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Current: Use colors to 
interpret imagery Hazard: Dust

Visibility: 2 mi
(R,G,B): (235, 50, 175)

Hazard: Dust
Visibility: 5 mi
(R,G,B): (215, 40, 165)

Hazard: Dust
Visibility: 4 mi
(R,G,B): (205, 35, 160)

Future: Automatic identification of hazards 
and potential impacts to guide 
interpretation

• NASA Short-term Prediction Research and 

Transition (SPoRT) has a long history of research, 

training, and applications related to multispectral 

(RGB) imagery derived from polar and 

geostationary imagers (Berndt et al. 2017)

• Many of the RGBs demonstrated in the 

JPSS/GOES-R Proving Ground have been 

transitioned to operations in the GOES-R era.

• SPoRT has documented impacts on the warning 

process for dust (Fuell et al. 2016) and continued 

efforts to improve reliability across multiple 

platforms (Elmer et. al 2016, Berndt et al. 2018, 

Elmer et al. 2019)

• This project explores the feasibility of machine 

learning approaches to pixel-level classifications 

of visibility hazards including blowing dust and low 

clouds or fog

The objective is to move beyond the qualitative identification of fog or dust 
toward hazard classification

Fog

Dust

GOES-16 ABI Night-time Microphysics RGB

GOES-16 ABI Dust RGB

Introduction



Methodology

1. Identify cases
• Create dust RGB images to locate and examine 

dust events 

2.       Training data collection
• Using ArcGIS, manually outline dust in RGB 

images with polygon shapefiles
• Convert shapefiles to raster images which have 

the same grid and resolution as the source RGB 
image

• Compile a large training database of dust imagery 
to be used as input into the different classification 
methods

3. Train classification models
• Python’s Scikit-Learn toolbox provides a robust 

number of classification methods. Random 
Forest, Logistic Regression, and Naïve Bayes 
classifications were chosen as they are able to 
output probability classifications. 

4. Evaluation
• Determine the method(s) that provide the most 

useful results

5. Iterate
• Refine input training data and model parameters to 

create the best possible solution

From Dimitriadas and Liparas (2018)



Training Models

Logistic Regression
• Works well for binary (0 or 1) 

dependent variables (i.e., is a pixel 
dust?)

• Describes the linear relationship 
between the dependent variable 
and one or more independent 
variables (i.e., what are the weights 
of each variable?)

Naïve Bayes
• Assume that the value of a 

particular variable is independent 
of the value of any other variable, 
given a particular class. In other 
words, does not consider any 
correlation between a variables.

Random Forest
• Ensemble approach which 

constructs a multitude of decision 
trees 

• Each decision tree has a random set 
of features (i.e., variables) and only 
has access to a random set of 
training data points

• Allows for the determination of 
feature importance, or how 
important is each variable is to the 
final decision.

From Raizada and Lee (2013)From Saishruthi Swaminathan (2018)From Dimitriadas and Liparas (2018)



Training Variables for Dust

Training Variable Common Name Physical Importance

7.3 µm “lower-level” water vapor band dust typically associated with a dry low-level environment

10.35 µm and 11.2 µm “thermal” infrared bands provide estimates of temperature for the pixel

12.3 µm “dirty” infrared band used within the split window technique to identify optically thick 
clouds or dust

13.3 µm “CO2” longwave infrared band despite CO2 and water vapor absorption, can give an idea of the 
mean tropospheric temperature. 

12.3-10.35 µm 
Difference 

split window technique dust absorbs more of the 10.35 µm radiation, yielding a positive 
temperature difference

11.2-8.4 µm 
Difference 

particle phase band difference in thick dust, the particles absorb the radiation in both wavelengths 
equally, resulting in small differences

RGB Image Red Color 
Intensity

pixel-level contribution of Red 
color to the image (0-255)

cloud optical depth/thickness to distinguish thick cloud or dust

RGB Image Green 
Color Intensity 

pixel-level contribution of Green 
color to the image (0-255)

cloud particle phase to distinguish water particles/thin cirrus from 
dust 

RGB Image Blue Color 
Intensity

pixel-level contribution of Blue 
color to the image (0-255)

identification of warm surface or cloud top temperatures

2019 Feb 23 Dust Event



Dust RGB and Model Results



Preliminary Validation

• Preliminary verification of results with 
Receiver Operating Characteristic 
(ROC) curves

• 96% chance the Logistic regression model 
will distinguish dust 
• does not appear sensitive to the 

thickness of the dust 
• pretty much all or nothing except 

near plume edges

• 83% chance Random Forest probabilities 
will distinguish dust
• fluctuate depending on the thickness 

of the dust
• lower thicknesses tend to equate to 

lower probabilities Logistic regression over-performs in identification of dust while 
Random Forest probabilities fluctuate depending on the thickness of 

the dust



Real-time Mesoscale Analysis

• Does adding surface observations help 
the models?

• Real-Time Mesoscale Analysis was 
developed by NOAA as a measurement 
for validation of their National Digital 
Forecast Database
• Components include Temperature, 

Dewpoint, Wind Speed
• Gridded surface observations match the 

National Digital Forecast Database grid 
(2.5 km)

• RTMA data was remapped to the same 
grid as the satellite data and new 
models were run to include the RTMA 
data. 



Dust RGB and Model Results with RTMA data
W

it
h

 R
TM

A
Sa

te
lli

te
O

n
ly



Preliminary Validation

• Similar AUC for Logistic regression 
when including RTMA data. 
• Potentially capturing dust obscured by 

clouds?
• Or increase in false positives?

• AUC increases for Random Forest 
when including RTMA data
• Less fluctuations in dust probabilities; less 

dependence on plume thickness
• Better ratio of true positives to false 

positives
• Increased sensitivity

• Need further validation and user 
feedback to determine the value of 
including RTMA data
• Desired classification threshold 
• Optimal true positive rate compared to 

false positives (what is tolerable for dust 
classified as no dust)



Summary / Next Steps

• Application of machine learning models to GOES-16 ABI bands shows promise for objective 
classification of features such as dust and fog

• SPoRT plans to test image classification with existing partners and end users to determine 
the value of image classification in the operational environment.

• What is a tolerable false positive rate?

• Does this capability ease RGB interpretation and analysis?

• Expand the training database to night-time cases to enhance identification and detection 
of dust at night

• Apply a similar technique to the Night-time Microphysics RGB
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