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ABSTRACT 

An examination of the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was 

conducted at NASA Goddard Space Flight Center during the summer of 2009. Immediately apparent was the 

predominance of impact features, identified as simple or complex craters, resident only in the thermal paint layer; 

similar features were observed during a prior survey of the WFPC-1 radiator. Larger impact features displayed 

spallation zones, darkened areas, and other features not observed in impacts onto bare surfaces. Craters were 

extracted by coring the radiator in the NASA Johnson Space Center’s Space Exposed Hardware cleanroom and were 

subsequently examined using scanning electron microscopy/energy dispersive X-ray spectroscopy to determine the 

likely origin, e.g., micrometeoritic or orbital debris, of the impacting projectile. Recently, a selection of large cores 

was re-examined using a new technique developed to overcome some limitations of traditional crater imaging and 

analysis. This technique, motivated by thin section analysis, examines a polished, lateral surface area revealed by 

cross-sectioning the core sample. This paper reviews the technique, the classification rubric as extended by this 

technique, and results to date. 

1 INTRODUCTION 

The Hubble Space Telescope (HST) was designed for regular servicing during its operational lifetime by the Space 

Transportation System (STS; the Space Shuttle). STS servicing missions (SM) 1, 2, 3A, 3B, and 4 noted degradation 

of HST surfaces, as well as impact features evident on the HST bus and optical tube (thermal tape), multi-layer 

insulation (MLI) blankets, and the Wide Field Planetary Camera 2 (WFPC-2) radiators. The WFPC-2 instrument 

was returned to Earth in 2009 by the crew of STS-125’s SM4. The radiator attached to WFPC-2 was surveyed 

optically for impact features by personnel from the Orbital Debris Program Office (ODPO) at NASA Johnson Space 

Center (JSC), Marshall Space Flight Center’s Meteoroid Environment Office, and Goddard Space Flight Center 

(GSFC). A large number of craters produced by impactors were extracted from the radiator using an ODPO-

developed, core sampling method. Several teams have since characterized and interpreted the crater residues on 

these cores using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) results 

[1, 2]. However, there are limitations such as analyzing residue present in larger (>100 μm) and deeper craters or the 

effects crater geometry can have on the collection of EDX spectra. To avoid the limitation of SEM/EDX techniques 

imposed by the sample geometry, a different approach has been developed for crater preparation: cross-sectioning 

prior to the analysis and determination of potential sources. Highlights, challenges, and results of previous analyses 

of WFPC-2 radiator core samples, including the cross-sectioning technique, are presented. In general, three 

overarching designations of impactors have been labelled based on their origin. These designations are: (1) Orbital 

Debris (OD); (2) Micrometeoroid (MM); and, (3) Undetermined (U). Detailed descriptions of these categories are 

given in [3]. While outside the scope of this paper, the observed cratering record, in concert with the HST’s attitude 

history and laboratory-derived impact damage equations, is used to estimate the time-averaged, integrated debris 

flux. This estimate requires discrimination between the MM and OD components of the environment and this has 

been conducted to facilitate the validation of ODPO’s latest OD engineering model (ORDEM). 

2 BACKGROUND 

The WFPC-2 camera was retrieved by SM 4/STS-125 in 2009 and returned after approximately 15.4 years exposure. 

The camera’s radiator consisted of a 0.8 m x 2.2 m curved rectangular plate (1.76-m2 surface area) conformal to the 

HST’s outer surface and 60° in azimuthal extent. The 4.06 mm-thick aluminum (Al) 6061-T6 substrate was painted 



with a 100-150 μm-thick layer of zinc orthotitanate (Zn2TiO4), YB-71 white thermal paint. The NASA ODPO 

mounted three expeditions to a NASA GSFC class 100 (ISO5) clean room in July-September 2009 to characterize 

the surface of the WFPC-2’s radiator; 677 impact features, to a limiting feature size of approximately 300 μm, were 

observed and documented during these inspections.  

In November 2009, the WFPC-2 was shipped and displayed at the Smithsonian National Air and Space Museum, the 

NASA Jet Propulsion Laboratory and the Denver Museum of Nature and Science. During these displays (Fig. 1), 

WFPC-2 was in a clear container that was neither purged nor airtight. After returning to storage in November 2010, 

the radiator was de-integrated from the camera assembly in September 2011 in GSFC’s warehouse. Bagged in 

electrostatic dissipative sheets, the radiator was shipped to NASA JSC’s Space Exposed Hardware (SEH) class 1000 

(ISO4) clean room in December 2011 for coring and detailed inspection of MMOD impact features. Collecting core 

samples from the thick surface using a core drill offered the greatest probability of success within two major 

constraints: 1) not contaminating the sample during collection; and, 2) not compromising the integrity of the clean 

room in which sampling would be conducted (Fig. 2). 

  

Fig. 1. Left: A view of the HST after it was captured and docked to the STS-125 Atlantis cargo bay, with the 

WFPC-2 radiator identified. Right: WFPC-2 radiator in display case. 

A joint study between NASA and the European Space Agency (ESA) began in 2012, and the core sampling 

technique was developed to extract impact features on the radiator. Out of 480 large and small cores extracted, half 

went to ESA, to be curated at the United Kingdom’s Natural History Museum and the University of Surrey’s Ion 

Beam Centre, with the remaining cores to be investigated using the NASA Astromaterials Research and Exploration 

Science Directorate lab facility at NASA JSC. These impact features have all been examined using SEM and 

Particle Induced X-Ray Emissions (PIXE). Reports from ESA [4, 5, 6, 1, 7] and NASA JSC [8, 3] describe the 

findings. All core samples are maintained in a state to allow future analyses on the cores, should superior techniques 

be developed and implemented for the analysis of returned surfaces. 

 

 

Fig. 2. Left: the encapsulating clean room coring tool developed by ODPO. Center top:  ODPO small and large core 

exemplars. Center bottom: The core is composed of an Al 6061, 4 mm-thick substrate with its upper surface painted 

with YB-71 white space-rated thermal paint. The paint consists of Zn2TiO4 white pigment with a potassium-silicate 

PS7 binder. Right: coring device with laser alignment and positioning aid. 



The method used in the current analysis was predicated upon prior sampling campaigns to characterize surfaces 

returned from space (i.e., the Long Duration Exposure Facility [LDEF]). In these campaigns, samples or cores were 

cut from select surfaces and analyzed, using standard SEM-EDX techniques, to assess the elemental composition of 

the impactor. EDX specifically has shown to be an effective method to locate impact residues [6]. In the absence of 

this chemical mapping, the search for impactor residues can present a challenging search and identification problem 

though observation of impact melt can guide a search. Particularly for the larger impact features, the area that needs 

to be searched is very large relative to the area and volume sampled by electron-beam excitation in spot mode. The 

WFPC-2 radiator presents unique challenges due to its geometry (a rectangular section from a right circular 

cylinder’s lateral surface), thickness, coating, and the size and extent of many impact features. This paper presents a 

new technique: looking at a polished flat surface (which eliminates angular issues and makes the seam/coating layer 

cross section visible), and cutting along the long axis and through the deepest part of a crater (using predetermined 

cut plans). Craters at JSC are first characterized with a preliminary examination using field emission SEM (FESEM) 

in conjunction with EDX, followed by embedding the crater in epoxy and subsequently slicing the crater to produce 

a section. The area of analysis is restricted to one section through the crater. Despite this potential limitation (while 

noting that a sample may be re-polished to reveal a new surface), the analysis scheme provides a better approach to 

determining impactor type by removing certain physical and instrumental constraints. 

3 CLASSIFICATION 

A priori, the origin of the impactor for any given crater is assumed micrometeoritic. This may then undergo 

reclassification to orbital debris, using a hierarchical binary decision framework, during subsequent investigation 

based on elemental analysis of particulates embedded within crater and/or the crater rim. The discriminating 

characteristic of orbital debris is the enrichment of specific elements and/or patterns in the abundance of particular 

elements, which are: (1) rarely, if ever, observed in chondritic meteorites; and (2) are common materials in 

spacecraft structures or components. If such particulates are identified within a given crater then it is classified as 

resulting from orbital debris. Furthermore, such observations take precedence over those of other particulates, within 

the same crater, which might otherwise be construed as meteoritic. That is, the decision as to a meteoritic or orbital 

debris origin for a crater is based on either the identification, or lack thereof, of spacecraft-associated materials. 

Challenges in the identification of impactors in these hypervelocity impact features are posed by the chemical 

complexity of the impacted surface. The paint overlay includes elements that are common in impacts identified from 

work on STS window impactors. The paint is composed of Zn2TiO4 as the pigment, mixed with potassium silicate 

(PS7; K2SiO4) as a binder. Zn and Ti are common pigment constituents in space-flown hardware, and many impacts 

on space shuttle windows were attributed to impacts by Zn- and/or Ti-bearing paint fragments. Clearly, such impacts 

on the WFPC-2, painted radiator surface would be essentially impossible to distinguish from Zn and Ti already 

present. The Al alloy that underlies the painted surface is also complex. It is dominated by Al, but also includes 

abundant inclusions of metal alloys containing iron (Fe), chromium (Cr), manganese (Mn), copper (Cu), and silicon 

(Si). Other abundant inclusions are magnesium (Mg) Si-oxide. The presence of Fe-bearing inclusions in the alloy 

renders identifications of Fe-rich impactors problematic, and the presence of Mg and Si in the Al-alloy substrate 

renders the identification of MM impactors uncertain. 

The rubric defined for impactor classification has three categories:  MM, OD, and U. In the case of MM, 

constituents that are the best indicator include Mg, Fe, sulphur (S), nickel (Ni) and calcium (Ca). Magnesium rich 

silicates, Fe-Ni metal, Fe-Ni sulfides, Ca-bearing silicates, and Mg-Cr-rich oxides are further indicators of MM. The 

“U” category indicates that either nothing can be found or insufficient analysis was conducted. 

4 PRIOR ANALYSES AND MOTIVATION FOR FURTHER SURVEY  

In the joint NASA/ESA characterization process, cored samples were examined using two SEM instruments fitted 

with EDX detectors. If no unambiguous chemical compositions were revealed, an additional proton beam for PIXE 

was used. EDX spectra were collected for 200 seconds, 20kV accelerating voltage, and 3nA electron beam current. 

When X-ray peaks exceeded background X-ray by a factor of three, an element was “detected.” Depth and profiles 

using backscattered electron imagery and X-ray element maps were made of impact features. The analysis team used 

Sections 3’s rubric and decision trees to classify impactor origin. Presence of the elements dissolved in impact-

melted paint indicates that these elements were present when the impact occurred, and were most plausibly added by 

the impacting particle. Approximately 79% of impact features examined at JSC yielded evidence for MM impactors. 

Less than 1% yielded evidence indicating orbital debris impactors, and the remaining 20% have been classed as 

undetermined, because no clear evidence could be located, which would permit distinguishing the type of impactor. 



These results are consistent with conclusions reached by colleagues at the Natural History Museum of London and 

the Ion Beam Analysis Group in Surrey, England, who have investigated approximately half of the WFPC-2 cores at 

their facilities. These outcomes are illustrated in Table 1, specifically the “2014 Assessment” column, for a selection 

of WFPC-2 large impact features curated at NASA JSC. This categorization is, however, inconsistent with the STS 

window experience, as well as the expectation based on the NASA ORDEM 2000 model, which incorporated LDEF 

and HST solar panel impact feature data for build and validation, as constrained by the HST attitude history 

(approximately random orientation over the exposure) and the relative independence of the MM flux with altitude. 

For identified residues, the ratio of OD: MM is approximately 55%:45%. Of the OD contribution, 79% of the 

identified OD residues composed of paint and Al alloys could be impossible to identify uniquely on the complex 

WFPC-2 surface. Note that this does not alter the relative percentages of MM: OD: U, but rather would establish a 

category of undetermined residues, which are nonetheless OD. A common hypothesis regarding the unknown 

category is that the probability of sampling crater residues decreases as the relative velocity increases; however, this 

is applicable to both MM, OD [9], and represents a sampling bias based on relative velocity but not necessarily flux.  

After considering this and other hypotheses regarding the nature of impactors resident in the undetermined category, 

there appears, at this time, to be no compelling argument against applying the frequentist statistical concept of 

treating the identified residues (588 impact features) as a sample approximating the relative proportions of MM and 

OD in the data set of 1986 window impact features. Comparing ORDEM 2000 model results with the Grün, et al. 

MM model [10] flux, ISS altitudes (approximating the STS operational environment) are approximately equivalent 

in MM: OD ratio. This is consistent with the STS window results for identified constituents, and extended to all 

impact features. However, at HST altitudes, OD was expected to predominate over MM by a factor of 2.25, the ratio 

of OD at HST to ISS altitudes, at 10 μm and larger sizes. This apparent discrepancy, with respect to analytical 

outcomes and given the complexity in both the mechanics of probing a crater and interpreting the findings therein, 

motivated a campaign to characterize residues with greater care on a sample-by-sample basis. These outcomes are 

presented in Table 1 as the “2017 Assessment” column for samples common to the two campaigns. As tabulated, 

7 of 12 differed in assessment outcome, with 4 of 7 identities changing from MM to OD. 

Table 1. Analytical outcomes for WFPC-2 large cores (note that letters “I” and “O”  

were not used to identify samples). 

 

The analytical limitations of analyzing residue present in concave surface depressions, particularly in large (e.g., 

> 100 μm diameter) and deep craters using SEM/EDX have been discussed elsewhere in detail [11]. Specific to 

these discussions are the effects that crater geometry can have on the collection of EDX spectra. Because EDX 

detectors cannot be sighted normal to a sample surface, as this would be coincidental with the electron beam 

column, they necessarily are positioned at an acute angle above the sample surface (known as the take-off-angle for 

the detector). Thus, in craters with a high depth-to-diameter ratio, the line-of-sight can become partially or 

completely obscured between the EDX detector and the electron beam incident on the surface. This severely 

complicates analyses of materials at or near the crater bottom due to screening by the crater rim, which can lead to 

disproportionate increases in heavy element abundances due to the preferential absorption of low-energy X-rays. 

JSC core # 
JSC Sample 

Letter 

Lips/Center 

Diameter [μm] 

Total Depth 

[μm] 

2014 

Assessment 

2017 

Assessment 

471 A 1282.94 689.4 MM OD 

463 B 890.66 535.2 MM OD 

460 C 595.09 152.8 MM UND 

462 D 591.97 235.4 MM OD 

461 E 552.34 230.5 MM UND 

478 F 552.89 266.3 OD OD 

465 G 540.51 201.6 UND MM 

476 H 521.97 194.6 MM MM 

469 J 510.22 41.9 MM MM 

475 K 503.39 160.7 MM MM 

468 L 488.76 374.1 MM OD 

421 M 391.54 165.6 MM MM 



5 NEW ANALYSIS PROCEDURES AND RESULTS  

An internal, joint working group consisting of ODPO, the JSC Hypervelocity Impact Technology [HVIT] group, 

and the JSC Basic and Applied Research Department suggested that constraints imposed by these geometrical 

effects could be resolved by thin sectioning the core samples. The working group also recommended sectioning the 

cores into two semicircles along a “line of interest” and examining the residues present in the crater at the interface 

of the substrate and crater feature. The line of interest is defined by examining the crater at high magnification using 

a Keyence VHX-5000 digital microscope and identifying the plane intersecting the crater’s longest dimension and 

the deepest portion of the crater. Such a section is illustrated in Fig. 3. 

 

Fig. 3. Upper: FESEM/LABE image mosaic of the lateral surface of the cut core from crater A, core 471. Lower: 

Element X-ray mosaic maps for Si, potassium (K), Ti and Zn. Regions enriched in Si and K are binder and regions 

enriched in Ti and Zn are composed of paint. Potassium-rich regions not associated with Si are interpreted as 

potassium hydrogen carbonate. Yellow dash lines indicate the location of the edge of the Al 6061 matrix.  

6 SAMPLES 

Twenty-one carbon coated radiator cores, including Table 1’s samples A-M, first were characterized using 

FESEM/EDX. Following preliminary evaluation, craters were embedded in a two-part (resin and hardener) 

transparent epoxy produced by Buehler. Based on Nikon SMZ800 optical microscope images of the crater surface, 

the ODPO line of interest was transcribed to a cross-sectioning line defined by position and orientation of the core. 

Using a South Bay Technology saw, craters were then sectioned along this line. After cutting, the surface of each 

exposed crater was placed back in the epoxy, followed by subsequent polishing using diamond oil-based suspension 

(1 μm; Buehler), then by polishing with Al-oxide (0.3 μm; Buehler). Finally, the section was cleaned thoroughly in 

an ultra-sonic bath using laboratory-grade ethyl alcohol. The polished section was air-dried and subsequently coated 

with a layer of sputtered carbon ~15 nm in thickness. The cutting and polishing process has been examined 

carefully, with the conclusion that no contamination occurs during these processes. The sample was characterized 

using a JEOL 7600 FESEM equipped with a light element Thermo Scientific EDX Silicon Drift Detector (SDD). 

Each crater was imaged using a low-angle, backscatter electron (LABE) detector and a composite mosaic image was 

produced. Higher magnification scanning electron/LABE views of regions of interest (ROIs) were collected for 



90 seconds. The entire craters were also mapped using EDX for elements carbon (C), oxygen (O), sodium (Na), Mg, 

Al, Si, phosphorous (P), S, chlorine (Cl), K, Ca, Ti, Fe, Ni, Cu, and Zn and individual EDX spectra of ROIs were 

collected for times ranging from 30 – 200 seconds. Depending on count rates, analysis spot size ranged from 

~ 0.5 μm -10 μm. Typically, EDX conditions of 15 kV and ~900 pA were used for analysis. In select cases, 

accelerating voltages ranging from 20-30 kV were used depending on the element of interest. In one case, Raman 

spectroscopy was used to characterize C-rich matter in a crater. Raman spectroscopy was used as a secondary 

verification tool to confirm identification of C-rich matter, and as a probe of the structural organization state of 

identified carbonaceous phases. While interpretation of Raman spectra can be difficult where multiple carbonaceous 

phases coexist in a single sample, it is nevertheless, a valuable tool in determining the nature of carbon when used in 

conjunction with other techniques. We used a WiTech Alpha300 μ-Raman spectrometer operating at a probe spatial 

resolution of ~ 1 μm and equipped with a helium-neon laser operating at a wavelength of 633 nm, coupled to an 

Olympus BX 41 optical microscope. The sample was scanned from 3003000/3500 cm-1. In Raman, pure 

monocrystalline graphite is identified by the presence of a single peak, designated as ‘G’ (graphite), with a Raman 

shift of ~ 15801600 cm-1. In contrast, matter composed of polycrystalline graphite, amorphous C, or mixtures 

thereof, show an additional peak designated as ‘D’ (disorder), with a Raman shift of ~ 1350 cm-1 [12, 13]. 

7 SUMMARY OF RESULTS  

Samples A-M, P, Q, and V have been reclassified as OD or likely OD, based upon the sectioning technique 

described in this paper, while the remaining samples have been tentatively identified as OD. Most had pseudo-

circular perimeters although some appeared elliptical and a few had irregular external shapes. The majority have 

simple crater morphologies with a single central depression. Identification of impact, melt-rich, lithologies was 

based on established morphological and textural criteria, such as smooth/melt regions containing vesicles draped 

over irregular surfaces [11]. In every case, the paint/binder layer was absent to some extent in the crater interior with 

residual paint present, either intermixed with the impactor or as a thin, vesiculated veneer. In some craters, the Al 

6061 substrate appeared indented while, in others, it remained level or nearly level with respect to the overlying 

paint/binder layer. One observation consistent with all craters was that carbon was ubiquitous and heterogeneously 

distributed. LABE views directly into the central depression of the craters showed regions enriched in carbon 

(Fig. 4) spatially associated with fine-grained regions composed primarily of a mixture of paint/binder. Typically, 

particles composed of paint/binder were embedded within and/or lying upon the C-rich phase(s). 

 
Fig. 4. FESEM/LABE images of Crater H. A low magnification (40X) image is shown at left with higher 

magnification (500X) image at the right. Locations of C-rich matter are noted for both. Visible in the left image is 

the entire spallation zone surrounding the central crater feature and the “walls” denoting the remnant paint layer. 

In many of the craters, wispy, needle-like features composed of K and O were interspersed with the paint/binder. 

These features are interpreted as potassium hydrogen carbonate (KHCO3) likely formed during exposure of WFPC-2 

panel to the Florida coastal environment [1]. We note, however, that since they were coated with a layer of 

conductive carbon and were often spatially associated with epoxy, we could not determine the carbon content of this 

K-rich phase. To survey outcomes from the relatively simple to the complex, we will describe the analysis of craters 

H and M respectively. The analyzed cross-section of Crater M is shown in Fig. 5. This was an unusual crater in that 

it was composed of a single, shallow depression containing four layers, excluding epoxy. Proceeding from the 

outermost layers these were: (1) paint + other phases, (2) Al 6061, (3) Al 6061 with a high concentration of 

embedded particles, this layer was called the ‘mid region,’ and (4) Al 6061. In layers 2 and 4, embedded particles 

are present at significantly lower concentration than those in the ‘mid region,’ as clearly seen in both the LABE 

Crater H 



view and the Al element map. The overview image of Crater M suggests a compound crater composed of multiple 

distinct, local depressions with a relatively flat geometry. Such craters are typical for aggregate particles in which 

dense components/minerals float in a friable and much less dense matrix. The detailed mass distribution of such an 

aggregate manifests itself in a compound crater morphology. If one accepts this interpretation, melts from 

neighboring depressions can overlap with each other to form layers 2 and 3—specifically layer 3 (‘mid region’) —a 

mixture of projectile and target-derived melts with Al being the dominant element. Interestingly, this outcome is 

consistent with internal hydrocode studies conducted in 2010. In this study, stainless steel (SS) projectile material 

was entrained in Kelvin-Helmholtz instabilities that form as the denser SS impacts the less dense Al target material. 

Particles located at the epoxy/layer 1 interface and within layer 3 in Crater M (Fig. 5) include brass (Cu/Zn), 

bismuth (Bi), Zn, and SS (Fe, Cr). The latter particle type (SS) displayed a composition different from that of the 

SS particles embedded within the Al 6061 matrix, as they did not contain detectable copper. 

 

 

Fig. 5. Sample M imaged as a complete crater and after sectioning. Upper Box, Left to right: Optical view of 

crater M with the Line of Interest/cut line in yellow. Location of the region outlined by the red box is shown in the 

FESEM/LABE view at right. Cut line (yellow) is also noted in this view. The region in the blue box is magnified at 

right and highlights the central crater depression. Locations of carbon-rich regions and a piece of film, possible 

Kapton, are noted. The region in the green box shows a magnified view of striated film with one edge embedded in 

vesiculated paint/binder. Lower Box, Top to Bottom: FESEM/LABE image of a region of the polished section 

produced from crater M. Region in the green box is magnified in the lower left image. Lower left: High 

magnification of the region highlighted by the green rectangle in the upper view. An increase in particle density is 

seen in the ‘Mid region’ layer compared to layers 2 and 4. Lower right: EDX Al element map is shown for the 

region outlined by the green rectangle in the view at left. A decrease in Al concentration is seen in the ‘mid-region’ 

layer due to the increase in particle density. The table provides chemical composition and possible sources for 

particles associated with the crater M impactor. 

 

Examples of Particle Types in Crater M 

Particle Size f umJ Morphology Chemical Composition Potential Sources 

2 Elongated Cu, Zn, Pb (Brass} Electronic Component 
1 Elongated Si, Ca, Bi Solar CelVAlloy Componenl 
1 Irregular znO Electronic Component 
2 Equant Si, Ca Flexible BlankeUSolar Cell 
1 Equant Fe, Cr (SS) Electronic Component 



Sample H was a simple crater with a relatively flat floor. The region designated as ‘paint-free’ contained several 

Ca-bearing, O-rich particles (see Fig. 6) with variable Ca:O ratios. None of the compositions approximated common 

Ca-rich mineral phases such as calcite (CaCO3), portlandite (Ca(OH)2) or lime (CaO). We suggest that the variety of 

Ca-bearing phases observed within Crater H is the result of the heterogeneous decarboxylation of CaCO3 resulting 

from impact heating that produced residue with variable Ca:O ratios. This interpretation is supported by results from 

light-gas gun impact studies, performed at NASA/JSC in 2015 [14]. Analysis of the resultant impact craters showed 

mixing of impactor with the target producing residue within the craters composed of a mixture of Ca-bearing 

mineral phases (CaCO3, Ca(OH)2, CaO) intimately mixed with the Al substrate. Other particle compositions in 

Crater H are shown and include In, Bi, C, and fluorine (F), possibly polytetrafluoroethylene or Teflon, and likely 

terrestrial salts containing Na, K and S. Crater residue interpreted as being derived from MM impacts was not 

detected in Crater H. In summary, results indicate residues identified in craters listed in the table (Fig. 6) are 

consistent with terrestrial sources including satellite debris, natural phases (e.g., minerals) and natural terrestrial 

contaminants (e.g., salts, KHCO3). 

 

Fig. 6. Upper view: Low magnification FESEM/LABE image of the center depression of the thin section of crater H. 

Particles characterized by EDX spectra are located in the ‘Paint-free region.’ Lower views: EDX spectra and 

FESEM/LABE images of particles located at the interface of the Al 6061 matrix and the epoxy. Particles are 

composed of possible carbonate (calcite), indium (In), salts (Na, S, and K), Bi, and C and F 

(polytetrafluoroethylene/Teflon). 

8 DISCUSSION 

The presence of distinct C-rich phases in every crater analyzed in this study is striking. The C-rich matter was 

recognizably different in nature from epoxy and partially coated the floor and/or lower sides of each crater. This 

matter contained major C and O and minor Na, S, and K, with embedded particulates of the thermal control paint. 

The carbon abundance that can be inferred for the impactors is too high to be consistent with a typical meteoritic 

(i.e., chondritic) source; we suggest it resulted from impact debris produced from C-bearing composites and/or 

laminates used in spacecraft structural supports. These impacts may have resulted from a single source that 
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Examples of Particle Types in Crater H 

Morphology Chemical Composition Potential Sources 

Equant C,Ca, O Terrestrial/Natural 
Irregular In Solar Cell 
Irregular C, F Insulation (Polytetrafluoroethylene) 
Irregular Bi Alloy 
Irregular Na, K, S Terrestrial/Natural 



separated into multiple pieces or may have resulted from an aggregation, or cloud, of particles produced from 

primary, secondary, and even tertiary impact events. The lack of any particles embedded in the C-rich matter that 

could be interpreted as MM (e.g., silicates [olivine, pyroxene]) indicates that the material did not originate from 

extraterrestrial sources. Mineral grains comprising interplanetary dust particles/meteorites would typically have been 

detected in the craters, as shown by numerous other studies [15, 16. 17, 18, 19]. The second key observation is the 

presence of particles consistent with OD sources embedded in the paint/binder or located at the paint layer/Al 6061 

interface. None of the particles analyzed were consistent with those that could be interpreted as MMs. OD element 

indicators include Ce and Mo from flexible blankets/solar cells, C and F from polytetrafluoroethylene, metals from 

electronic components (e.g., indium (In), Bi, Zn, Cu/Zn, lead (Pb), platinum (Pt), Sn, zirconium (Zr), Ni), minerals 

(e.g., calcite) from terrestrial sources, and several types of salts, likely terrestrial contaminants. Results to date have 

been examined in the context of validating the NASA ODPO OD engineering model in development, ORDEM 3.1 

[20]. A comparison of WFPC-2 analysis results to date and the total MMOD flux are presented therein, with good 

agreement. 

9 CONCLUSIONS 

In this paper, we have briefly described the characterization of impact feature samples from the HST’s WFPC-2 

radiator using a new, partially destructive technique that reveals the crater/substrate interface. FESEM/EDX 

characterization of polished sections of large craters has revealed new information on the abundance and types of 

particles associated with the WFPC-2 radiator impactors. Despite potential limitations of the lateral surface 

inspection technique (while noting that a sample may be re-polished to reveal a new surface), the opinion of the 

analytical staff is that this analysis scheme provides a better approach to determining impactor type by removing 

certain physical and instrumental constraints. Large cores have been returned to NASA JSC from the Natural 

History Museum and will be processed in a similar manner to expand the dataset and our understanding of the low 

Earth orbit environment. 
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