A. Introduction

The year 2019 marks the 50th year of science from the lunar laser ranging (LLR) experiment. The retroreflectors placed on the surface of the Moon from the Apollo and Luna missions continue to serve as reference markers for the accurate tracking of the Moon. Currently, LLR experiments measure the time of flight of photons to these reflectors at few tens of picosecond accuracy. LLR experiments measure the time of flight of photons to these reflectors at few tens of picosecond accuracy – i.e., an accuracy of a few nm on the position of the Moon with respect to Earth! Such precise tracking data helps to monitor the changes in Moon’s orientation along its orbit gives us insight into its deep interior – through the exchange of angular momentum between the internal layers of the Moon.

State-of-the-art models contain an elaborate description of the torques and other interactions acting on the Moon from the Sun and planetary bodies. Small changes in the lunar gravity affects the modeled torque equation that modifies the rate of change of this angular momentum.

A clean fit of the model parameters to the LLR data would give post-fit residuals close to the observational accuracy (see Fig. 2).

B. The problem

The GRAIL spacecraft tracking data. GRAIL provides a strong constraint for LLR solutions, especially for computing torques originating from the Moon’s aspherical gravity field. However, imposing the gravity field from GRAIL during LLR analysis results in a strong signature in the LLR post-fit residuals. If some degree-3 gravity coefficients (C23, S23, & C33, especially) are allowed to be adjusted (well beyond their GRAIL-derived uncertainties), the LLR post-fit residual signature disappears. The underlying cause for this misfit is unknown. This signature mimics a ~ 6-yr signal as seen from the Earth-Moon geometry (see Fig. 3). The opposite phases in the post-fit residuals arising from the reflector’s position indicates a longitude libration signature.

C. Finer details about the GRAIL-LLR system

- **Non-gravitational force modeling**
 The GRAIL analyses require a complex non-gravitational force model to account for all the observed signal (mostly from KBR). A compromise is made by introducing empirical accelerations terms (cosine, sine and constant term ~4 times per orbit) to absorb the remaining signal with an upper bound on its uncertainty (<10^−7 m/s²) here. Comparing phases of *quieter* periods (see Fig. 5) can help understand their significance on the gravity field solutions.

- **Moon’s orientation from lunar ephemeris**
 The GRAIL fits to lunar ephemerides provide the orientation parameters for processing the GRAIL-tracking data. Small differences in the lunar orientation can lead to differences in the frame of the gravity field. This would also introduce some differences in the gravity field solutions. Lunar orientation is known from LLR fits at the level of few mas (see Fig. 1). The GRAIL solution (see Fig. 3) shows a decrease in the amplitude of the empirical accelerations during the *quieter* phase of the GRAIL mission.

- **Lunar dissipation**
 LLR solutions are sensitive to dissipative effects, such as viscous friction at core-mantle boundary (CMB), lagged response of the Moon to tide raising, rheology, etc. The LLR model for dissipation fits well for near-monthly periods and needs improvement for longer periods. Frequency analysis from LLR solutions and lunar theory are currently used as input for GRAIL’s dissipation model and can benefit from a more self-consistent model.

D. Preliminary results

The GRAIL-LLR system was jointly inverted using the variance component estimation (VCE) method. The study was limited to a degree 270 gravity field with apriori GRAIL orbits obtained from a 1200 field. Preliminary results show that this inversion gives a low-degree gravity field solution closer to GRAIL than an LLR only solution (see Fig. 4).

Empirical accelerations estimated in this joint inversion are close to the GRAIL-only solution. Comparison of pre-VCE (light) and post-VCE (dark) weighted solutions (see Fig. 5) shows a decrease in the amplitude of the empirical accelerations during the *quieter* phase of the GRAIL mission.

E. Take home message

- **GRAIL-LLR joint solution gives a preliminary gravity field solution closer to a GRAIL-only than an LLR-only solution.**
- **The non-gravitational empirical accelerations in the joint inversion of the GRAIL-LLR system were found to be stable for fields up to 270.**
- **The answer to this inconsistency is likely to be among the other “finer details” (or improved interior models).**

Acknowledgements

Support for this research was provided by NASA’s Planetary Science Division Research Program through the CRESST II cooperative agreement. The GRAIL data was processed using GEDDY II POD software on the GSFC NCCS ADAPT cluster. The LLR data were processed using the INPOP planetary and lunar ephemeris and GINS software. Authors acknowledge LLR observers and their five decades of accurate measurements, archived at http://polac.obspm.fr

Vishnu Viswanathan1,2, Erwan Mazari1, Sander Goossens1,2, Stefano Bertone1,2

1 NASA Goddard Space Flight Center, Greenbelt, MD
2 CRESST II, University of Maryland, Baltimore County, MD

Abstract ID: G31B-0649

![Image](Image 1000x888 to 1770x1560)

Fig. 1: Differences in the orientation of the Moon obtained by comparison of DE430 with INPOP17s (A), EPM2017 (B), and DE421 (C) are shown here.

Fig. 2: LLR post-fit residuals with time. The fluid core and its triaxial shape play an important role in the dynamics of the Moon’s orientation.

Fig. 3: Impact of deg. 3 gravity field on LLR solutions. Adjusting some gravity field coefficients (at 1%) through LLR fits, absorbs this longitude libration signature.

Fig. 4: Comparison of degree-3 gravity coefficients

Fig. 5: Empirical accelerations from joint solution. A: Along-track, B: Cross-track

American Geophysical Union (AGU) Fall Meeting 2019 - G31B: Fifty Years of Lunar Laser Ranging and Earth and Planetary Rotation II Posters

vlviswanathan@nasa.gov