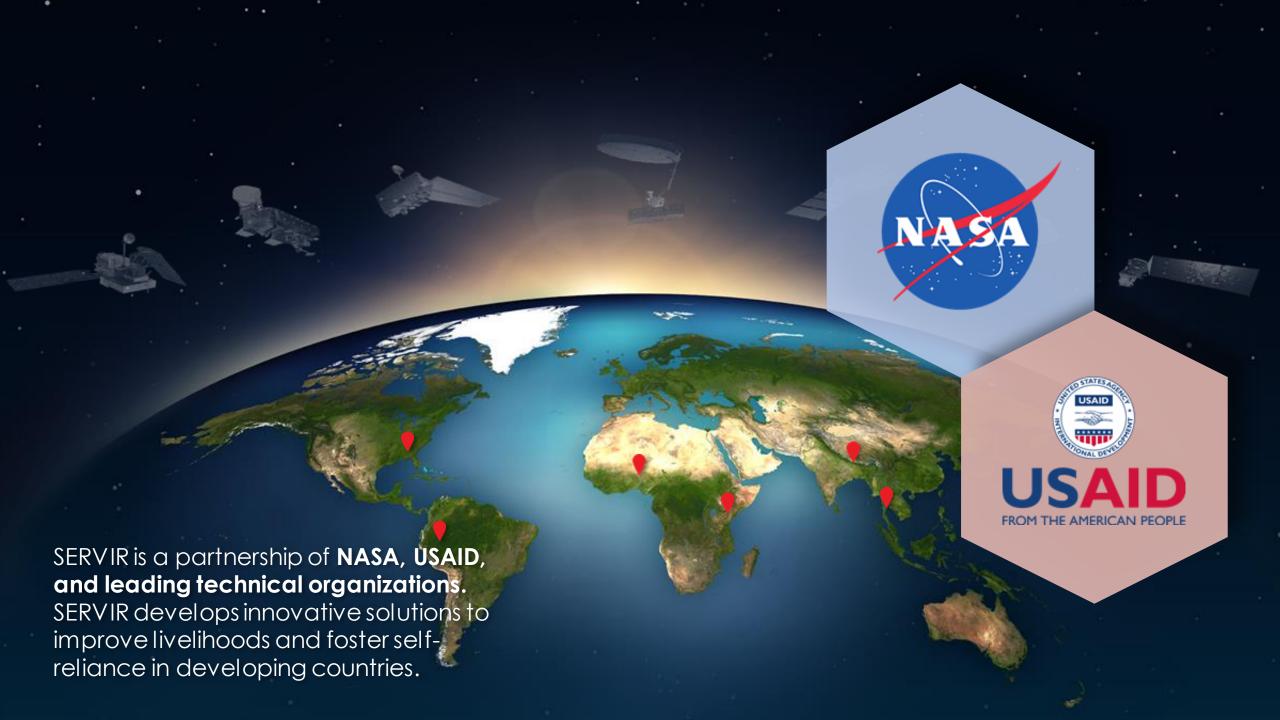


Distinction of deforestation drivers in the Amazon using Synthetic Aperture Radar (SAR) C-band data

2019 AGU Fall Meeting

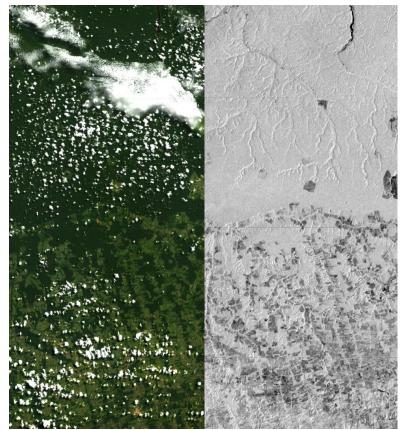
Thursday, December 12, 2019

Andrea Puzzi Nicolau Africa Flores-Anderson Dr. Robert Griffin Kelsey Herndon



Motivation

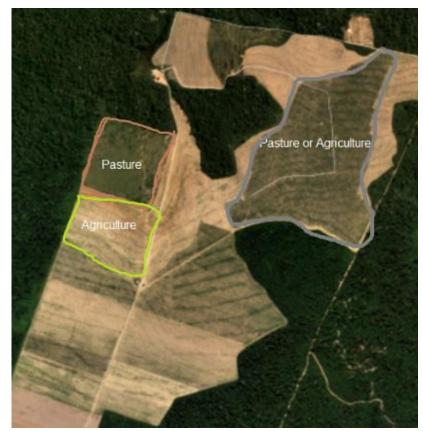
- Can we use Sentinel-1 data to help distinguish drivers of deforestation?
 - Why is it important to distinguish drivers of deforestation?



Landsat 8 RGB and Sentinel-1 VV median composites January-July 2019 (Altamira, Brazil)

- We know where and when deforestation is happening, but in order to have an impact in how to prevent deforestation, we need to know what is causing it
- Optical systems:
 - Cloud cover Sentinel-1 free and openly available
 - Hard to distinguish land uses with similar land cover (Grecchi et al., 2013; Joshi et al., 2016; Hagensieker et al., 2017)
- The identification of drivers of deforestation is a need for early warning deforestation monitoring systems (International Forum of Early Warning Systems, Lima, July 2018)
- Important towards more sustainable land management and to aid global initiatives such as REDD+ (UNFCCC, 2013)
- The use of SAR data is a priority by the Global Forest Observations Initiative/FAO (GFOI, 2013)

- Is it possible to use Sentinel-1 data to distinguish drivers of deforestation?
 - Why is it important to distinguish drivers of deforestation?



Source: Planet

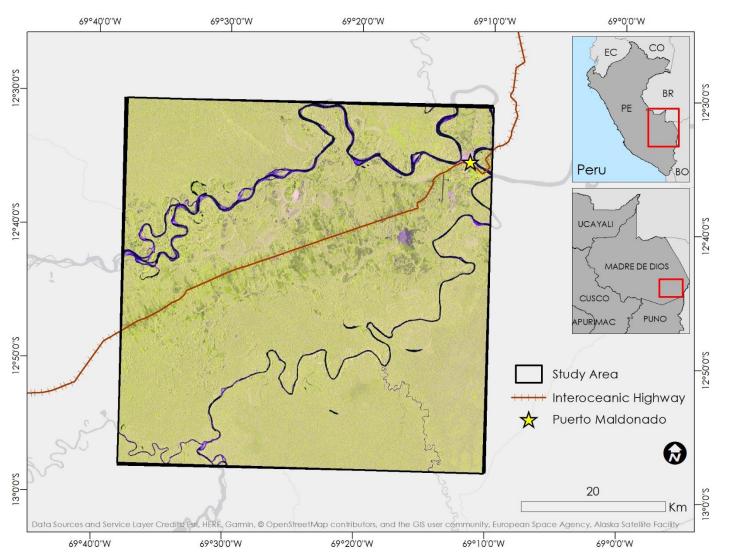
- We know where and when deforestation is happening, but in order to have an impact in how to prevent deforestation, we need to know what is causing it
- Optical systems:
 - Cloud cover Sentinel-1 free and openly available
 - Hard to distinguish land uses with similar land cover (Joshi et al., 2016; Hagensieker et al., 2017)
- The identification of drivers of deforestation is a need for early warning deforestation monitoring systems (International Forum of Early Warning Systems, Lima, July 2018)
- The use of SAR data is a priority by the Global Forest Observations Initiative/FAO (GFOI, 2013)
- Important towards more sustainable land management and to aid global initiatives such as REDD+ (UNFCCC, 2014)

Research Questions and Study Area

Can we use Sentinel-1 data to distinguish land uses/covers?

Can we observe signature trends on Sentinel-1 time series data for different LULC?

Can we develop a classification decision tree that results in an accurate LULC map?



Sentinel-1 quarterly composite (July 2, 14, 26, August 8, 2019), R: VV, G: VH, B: VV/VH, total area: ~2,500 km²

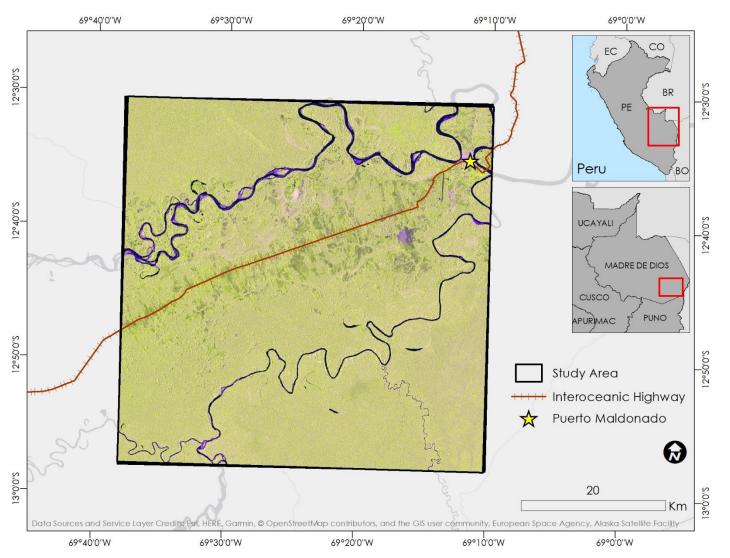
Research Questions and Study Area

Madre de Dios

Capital of Biodiversity (Peruvian Law N° 26311, 1994; Myers et al., 2000)

Deforestation rates have been increasing since 2001 (MINAM, 2017)

Presents a mosaic of land uses and covers

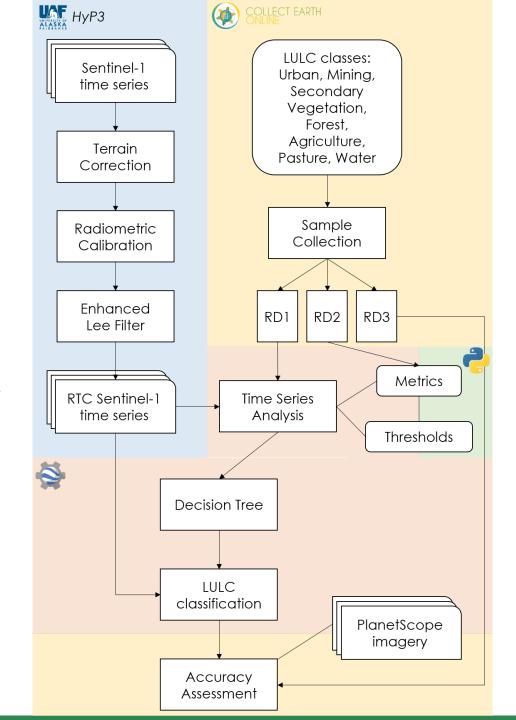


Sentinel-1 quarterly composite (July 2, 14, 26, August 8, 2019), R: VV, G: VH, B: VV/VH, total area: ~2,500 km²

Methodology

- Preprocessing: Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3, Hogenson et al., 2016)
- Collect Earth Online (Bey et al., 2016) Digital Globe
- Quarterly Composites
 - January 2017 August 2019 (76 images)
- Reference Datasets (RD): 3,500 samples points
- VV, VH, VV/VH, modified Radar Forest Degradation Index (RFDI; Mitchard, 2012)
- Mean, Min, Max, Max-Min ratio, Standard Deviation, Coefficient of Variation, Value Difference
- Separability Measure (Wu et al., 2011)

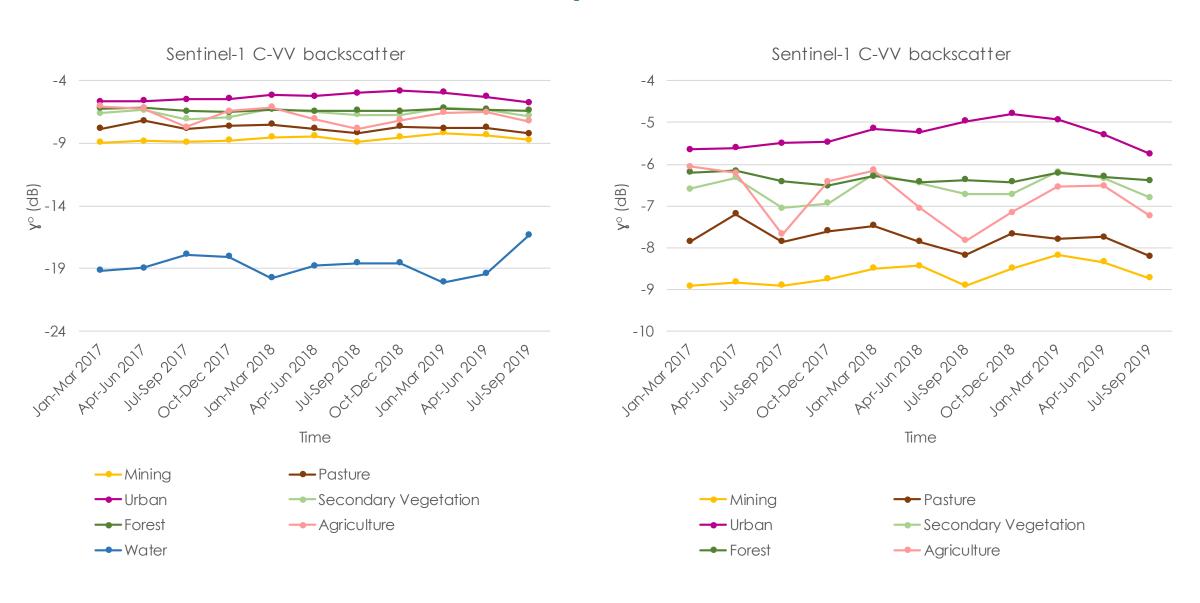
$$RFDI = \frac{\gamma_{HH}^{o} - \gamma_{HV}^{o}}{\gamma_{HH}^{o} + \gamma_{HV}^{o}} \qquad RFDI \, mod. = \frac{\gamma_{VV}^{o} - \gamma_{HV}^{o}}{\gamma_{VV}^{o} + \gamma_{HV}^{o}}$$
$$S_{ab} = \frac{|\mu_{a} - \mu_{b}|}{\sigma_{a} + \sigma_{b}}$$



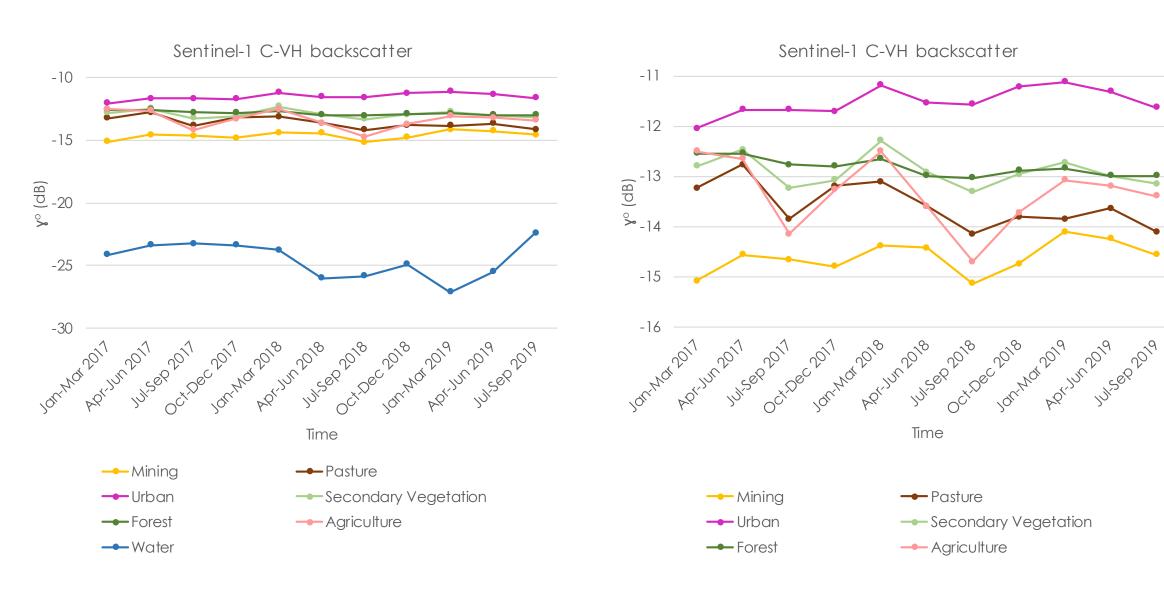
Collect Earth Online

http://collect.earth

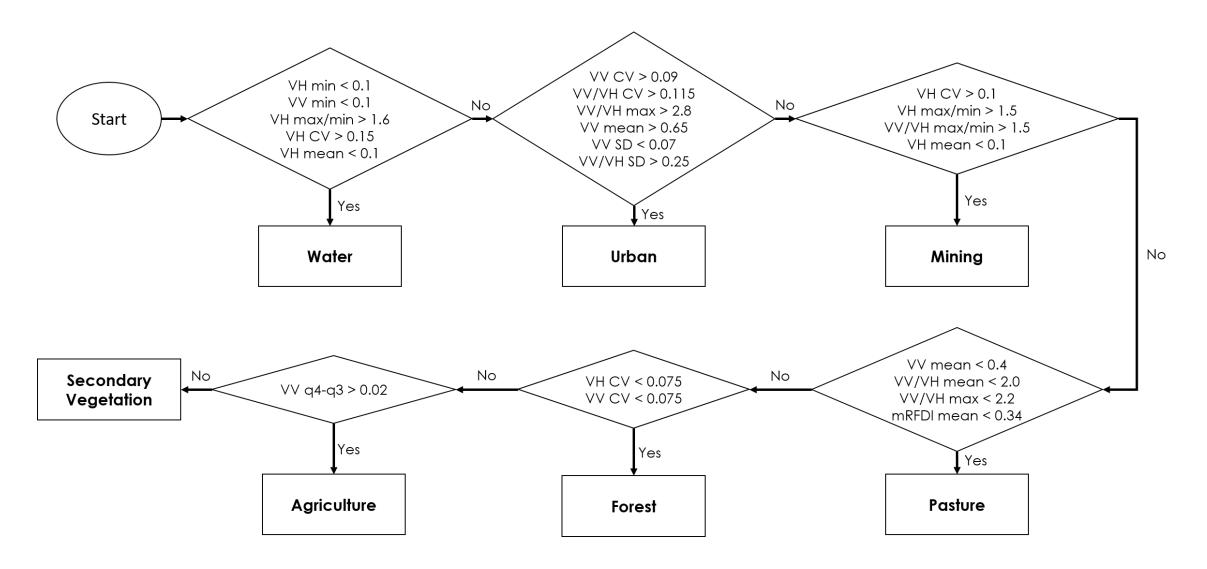
Time Series Analysis



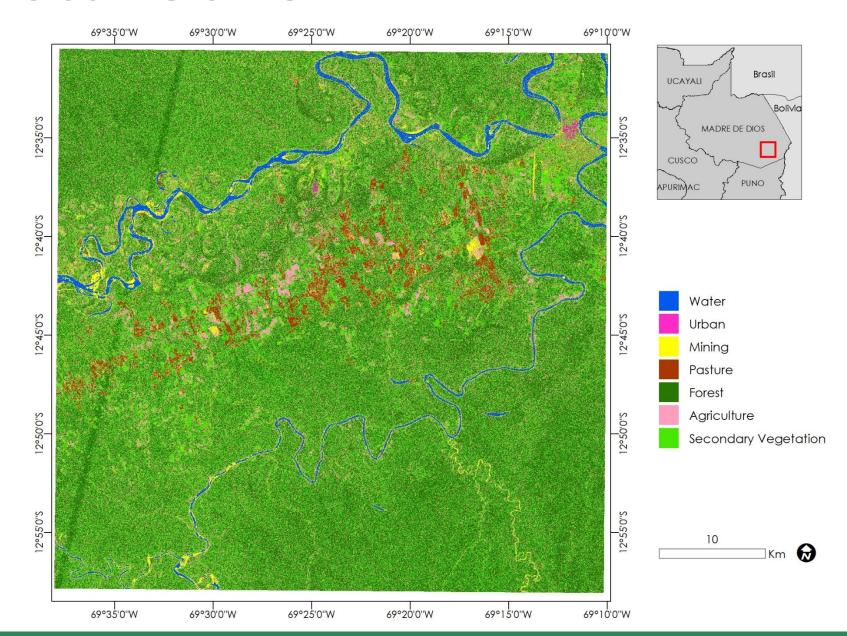
Time Series Analysis



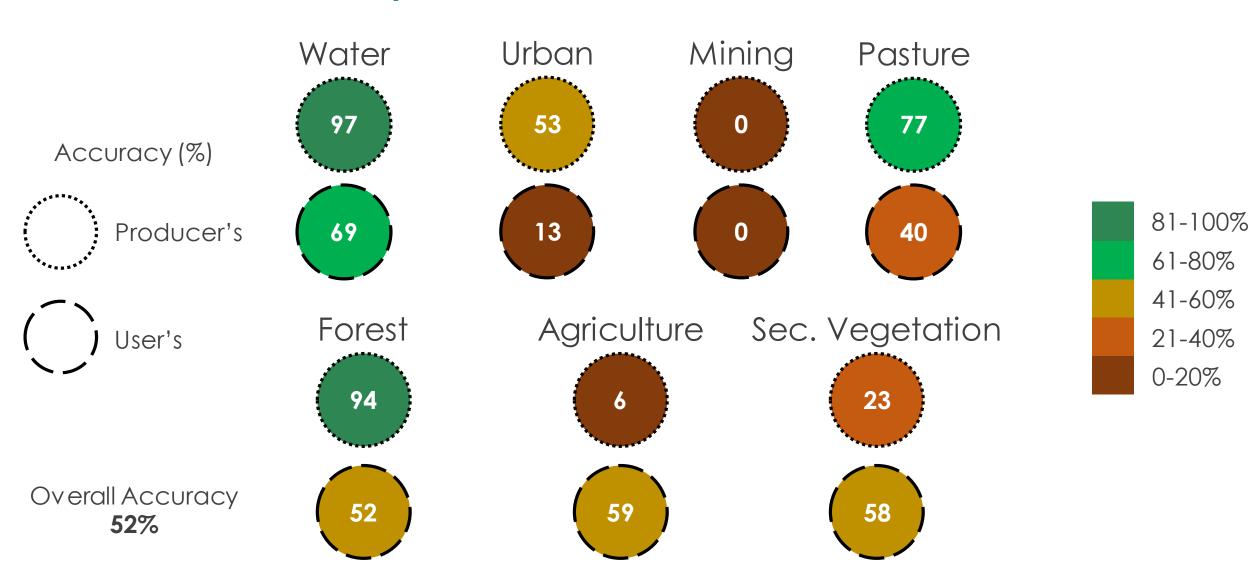
Decision tree



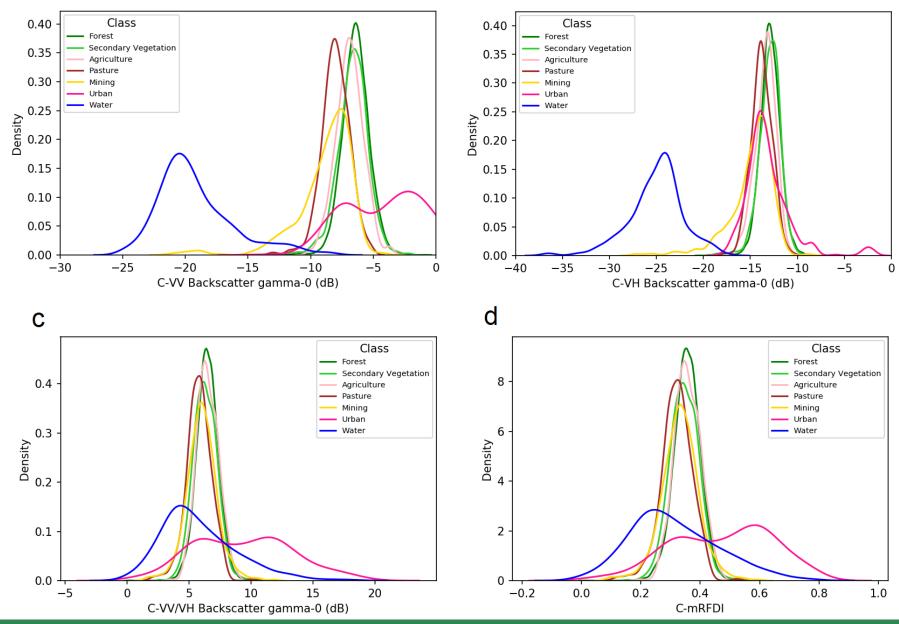
Classification



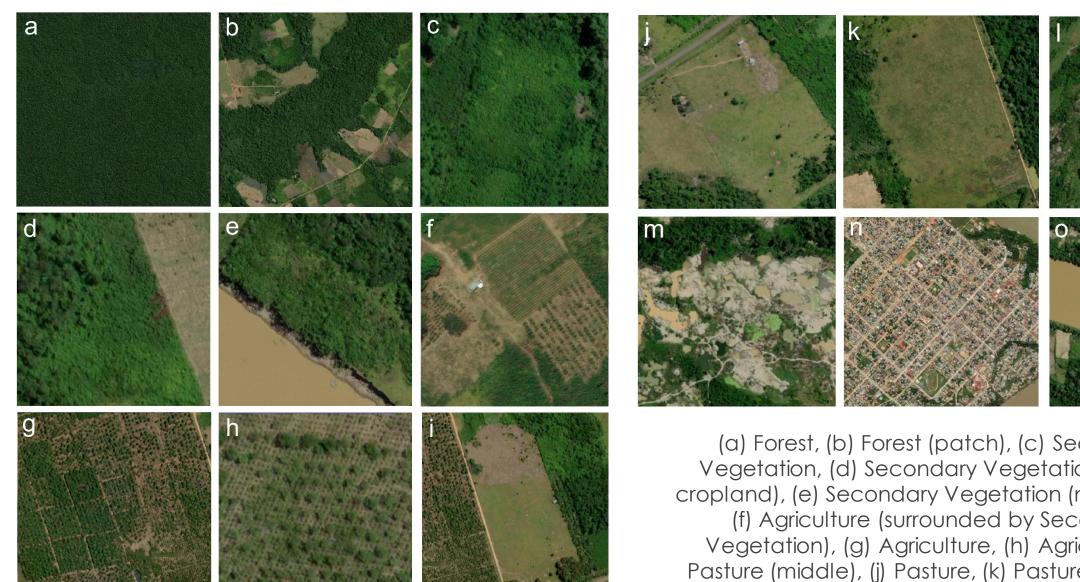
Accuracy Assessment



Probability Density Functions

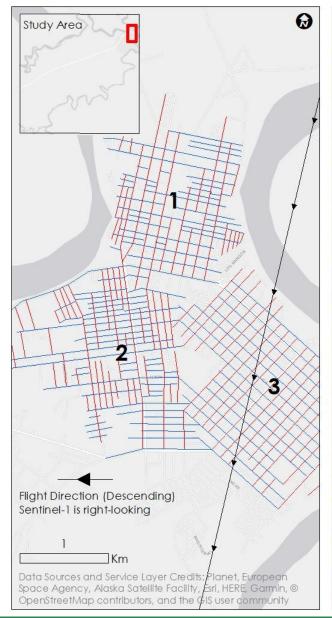


Classes



(a) Forest, (b) Forest (patch), (c) Secondary Vegetation, (d) Secondary Vegetation (next to cropland), (e) Secondary Vegetation (next to river), (f) Agriculture (surrounded by Secondary Vegetation), (g) Agriculture, (h) Agriculture, (i) Pasture (middle), (j) Pasture, (k) Pasture, (l) Mining, (m) Mining, (n) Urban, (o) Water

Streets orientation



Conclusions and Future Work

- Agriculture, Secondary Vegetation, and Forest classes are characterized by land covers with very similar structure
- Overall accuracy was low (52%)
- Thresholds and rules for Pasture classification (user's accuracy = 77%) could be used as an improvement to distinguish deforestation due to Pasture from deforestation due to Agriculture
- Urban class is highly dependent on streets orientation
- Limitations
 - Thermal noise effects could be reduced with algorithms (Aliet al., 2018; Park et al., 2019)
 - Median filter could be applied to the classified map (Chen et al., 2016)
 - An addition of a bare soil class could improve the classification
- Explore texture information (Grey Level Co-occurrence Matrix)
- Object-based classification

Bey, A., Díaz, A.S. P., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., ... Miceli, G. (2016). Collect earth: Land use and land cover assessment through augmented visual interpretation. *Remote Sensing*, 8(10), 1–24. https://doi.org/10.3390/rs8100807

Grecchi, R., Gwyin, H., Benie, G. B., & Formaggio, A. R. (2013). Assessing the spatio-temporal rates and patterns of land-use and land-cover changes in the Cerrados of southeastern Mato Grosso, Brazil. *International Journal of Remote Sensing*, 34(15), 5369–5392. https://doi.org/10.1080/01431161.2013.788798

Hagensieker, R., Roscher, R., Rosentreter, J., Jakimow, B., & Waske, B. (2017). Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data. International Journal of Applied Earth Observation and Geoinformation, 63(January), 244–256. https://doi.org/10.1016/j.jag.2017.07.019

Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., ... & Reiche, J. (2016). A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), 70. http://doi.org/10.3390/rs8010070

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501

MINAM (2017). GeoBosques. Plataforma de Monitoreo de Cambios sobre la Cobertura de los Bosques. Ministerio del Ambiente http://geobosques.minam.gob.pe/geobosque/view/index.php.

GFOI (2013). Review of Priority Research & Development Topics. (December), 1–159. Retrieved from http://www.gfoi.org/wp-content/uploads/2015/03/GFOI ReviewPrioityRDTopics V1.pdf

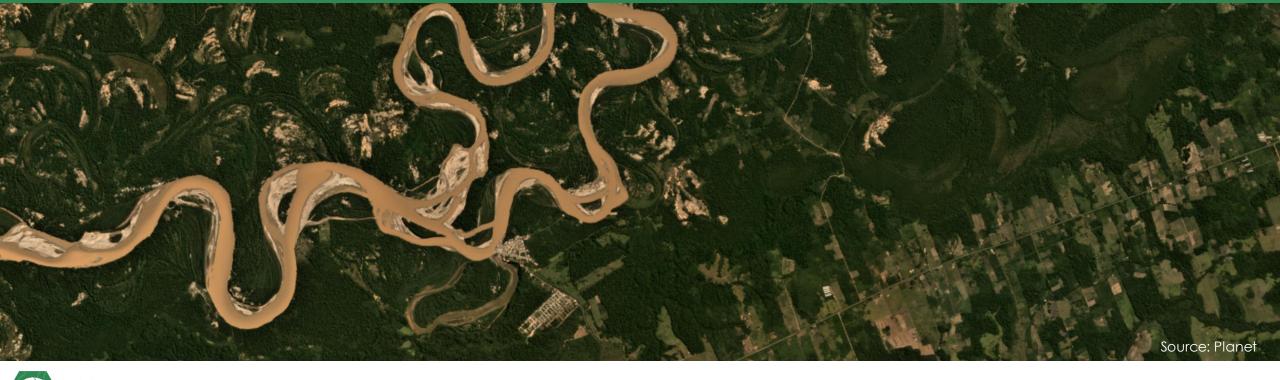
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

Planet Team (2017). Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. https://api.planet.com

Mitchard, E.T., Saatchi, S.S., White, L.J., Abernethy, K.A., Jeffery, K.J., Lewis, S.L., Collins, M., Lefsky, M.A., Leal, M.E., Wood-house, I.H., Meir, P., 2012. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lope National Park, Gabon: Over-coming problems of high biomass and persistent cloud. Biogeosciences 9, 179–191. https://doi.org/10.5194/bg-9-179-2012

UNFCCC. (2014). Key decisions relevant for reducing emissions from deforestation and forest degradation in developing countries. https://unfccc.int/files/land-use-and-climate-change/redd/application/pdf/compilation-redd-decision-booklet-v1.1.pdf

Wu, F., Wang, C., Zhang, H., Zhang, B., & Tang, Y. (2011). Rice crop monitoring in South China with RADARSAT-2 quad-polarization SAR data. *IEEE Geoscience and Remote Sensing Letters*, 8(2), 196–200. https://doi.org/10.1109/LGRS.2010.2055830



Thank you!

Andrea Puzzi Nicolau

SERVIR Graduate Research Assistant

UAHuntsville

andrea.puzzinicolau@nasa.gov

andrea.nicolau@uah.edu

