency of outputs
-m, --mean process mean flowfied
-a, --adjoint load adjoint if it exists
-w, --wait wait 10 seconds in order to attach debugger

Chapter 5

Available solvers in eddy

This chapter briefly describes available solvers and their inputs in eddy .

5.1 Advection-diffusion
An advection-diffusion solver using a space–time DG and CG spectral–element
method has been implemented.

The definitions of input parameters are as followed:

Equation:
EquationType: #Available: AdvectionDiffusion_CG, AdvectionDiffusion_DG
ReferenceConditions:

U-Velocity: #Spatial and temporal expression of velocity in x-direction.
V-Velocity: #Spatial and temporal expression of velocity in y-direction.
W-Velocity: #Spatial and temporal expression of velocity in z-direction.
Viscosity: #Value of viscosity

InitialConditions: #Initial condition for the simulation.
InitialSolution: #Spatial expression of initial solution. Default: 0.0

VolumeOutputs: #Volume outputs. Available: State, Gradient, Error
BCs:

- Boundary: #Name of the boundary. Set up at the mesh generation process.
Type: #Boundary condition. Available: Dirichlet, Neumann, Periodic.

#Default: Periodic
Outputs: #Outputs of the boundary. Available: Geometry, Flux, BCState.

Definitions and inputs of available boundary conditions are as followed:

20

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 21

1. Dirichlet: It imposes solution at the boundary. Inputs are:

State: #Spatial and temporal expression of the solution.
#Default: 0.0

2. Neumann: It imposes flux at the boundary. Inputs are:

Flux: #Spatial and temporal expression of the flux.
#Default: 0.0

5.2 Navier-Stokes
The conservative form of compressible Navier-Stokes equations are solved us-
ing a space–time DG spectral–element method. By default, entropy–variable
formulation is used to satisfy the second law of thermodynamics (under exact
integration) discretely. A conservative–variable formulation is also available,
but not all the functionality has been implemented. By default, inviscid
fluxes are computed using the entropy–stable approach of Ismail and Roe,
and the viscous fluxes are computed using an interior penalty method follow-
ing Bassi and Rebay. Roe flux, Lax–Friedrichs flux, Central–difference flux
etc. are also available. Further details can be found at [3].

The definitions of input parameters are as followed:

Equation:
EquationType: NavierStokes
ReferenceConditions:

Dimension: #Dimension of the problem (2 or 3 dimensional).
#Default: 3.

Velocity: # Reference velocity. Ma_{ref} is computed using these.
Uref: #x-component of reference velocity
Vref: #y-component of reference velocity
Wref: #z-component of reference velocity
Reynolds: #Reynolds number per unit length (Ma_{ref}/\nu).

#Required to compute kinematic viscosity.
#For inviscid flow set it to 0.

Prandtl: #Prandtl number. Default: 0.71
Gamma: #Specific heat ratio. Default: 1.4
Temperature: #Reference temperature.

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 22

#Required to compute Sutherland Constant. Default: 288.
TemperatureUnits: #Unit of Reference Temperature. Default: Kelvin
VariableType: #Type of variable used to solve NS.

#Available: Entropy, Conservative. Default: Entropy.
InvJumpFluxType: #Type of inviscid flux.

#Available: IsmailRoe, IsmailRoeNoDiss,LaxFriedrichs,
#Central,Roe,DSMV_1,DSMV_3,DSMV_5.
#Note all the fluxes are not available for Conservative variable.

Default: IsmailRoe.
SourceFunction: #Volumetric source terms.

#Available: Channel, Poiseuille. Default: None.
Re_tau: #Turbulent Reynolds number. Needed if SourceFuction: Channel.
InitialConditions: #Initial condition for the simulation.

#Note that the function purser can handle simple function.
#For complicated functions use InitialSolution.

Density: #Spatial profile for density. Default: 1.0
XVel: #Spatial profile for x-velocity. Default: 1.0
YVel: #Spatial profile for x-velocity. Default: 0.0
ZVel: #Spatial profile for x-velocity. Default: 0.0
Pressure: #Spatial profile for pressure. Default: 1.0/1.4
InitialSolution: #Hardcoded initial condition for specific profiles.

Available: Channel, Jet.
JetDiameter: #Diameter of the jet at the inlet.

#See "Turbulence" by Pope, Section 5.1
JetVelocity: #Centerline velocity of jet at the inlet.

#See "Turbulence" by Pope, Section 5.1
JetOriginX: #Self-similarity origin of jet in x-direction.

#See "Turbulence" by Pope, Section 5.1
VolumeOutputWeight: #Weight function on the volume. Default: 1.0
VolumeOutputs: #Volume outputs. Available: Geometry, Conservative,

#Entropy, Primitive, HITBudget, Isentropic, Vorticity, SecondMoment,
#ThirdMoment, ReynoldsStress, VelocityGradients, Gradients1,
#Gradients2, PressureStrain, DissipationTerms, PressureTransport,
#KineticEnergy, AdjointL2Norm

TemporalOutputWeight: #Weight function on the volume. Default: 1.0
TemporalOutputs: #Temporal outputs. Available: Geometry,

#Conservative, Entropy, Primitive, KineticEnergy
OutputXdir: #x-component of normal vector for Force output

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 23

#computation of AdiabaticWall boundary condition. Default: 0.0
OutputYdir: #y-component of normal vector for Force output

#computation of AdiabaticWall boundary condition. Default: 0.0
OutputZdir: #z-component of normal vector for Force output

#computation of AdiabaticWall boundary condition. Default: 0.0
BCs:

- Boundary: #Name of the boundary. Set up at the mesh generation process.
Type: #Boundary condition. Available: FullState, FullStateRoundJet,

#SlipWall, AdiabaticWall, IsothermalWall, PressureOutflow,
#Riemann, RiemannRoundJet, Coupling, WallModel,
#Periodic. Default: Periodic

Outputs: #Outputs of the boundary. Available: Geometry,
#Flux, y+, Force, FrictionForce, ForceVector for
#AdiabaticWall and WallModel.

Definitions and inputs of available boundary conditions are as followed:

1. FullState: This uses numerical Riemann formulation to compute the
fluxes at the freestream or inflow or outflow boundaries. Required
inputs are:

Density: #Density at the boundary. Default: 1.0
Uref: # x-velocity at the boundary.

#Default: Uref from ReferenceConditions.
Vref: # y-velocity at the boundary.

#Default: Vref from ReferenceConditions.
Wref: # z-velocity at the boundary.

#Default: Wref from ReferenceConditions.
Pressure: # pressure at the boundary.

#Default: 1.0/Gamma

2. Riemann: This uses Riemann invariant formulation to compute the
fluxes at the freestream or inflow or outflow boundaries. Required
inputs are:

Density: #Density at the boundary. Default: 1.0
Uref: # x-velocity at the boundary.

#Default: Uref from ReferenceConditions.
Vref: # x-velocity at the boundary.

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 24

#Default: Vref from ReferenceConditions.
Wref: # x-velocity at the boundary.

#Default: Wref from ReferenceConditions.
Pressure: # pressure at the boundary.

#Default: 1.0/Gamma

3. FullStateRoundJet: This is similar to the FullState boundary condition
with the jet profiles. Required inputs are:

Density: #Density at the boundary. Default: 1.0
JetOriginX: #Self-similarity origin of jet in x-direction.

#Default: 1.0.
JetVelocity: #Jet centerline velocity at the boundary.

#Default: Uref from ReferenceConditions.
JetDiameter: #Jet diameter at the boundary. Default:1.0.
Pressure: #pressure at the boundary. Default: 1.0/Gamma
IsInlet: #Boolean to flag to use similarity solution (FALSE)

#or tanh profile (TRUE).
Epsilon: #Parameter for tanh profile

4. PressureOutflow: This uses Riemann invariant formulation and enforce
prescribed pressure to compute the fluxes at the outflow boundaries.
Required inputs are:

Density: #Density at the boundary. Default: 1.0
Uref: # x-velocity at the boundary.

#Default: Uref from ReferenceConditions.
Vref: # y-velocity at the boundary.

#Default: Vref from ReferenceConditions.
Wref: # z-velocity at the boundary.

#Default: Wref from ReferenceConditions.
Pressure: # pressure at the boundary. Default: 1.0/Gamma

5. SlipWall: This enforces slip wall boundary condition with a ramp. Re-
quired inputs are:

RampTime: #Timescale of the ramp. Default: 0.0 (means don’t use ramp)
FreeStreamU: # x-velocity at the boundary.

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 25

#Default: Uref from ReferenceConditions.
FreeStreamV: # y-velocity at the boundary.

#Default: Vref from ReferenceConditions.
FreeStreamW: # z-velocity at the boundary.

#Default: Wref from ReferenceConditions.

6. AdiabaticWall: This enforces adiabatic wall boundary condition. Re-
quired inputs are:

HeatFlux: #Normalized wall heat flux. Default: 0.0

7. IsothermalWall: This enforces isothermal wall boundary condition. Re-
quired inputs are:

WallTemp: #Normalized wall temperature. Default: 1.0

5.2.1 Shock-capturing
An artificial viscosity method with a shock sensor for DG spectral–element
method is currently getting implemented. Details of the shock capturing
scheme can be found at [?].

5.2.2 Variational Multiscale Modeling (VMM)
Variational Multiscale Model is a reformulation of the Large Eddy Simula-
tion (LES) methods, in which resolved and unresolved scales are computed
by Galerkin projection operation instead of filtering operation. To apply the
method in general complex flows a dynamic procedure is developed following
Germano procedure from classical LES. The dynamic VMM approach for en-
tropy stable DG spectral–element method is currently getting implemented.
Details of the VMM approach can be found at [?].

5.2.3 Perfectly Matching Layer (PML)
Perfectly Matched Layer method solves another set of auxiliary equations to
ensure minimal spurious reflections from the inflow and outflow boundary
conditions. Details of the the PML technique can be found at [6].

Since PML inherits from Navier-Stokes, its inputs are same as Navier-
Stokes with some additions. These additional inputs are defined as follows:

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 26

Equation:
EquationType: NavierStokes_PML
PML type: Type of PML to identify damping direction.

#Available: x-pml, y-pml, z-pml, x-radial-pml.
#Default: x-pml.

Ma_x: Mean Mach number in the x-direction over the PML region.
Ma_y: Mean Mach number in the y-direction over the PML region.
Ma_z: Mean Mach number in the z-direction over the PML region.
...rest are same as Navier-Stokes

5.3 Wall model
An equilibrium wall model based on Reichardt velocity profile has been im-
plemented using a space–time DG spectral–element method. Details can be
found at [11].

Definitions of the input parameters are as followed:

Equation:
EquationType: WallModel_Reichardt
InitialState: #Initial guess for the friction velocity
VolumeOutputs: #Volume outputs. Available: Geometry, Friction.

5.4 Linear Elasticity
A linear elasticity approach has been implemented using a space–time CG
spectral–element method for moving domain, FSI and wall roughness appli-
cations. Details of the linear elasticity technique can be found at [12].

Definitions of the input parameters are as followed:

Equation:
EquationType: Elasticity
ReferenceConditions:

YoungModulus: #Young modulus. Default: 10.0
PoissonRatio: #Poissom ratio. Default: 0.3
ScaleByJacobian: #To scale Young modulus by Jacobian.

#Available: TRUE, FALSE
InitialConditions: #Initial condition for the simulation.

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 27

InitialDisplacement-X: #Spatial expression of initial displacement
#in x-direction. Default: 0.0

InitialDisplacement-Y: #Spatial expression of initial displacement
#in y-direction. Default: 0.0

InitialDisplacement-Z: #Spatial expression of initial displacement
#in z-direction. Default: 0.0

BCs:
- Boundary: #Name of the boundary. Set up at the mesh generation process.

Type: #Boundary condition. Available: SpecifiedDisplacement,
#SpecifiedNormalDisplacement, SpecifiedNormalDisplacementOnly,
#SpecifiedTraction, Periodic. Default: Periodic.

Outputs: #Outputs of the boundary. Available: Geometry, Displace,
#Displace2 for SpecifiedNormalDisplacement,
#SpecifiedNormalDisplacementOnly.

Definitions and inputs of available boundary conditions are as followed:

1. SpecifiedDisplacement: It enforces boundary displacement strongly.
Inputs are:

X-Displacement: #Spatial and temporal expression for displacement
#in x-direction. Default: 0.0

Y-Displacement: #Spatial and temporal expression for displacement
#in y-direction. Default: 0.0

Z-Displacement: #Spatial and temporal expression for displacement
#in z-direction. Default: 0.0

2. SpecifiedNormalDisplacement: It enforces boundary normal displace-
ment weekly. Tangential displacements are not enforced. Inputs are:

NormalDisplacement: #Spatial and temporal expression for the
#normal displacement. Default: 0.0

3. SpecifiedNormalDisplacementOnly: It enforces boundary normal dis-
placement weekly. Tangential displacements are enforced to be zero in
week sense. Inputs are:

NormalDisplacement: #Spatial and temporal expression for the
#normal displacement. Default: 0.0

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 28

4. SpecifiedTraction: It enforces traction force at the boundary weekly.
Inputs are:

X-Traction: #Spatial and temporal expression for traction in
#x-direction. Default: 0.0

Y-Traction: #Spatial and temporal expression for traction in
#y-direction. Default: 0.0

Z-Traction: #Spatial and temporal expression for traction in
#z-direction. Default: 0.0

5.5 Linear Shell
A structural solver based on linear-shell model has been implemented using
a C1–DG spectral–element method. Details of the shell model can be found
at [13].

Definitions of the input parameters are as followed:

Equation:
EquationType: LinearShell
MaterialDensity: #Density of the material. Default: 1.25
YoungModulus: #Young modulus of the material. Default: 178906.23535
PoissonRatio: #Poisson ratio of the material. Default: 0.3
Thickness: #Thickness of the material. Default: 0.12556
InitialConditions: #Initial condition for the simulation.

X-Velocity: #Spatial expression of velocity in x-direction.
#Default: 0.0

Y-Velocity: #Spatial expression of velocity in y-direction.
#Default: 0.0

Z-Velocity: #Spatial expression of velocity in z-direction.
#Default: 0.0

X-Displacement: #Spatial expression of displacement in x-direction.
#Default: 0.0

Y-Displacement: #Spatial expression of displacement in y-direction.
#Default: 0.0

Z-Displacement: #Spatial expression of displacement in z-direction.
#Default: 0.0

VolumeForcing: #Volumetric force
X-Force: #Spatial and temporal expression of force in x-direction.

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 29

#Default: 0.0
Y-Force: #Spatial and temporal expression of force in y-direction.

#Default: 0.0
Z-Force: #Spatial and temporal expression of force in z-direction.

#Default: 0.0
VolumeOutputs: #Volume outputs. Available: Displacement,

#Membrane, Bending, ShellNormal, Error, Loading
BCs:

- Boundary: #Name of the boundary. Set up at the mesh generation process.
Type: #Boundary condition. Available: SpecifiedDisplacement,

#SpecifiedTraction, ClampedEnd, Periodic. Default: Periodic
Outputs: #Outputs of the boundary. Available: Displacement.

Definitions and inputs of available boundary conditions are as followed:

1. SpecifiedDisplacement: It imposes displacement at the boundary. In-
puts are:

X-Displacement: #Spatial and temporal expression for displacement
#in x-direction. Default: 0.0

Y-Displacement: #Spatial and temporal expression for displacement
#in y-direction. Default: 0.0

Z-Displacement: #Spatial and temporal expression for displacement
#in z-direction. Default: 0.0

2. SpecifiedTraction: It imposes traction force at the boundary. Inputs
are:

X-Traction: #Spatial and temporal expression for traction
#in x-direction. Default: 0.0

Y-Traction: #Spatial and temporal expression for traction
#in y-direction. Default: 0.0

Z-Traction: #Spatial and temporal expression for traction
#in z-direction. Default: 0.0

3. ClampedEnd:

CHAPTER 5. AVAILABLE SOLVERS IN EDDY 30

5.6 6DoF
A six-dof solver has been implemented using a space–time DG spectral–
element method.

Definitions of the input parameters are as followed:

Equation:
EquationType: SixDof
ReferenceConditions:

Mass: #Mass. Default: 1.0
X-MomentofInertia: #x-component of moment of inertia. Default: 1.0
Y-MomentofInertia: #y-component of moment of inertia. Default: 10.0
Z-MomentofInertia: #z-component of moment of inertia. Default: 100.0

InitialConditions: #Initial condition for the simulation.
X-Position: #x-position. Default: 0.0
Y-Position: #y-position. Default: 0.0
Z-Position: #z-position. Default: 0.0
X-Velocity: #x-velocity. Default: 0.0
Y-Velocity: #y-velocity. Default: 0.0
Z-Velocity: #z-velocity. Default: 0.0
X-AngularVelocity: #x-angularvelocity. Default: 0.0
Y-AngularVelocity: #y-angularvelocity. Default: 0.0
Z-AngularVelocity: #z-angularvelocity. Default: 0.0
X-Axis: #x-axis. Default: 0.0
Y-Axis: #y-axis. Default: 0.0
Z-Axis: #z-axis. Default: 1.0
Angle: #angle. Default: 0.0

VolumeOutputs: #Volume outputs. Available: State, Error

Bibliography

[1] L. Diosady and S. Murman, “Design of a Variational Multiscale Method
for Turbulent Compressible Flows,” AIAA Paper 2013-2870, June 2013.

[2] L. Diosady and S. Murman, “DNS of Flows over Periodic Hills using a
Discontinuous Galerkin Spectral-Element Method,” AIAA Paper 2014-
2784, June 2014.

[3] L. Diosady and S. Murman, “Higher-Order Methods for Compressible
Turbulent Flows Using Entropy Variables,” AIAA Paper 2105-0294,
2015.

[4] Diosady, L.T. and Murman, S.M., “General element shapes within a
tensor-product higher-order space-time discontinuous-Galerkin formu-
lation,” AIAA Paper 2015-3044, 2015.

[5] Ceze, M., Diosady, L.T., and Murman, S.M., “Development of a High-
Order Space-Time Matrix-Free Adjoint Solver,” AIAA Paper 2016-0833,
2016.

[6] Garai, A., Diosady, L.T., Murman, S.M., and Madavan, N., “Devel-
opment of a Perfectly Matched Layer Technique for a Discontinuous-
Galerkin Spectral-Element Method,” AIAA Paper 2016-1338, 2016.

[7] Murman, S.M., Diosady, L.T., Garai, A., and Ceze, M., “A Space-Time
Discontinuous-Galerkin Approach for Separated Flows,” AIAA Paper
2016-1059, 2016.

[8] Garai, A., Diosady, L.T., Murman, S.M., and Madavan, N., “DNS of
Flow in a Low-Pressure Turbine Cascade with Elevated Inflow Tur-
bulence Using a Discontinuous-Galerkin Spectral-Element Method,” in
Proceedings of ASME Turbo Expo 2016, no. GT2016-56700, 2016.

31

BIBLIOGRAPHY 32

[9] Diosady, L.T. and Murman, S.M., “Tensor-Product Preconditioners for
Higher-Order Space-Time Discontinuous Galerkin Methods,” Journal of
Computational Physics, vol. 330, no. 1, pp. 296–318, 2017.

[10] Carton de Wiart, C., Diosady, L.T., Garai, A., Burgess, N.K., Blonigan,
P., Ekelschot, D., and Murman, S.M., “Design of a modular monolithic
implicit solver for multi-physics applications,” AIAA Paper 2018-1400,
2018.

[11] Carton de Wiart, C., and Murman, S.M., “Assessment of Wall-
modeled LES Strategies Within a Discontinuous-Galerkin Spectral-
element Framework,” AIAA Paper 2017-1223, 2017.

[12] Diosady, L.T., and Murman, S.M., “A linear-elasticity solver for higher-
order space-time mesh deformation,” AIAA Paper 2018-0919, 2018.

[13] Burgess. N. K., Diosady, L.T., and Murman, S.M., “A C1-discontinuous-
Galerkin Spectral-element Shell Structural Solver,” AIAA Paper 2017-
3727, 2017.

	Install
	Introduction
	Compiling
	Conventions and Nomenclature

	Pre-processing
	Defining a Mesh
	Unstructured Mesh
	Higher-order meshes
	Mesh2Domain2Mesh

	Running eddy
	Input files
	Single region
	Multiple regions
	Optional Inputs

	Running a solver
	Eddy Command Line Arguments

	Test Cases

	Post-processing
	Diagnostics
	Instantaneous data, restart files and full space-time solution
	Data integrated in space and/or in time
	Residual norm

	Flow visualization
	plotter
	plotvisit

	Available solvers in eddy
	Advection-diffusion
	Navier-Stokes
	Shock-capturing
	Variational Multiscale Modeling (VMM)
	Perfectly Matching Layer (PML)

	Wall model
	Linear Elasticity
	Linear Shell
	6DoF
	References

