

Considerations of Oblique Impacts of Non-Spherical, Graphite-Epoxy Projectiles

J.E. Miller^{a,b}

^aUniversity of Texas at El Paso, 500 W. University Blvd., El Paso, TX 79968 ^bJacobs, NASA Johnson Space Center, Houston, TX 77058 10 DEC 2019

Acknowledgements

- Hypervelocity Impact Tech. Group (HVIT)
 - Dr. Eric Christiansen
 - Dana Lear
- Jacobs JSC Engineering and Technical Support Team
 - Robert McCandless
 - Tyson Judd
 - Bruce Alan Davis
- Remote Hypervelocity Test Laboratory (RHTL)
 - Daniel Wentzel
- Jacobs RHTL Engineering and Technical Support Team
 - Marcus Sandy
 - Donald Henderson
 - Daniel Rodriguez
 - Arturo Pardo

Orbital debris fragment shape study

- The DebriSat experiment has greatly expanded NASA's understanding of large-scale, modern-construction, catastrophic satellite breakups
 - Using modern materials DebriSat has pointed to a significant presence of carbon-fiber composite material in the sub-cm range.
 - Much of the carbon-fiber composite material had shapes that differed significantly from equidimensional shapes like spheres and cubes.
- Impact experiments have generated validation data for numerical simulation models for an aluminum Whipple shield representative of shields in human space flight.
 - Multiple Length to Diameter (L : D) ratios have been considered
 - Numerical simulation models have been developed that compare well against the obtained experimental data.
- The numerical simulation models have been used to extrapolate away from the original data to develop impact models for shaped, carbonfiber composites that includes impact obliquity for reliability assessments

CFRP is a major debris component of a modern satellite break-up

Density Category Breakdown

National Aeronautics and Space Administration

CFRP is the principal component of untrackable debris from a modern satellite break-up

Impact experiments used a realistic Whipple shield with an external, thermal-blanket

Schematic for experimental layup (layers scaled by mass; separations to scale), which represents a previously considered shield. [Lyons2013, Davis2013]

A total of eleven experiments have been considered with varying L : D aspect ratios

Orthogonal videocameras have been used to determine the projectiles orientation at impact

National Aeronautics and Space Administration

The experimental data is collected to assist in validation of numerical simulations

Comparisons of experimental to simulation data for L : D < 1 (~flat disk)

L : D = 1.6 mm : 8.0 mm

L : D = 1.6 mm : 4.0 mm

Comparisons of experimental to simulation data for L : D = 2/3 (mass equivalent to sphere)

L : D = 3.33 mm : 5.0 mm

L : D = 2.3 mm : 3.45 mm

Comparisons of experimental to simulation data for L : D > 1 (~long rod)

L : D = 7.5 mm : 2.5 mm

L : D = 5.25 mm : 1.75 mm

The critical length model for cylinders* has been adapted for unyawed, oblique impacts

Simulations have been used to compare the yawed to unyawed for 22.5° oblique impacts

Simulations have been used to compare the yawed to unyawed for 45° oblique impacts

The critical cylinder length dependence can be used for other quantities of interest

Critical cylinder to sphere average length $\frac{RCS_{C}}{RCS_{S}} = \frac{2D_{C} + L_{C}}{3D_{S}}$

Orbital debris fragment shape study

- The DebriSat experiment has greatly expanded NASA's understanding of large-scale, modern-construction, catastrophic satellite breakups
 - Using modern materials DebriSat has pointed to a significant presence of carbon-fiber composite material in the sub-cm range.
 - Much of the carbon-fiber composite material had shapes that differed significantly from equidimensional shapes like spheres and cubes.
- Impact experiments have generated validation data for numerical simulation models for an aluminum Whipple shield representative of shields in human space flight.
 - Multiple Length to Diameter (L : D) ratios have been considered
 - Numerical simulation models have been developed that compare well against the obtained experimental data.
- The numerical simulation models have been used to extrapolate away from the original data to develop impact models for shaped, carbonfiber composites that includes impact obliquity for reliability assessments