Controlled Rest: Profile of Use, Challenges, and Best Practices

Cassie J. Hilditch, PhD
Erin E. Flynn-Evans, PhD MPH

Fatigue Countermeasures Lab
SJSU Research Foundation, NASA Ames Research Center
Pilot Fatigue & Countermeasures

• Airline pilots often suffer from fatigue
• Fatigue Risk Management System (FRMS) and countermeasures are used to manage fatigue
• Controlled Rest (CR) is a “mitigation strategy to be used as needed in response to unanticipated fatigue experienced during flight operations” (ICAO, 2015)
 • Nap taken in-seat on the flight deck (c.f. bunk rest)
 • Defined policy and procedures to follow
 • Pilots must still be fit for duty
 • Approved by USAF, USCG and in most countries; not approved by FAA
Pilot Fatigue & Countermeasures

• Airline pilots often suffer from fatigue
• Fatigue Risk Management System (FRMS) and countermeasures are used to manage fatigue

• Controlled Rest (CR) is a “mitigation strategy to be used as needed in response to unanticipated fatigue experienced during flight operations” (ICAO, 2015)
 • Nap taken in-seat on the flight deck (c.f. bunk rest)
 • Defined policy and procedures to follow
 • Pilots must still be fit for duty
 • Approved by USAF, USCG and in most countries; not approved by FAA
“Uncontrolled” Rest

Unintentional
• Up to 20% of night shift workers unintentionally fall asleep on shift (Coleman & Dement, 1986; Torsvall & Åkerstedt, 1987; Torsvall et al., 1989; Kecklund & Åkerstedt, 1993; Åkerstedt et al., 2002)
• 58% (N=713) Brazilian pilots reported unintentionally falling asleep while flying (Marqueze et al., 2017)
• 78% (N=7) pilots were observed having microsleeps during critical phases of flight; 44% (N=4) fell asleep during cruise (Rosekind et al., 1994)

Intentional
• Planned naps reported by US flight crew
 • 11% (N=3) long-haul pilots observed (Gander et al., 1991)
 • 56% (N=797) regional pilots surveyed (Co et al., 1999)
 • 39% (N=580) corporate/exec pilots surveyed (Rosekind et al., 2000)
 • “[CR] definitely needs to be legal. It’s being done anyway.” (Rice et al., 2018)
“Uncontrolled” Rest

Unintentional

- Up to 20% of night shift workers unintentionally fall asleep on shift (Coleman & Dement, 1986; Torsvall & Åkerstedt, 1987; Torsvall et al., 1989; Kecklund & Åkerstedt, 1993; Åkerstedt et al., 2002)
- 58% (N=713) Brazilian pilots reported unintentionally falling asleep while flying (Marqueze et al., 2017)
- 78% (N=7) pilots were observed having microsleeps during critical phases of flight; 44% (N=4) fell asleep during cruise (Rosekind et al., 1994)

Intentional

- Planned naps reported by US flight crew
 - 11% (N=3) long-haul pilots observed (Gander et al., 1991)
 - 56% (N=797) regional pilots surveyed (Co et al., 1999)
 - 39% (N=580) corporate/exec pilots surveyed (Rosekind et al., 2000)
 - “[CR] definitely needs to be legal. It’s being done anyway.” (Rice et al., 2018)
NTSB: Both Pilots Asleep on Hawaii Flight

“The National Transportation Safety Board determines the probable cause(s) of this incident as follows:

• The captain and first officer inadvertently falling asleep during the cruise phase of flight.
• Contributing to the incident were the captain's undiagnosed obstructive sleep apnea and the flight crew’s recent work schedules, which included several consecutive days of early-morning start times.”

(NSTB Report SEA08IA080, 2009)
“Uncontrolled” Rest

Unintentional
• Up to 20% of night shift workers unintentionally fall asleep on shift (Coleman & Dement, 1986; Torsvall & Åkerstedt, 1987; Torsvall et al., 1989; Kecklund & Åkerstedt, 1993; Åkerstedt et al., 2002)
• 58% (N=713) Brazilian pilots reported unintentionally falling asleep while flying (Marqueze et al., 2017)
• 78% (N=7) pilots were observed having microsleeps during critical phases of flight; 44% (N=4) fell asleep during cruise (Rosekind et al., 1994)

Intentional
• Planned naps reported by US flight crew
 • 11% (N=3) long-haul pilots observed (Gander et al., 1991)
 • 56% (N=797) regional pilots surveyed (Co et al., 1999)
 • 39% (N=580) corporate/exec pilots surveyed (Rosekind et al., 2000)
 • “[CR] definitely needs to be legal. It’s being done anyway.” (Rice et al., 2018)
Benefits of CR: Survey Data

• Managers and flight crew using CR (non-US)
 (N=35; Holmes & Okuboyejo, in press)
 • 90% - “CR has provided significant benefits for flight safety”
 • 87% - “CR has reduced fatigue-related performance decrements during safety-critical phases of flight”
 • 83% - “CR has reduced the incidence of uncontrolled napping”

• US pilots
 (N=30; Rice et al., 2018)
 • 70% approved or strongly approved of using CR in the US
Benefits of CR: In-flight data

• N=21 pilots
• 40min nap opportunity
• 20min recovery period
• Polysomnography (PSG)
• Psychomotor Vigilance Test (PVT)
• Karolinska Sleepiness Scale (KSS)

www.nasa.gov

Rosekind et al., 1994
Benefits of CR: In-flight data

- Sleep achieved in 93% of attempted naps
- Sleep Onset Latency (SOL) ~5min
- Total Sleep Time (TST) ~26min
- Increased speed; reduced lapses
- Reduced risk of unintentional sleep in cruise
- Eliminated microsleeps in critical phases of flight

www.nasa.gov

Rosekind et al., 1994; Valk & Simons, 1997; Spencer & Robertson, 2000
Profile of Use (Non-US Carriers)

Survey Data
• 53% (N=134) pilots surveyed used CR in past 12 months (Petrie et al., 2004)
• Carriers with a fatigue reporting system and CR policy (N=2)
 • 30% of fatigue reports cite CR (Holmes & Okuboyejo, in press)

In-flight Data
• EASA Effectiveness of Flight Time Limitations Study (EASA, 2019)
• 24 airlines; 261 pilots; 2-week data collection
• 27% of night flights >10h contained CR
Profile of CR Use in Long-Haul Operations

- N=44 pilots
- ~2-week data collection
- 239 long-haul flights
- App-based sleep diary
- Actiwatch
- Schedule info from operator
Actigraphy

- Rest Periods based on sleep diary entry
- Sleep estimated using Actiware (Medium Wake Threshold)
Flight Summary

Flight Leg

- Outbound
- Return

No. of Flights

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
<th>140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Return</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Crew Size

- 2-pilots
- >2-pilots

No. of Flights

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-pilots</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>>2-pilots</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Flight Timing

- Day
- Night

Flight Departure Time (Home Base Time)

- 00:00-03:59
- 04:00-07:59
- 08:00-11:59
- 12:00-15:59
- 16:00-19:59
- 20:00-23:59

Direction of Travel

- Eastwards
- Westwards
- No Change

No. of Flights

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastwards</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Westwards</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>No Change</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Flight Duration

- <=8h
- >8-10h
- >10-12h
- >12h

No. of Flights

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td><=8h</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>>8-10h</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>>10-12h</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>>12h</td>
<td>140</td>
<td>120</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>
In-Flight Rest Summary

- 1 Controlled Rest
- 2 Controlled Rests
- Controlled & Bunk Rest
- Bunk Rest Only
- No Rest
Challenges

• Sleep inertia
 • Education, policy for recovery after nap

• Risk of other pilot falling asleep
 • Communication, planning, flight attendant check

• Public perception
 • Less willing to fly relative to No CR (N=530; Winter et al., 2015)
 • 86% (N=869) agreed that pilots should be able to nap (NSF Sleep in America Poll, 2002)
 • Education, public awareness campaigns to manage perceptions
Challenges

• Sleep inertia
 • Education, policy for recovery after nap

• Risk of other pilot falling asleep
 • Communication, planning, flight attendant check

• Public perception
 • Less willing to fly relative to No CR (N=530; Winter et al., 2015)
 • 86% (N=869) agreed that pilots should be able to nap (NSF Sleep in America Poll, 2002)
 • Education, public awareness campaigns to manage perceptions
Challenges

• Sleep inertia
 • Education, policy for recovery after nap
• Risk of other pilot falling asleep
 • Communication, planning, flight attendant check
• Public perception
 • Less willing to fly relative to No CR (N=530; Winter et al., 2015)
 • 86% (N=869) agreed that pilots should be able to nap (NSF Sleep in America Poll, 2002)
 • Education, public awareness campaigns to manage perceptions

(Adapted from Winter et al., 2015)
Best Practice

Fatigue Countermeasures Working Group

• Sleep inertia and napping science
 • Nap benefits vary
 • Recovery period 20 min

• When to use
 • Low workload phase (cruise)
 • No abnormal situations
 • End at least 30min before top-of-descent (TOD)

• Minimum Safeguards
 • Handover briefing
 • Cabin crew check
Best Practice

Fatigue Countermeasures Working Group

• Education
• Integrate into Fatigue Risk Management
 • Report CR use
 • Identify trends
 • Develop management solutions
• CR is not a replacement for:
 • Requirement to be fit-for-duty
 • Best scheduling practices

FRMS Forum, 1-2 October 2019, San Francisco, California, USA
Summary

• In-lab and in-flight suggest CR can improve alertness and performance
• Naturalistic in-flight study of CR use show that is being used by pilots
• We need more data on CR in practice – how it’s used; effectiveness
• Interested in learning more about CR; not advocating for it
Future Research

• Global Fatigue Countermeasures Survey of Commercial Airline Pilots (NASA and Fatigue Countermeasures Working Group)

• Investigate field-deployable countermeasures to sleep inertia (NASA, Central Queensland University, University of South Australia)

• Encourage airlines to collect data on CR to increase knowledge of use, attitudes, and effectiveness
Thank you

- Fatigue Countermeasures Lab (NAPS)
- Fatigue Countermeasures Working Group
- Erin Flynn-Evans
- Lucia Arsintescu
- Kevin Gregory

Support
- NASA Airspace Operations and Safety Program, System-Wide Safety Project

Email: cassie.j.hilditch@nasa.gov