9th International Symposium on Superalloy 718 and Derivatives

Impact of Powder Variability on the Microstructure and Mechanical Behavior of Selective Laser Melted (SLM) Alloy 718

Chantal Sudbrack¹ , **Brad Lerch, Timothy Smith, Ivan Locci² , David Ellis, Aaron Thompson³ , and Benjamin Richards⁴**

NASA John H. Glenn Research Center at Lewis Field, Cleveland Ohio

1. Separated**; 2.** University of Toledo, Toledo, OH; 3. Vantage Partners, Brook Park, OH; 4. GRC Intern, Northwestern University

June 6, 2018

Acknowledgements

NASA HEOMD / Space Launch System Liquid Engine Office / Additive Manufacturing Structural Integrity Initiative Project (FY16-FY18)

Powder Task:

NASA MSFC

- Kristin Morgan
- William Tilson
- Richard Boothe
- **Kenneth Cooper**
- Brian West
- Douglas Wells
- Dr. Jonathan Woolley
- AM Fabrication Facility
- **Heat Treatment Facility**

NASA GRC

- Robert Carter
- Dr. Cheryl Bowman
- Analytical Science Group
- **Mechanical Test Facility**

GRC Student Interns

- Alejandro Hinojos (UTEP)
- Paul Chao (CMU)
- Michael Kloesel (Cal Poly)
- Bethany Cooke (CWRU)
- Jonathan Healy (CWRU)

Space Launch System – Heavy Lift Launch Vehicle – Requires four RS-25 engines to lift core stage

RS-25 Affordability Initiative

33% Reduction in Cost

- > 700 Welds Eliminated
- > 700 Parts Eliminated
- **35 AM Opportunities**

718 Powder Feedstock Variability Study

- *Powders evaluated – 18 powders from 8 suppliers (A-H)*
	- ICP / LECO bulk powder chemistry measurements
	- Count basis particle size distributions (optical silhouettes)
	- Visual comparison of powders
- *Processing and Testing Details*
- *Properties evaluated*
	- Build quality and microstructure
	- Tensile behavior
	- High Cycle Fatigue (HCF) results
		- Crack initiation and failure mechanisms
- *Summary and Concluding Remarks*

Motivation

- Standardization is needed for consistent evaluation of AM processes and parts in critical applications.
- Data on powder feedstock variability in open literature are limited & inadequate
- Supported **MSFC technical standard** for SLM 718 hardware by examining feedstock relationships to processing, homogeneity, durability & performance

Objectives

- Obtain comprehensive industry **supplier-to-supplier comparison** to understand and identify the feedstock controls important to SLM Alloy 718
- 5 unique powder lots (*B1, C1, G2, G3, H1*) have been down-selected for a larger-scale (300 lbs each) investigation underway to include reuse / recyclability study and more expansive mechanical testing

Approach: Procure as many off-the-shelf Alloy 718 powders as possible for a comprehensive supplier-to-supplier comparison

Compare powder characteristics Screen mechanical behavior

Lot-to-lot variability N² -atomized: 3 of 16 4 cuts same G supplier (separate out size effects)

(*) 2nd builds allowed once reuse comparisons (SEE PAPER)

Unable to build G1, poor G4 builds

Standard ~15-45 µm SLM cuts

```
(8 powders)
```
precipitates

γ'-precipitates

Approach: Procure as many off-the-shelf Alloy 718 powders as possible for a comprehensive supplier-to-supplier comparison

Majority of powder compositions fall within a narrow range than AMS 5664 specification Ni-0.35-0.51 Al, 0-0.039 C, 18.1-19.2 Cr, 18.0-19.2 Fe, 2.9-3.1 Mo, 4.8-5.2 Nb, 0.8-1.0 Ti wt.% + trace impurities

Powders exhibit distinct particle size distributions

There is variation in average diameters, particle size distribution widths and modalities

Number basis distributions are more sensitive to fines; Volume basis often reported.

Some suppliers are more successful at reducing fine content

Particles are all highly regular spheroids from all suppliers; Show distinct differences in roughness, fines, & agglomeration

Powders with higher percentage of fines and agglomeration more prone to unplanned stops

Standard ~15-45 µm SLM cuts, Standard ~10-45 µm SLM cuts

Processing and Testing Details

NASA MSFC Concept Laser M1 machine:

- Customized SLM 718 parameters for MSFC RS-25 projects
- Layer thickness: 30 um
- Continuous scan strategy plus contours

Visible refill lines

Small box configuration requires start /stop to refill piston with powder

Green-state "met" bar **Planned restarts** *18 builds over 3 months at NASA MSFC*

Taper Ends for Easy Snap Off

- **50 lbs of 718 powder procured from most suppliers**
- **Two microstructure bars**
	- **Green-state bar** \rightarrow inherent to the process
	- **Fully heat treated (FHT) bar** \rightarrow post process response

Reduce porosity, homogenize and remove as-built texture

Screen room temperature mechanical behavior

As-Fabricated (AF) vs. Low Stress-Ground (LSG) Surface Conditions

- **A tensile test per surface condition**
	- **Strain control up to 2% then stroke control at equivalent strain rate**
- \cdot 3 HCF tests per surface condition at 20 Hz and $R(\sigma)$ = -1
	- **Targeted 1 million cycle averages, Runouts above 10 million**
	- **Stress amplitudes of 271 MPa (40 ksi) for AF and 464 MPa (67 ksi) for LSG**

Impact of Feedstock Variability on Build Quality

Optimized SLM parameters produces low porosity →

www.nasa.gov 11

Impact of Feedstock Variability on Build Quality

Optimized SLM parameters produces low porosity excellent build quality that is further improved with HIP

Fine ~100 nm nitrides present in all builds where volume fraction is linked to N content. Select builds have large nitrides

Larger nitrides that are 6-8 µm in diameter may act as crack initiators

These large nitrides form during powder production

MC carbides are sub-micron in diameter and mostly uniformly distributed

Three grain structure regimes observed after heat treat

Recommend Ar-atomization and N content < 400 ppm for homogeneous grain distribution

Nitrides and carbides pin grain boundaries in N-atomized powders (C1, E1, E2), retains smaller (001)-oriented grain sizes from SLM fabrication post HIP.

EBSD maps and pole figures

Select builds show distinct minor phase distributions at GBs

Majority builds show few minor phases at GBs: (N<500 ppm) & modest C

Room Temperature Tensile Testing

Heat Treated SLM 718 meets or exceeds minimum requirements for lots within chemistry specification

ww.nasa.gov 16

HCF Response for As-fabricated surface condition

The surfaces of H1 test bars were more oxidized (SEE PAPER)

Overall low scatter in HCF response compared to the low stress ground

Predominant failure sites for was grain facets at or near the surface

Very few internal initiations

Incidence of surface failures was significantly higher for AF surfaces due to stress concentrators associated with SLM surface asperities

HCF Response for low-stress ground surface condition

Overall more scatter in HCF

C1: N-atomized with refined grain size from pinned GBs

B1: highest strength, some GB pinning from delta

Predominant failure sites for was grain facets at or near the surface

More internal initiations

initiation

Transgranular crack initiation also observed

Summary and concluding remarks

- **Powders evaluated are distinct** similar in that particles are highly regular spheroids- show differences in Al, C, N; PSDs, degree of agglomeration and surface roughness
- **Optimized SL M parameters for 718 yielded high quality builds** with low porosity and acceptable tensile properties across many distinct powder lots
- **Compositional differences has strongest impact on SLM 718 microstructure**
	- \triangleright High N and C contents form TiN-nitrides and MC carbides on GBs that suppresses recrystallization during $HT \rightarrow 400$ ppm N content a good rule of thumb cutoff to ensure equiaxed grain distribution
	- The **B1** alloy with very low in C led to **higher delta content leading to highest UTS**, while the **E1** alloy with very low in Al and high in C exhibited the lowest UTS
- **Significant knock-down in room temp HCF response for as-built SLM surface condition**; Stress concentrators at surface lead to higher incidence of surface crack initiation than observed in low stress ground condition
- For LSG surface condition, **the best room temperature HCF was for N-atomized C1** with prior GB particles (TiN, Nb-based carbides) that persist through heat treatment

Acknowledgements

NASA HEOMD / Space Launch System Liquid Engine Office / Additive Manufacturing Structural Integrity Initiative Project (FY16-FY18)

Powder Task:

NASA MSFC

- Kristin Morgan
- William Tilson
- Richard Boothe
- **Kenneth Cooper**
- Brian West
- Douglas Wells
- Dr. Jonathan Woolley
- AM Fabrication Facility
- **Heat Treatment Facility**

NASA GRC

- **Robert Carter**
- Dr. Cheryl Bowman
- Analytical Science Group
- **Mechanical Test Facility**

GRC Student Interns

- Alejandro Hinojos (UTEP)
- Paul Chao (CMU)
- Michael Kloesel (Cal Poly)
- Bethany Cook (CWRU)
- Jonathan Healy (CWRU)