NASA/TM-2019-220456

UAS Service Supplier Checkout

How UTM Confirmed Readiness of Flight Tests with UAS Service
Suppliers

Irene Skupniewicz Smith
Ames Research Center, Moffett Field, California

Joseph L. Rios
Ames Research Center, Moffett Field, California

Daniel Mulfinger
Ames Research Center, Moffett Field, California

Vijay Baskaran, SGT, Inc.
Ames Research Center, Moffett Field, California

Punam Verma, Universities Space Research Association
Ames Research Center, Moffett Field, California

December 2019

https://atmconfluence.arc.nasa.gov/display/UTM/USS+Checkout%3A+How+UTM+Confirmed+Readiness+of+Flight+Tests+with+UAS+Service+Suppliers
https://atmconfluence.arc.nasa.gov/display/UTM/USS+Checkout%3A+How+UTM+Confirmed+Readiness+of+Flight+Tests+with+UAS+Service+Suppliers

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA's STI. The NASA STI
program provides access to the NTRS Registered
and its public interface, the NASA Technical
Reports Server, thus providing one of the largest
collections of aeronautical and space science STI
in the world. Results are published in both
non-NASA channels and by NASA in the NASA
STI Report Series, which includes the following
report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA Programs and include extensive data
or theoretical analysis. Includes compila-
tions of significant scientific and technical
data and information deemed to be of
continuing reference value. NASA counterpart
of peer-reviewed formal professional papers
but has less stringent limitations on
manuscript length and extent of graphic
presentations.

TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA'’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and
feeds, providing information desk and personal
search support, and enabling data exchange
services.

For more information about the NASA STI
program, see the following:

Access the NASA STI program home page
at http://www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Phone the NASA STI Information Desk at
757-864-9658

Write to:

NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM-2019-220456

UAS Service Supplier Checkout

How UTM Confirmed Readiness of Flight Tests with UAS Service
Suppliers

Irene Skupniewicz Smith
Ames Research Center, Moffett Field, California

Joseph L. Rios
Ames Research Center, Moffett Field, California

Daniel Mulfinger
Ames Research Center, Moffett Field, California

Vijay Baskaran, SGT, Inc.
Ames Research Center, Moffett Field, California

Punam Verma, Universities Space Research Association
Ames Research Center, Moffett Field, California

National Aeronautics
and Space Administration

Ames Research Center
Moffett Field, California 94035-1000

December 2019

https://atmconfluence.arc.nasa.gov/display/UTM/USS+Checkout%3A+How+UTM+Confirmed+Readiness+of+Flight+Tests+with+UAS+Service+Suppliers
https://atmconfluence.arc.nasa.gov/display/UTM/USS+Checkout%3A+How+UTM+Confirmed+Readiness+of+Flight+Tests+with+UAS+Service+Suppliers

This report is available in electronic form at

https://www.sti.nasa.gov

Introduction

NASA collaborated with industry partners to develop and test the small Unmanned Aircraft
System (sUAS) Traffic Management (UTM) research platform, a software prototype used for
developing airspace integration requirements for small, low altitude sUAS operations. The
lessons learned from these activities will help inform the Federal Aviation Administration (FAA)
on what is needed to safely manage sUAS operations. A core component of the UTM platform
is the UAS Service Supplier (USS), which acts as a communications bridge between federated
UTM actors to support Operators’ abilities to meet the regulatory and operational requirements
for UAS operations. USSs may also provide other value-added services to support UTM
participants as market forces create opportunity to meet business needs.

As the UTM teams began USS flight tests, NASA quickly found that it was difficult to get a
dozen independently-developed USSs functioning at comparable quality levels to ensure a level
of system stability acceptable for NASA UTM flight tests. Also, NASA anticipated that the FAA
would encounter similar challenges when they begin to register USSs for operational use.
These realizations led to the development of USS Checkout.

USS Checkout is a set of NASA processes, and automated or semi-automated tools, designed
to increase flight test efficiency as well as increase the quality of airspace management
software. Since the tests are written against a specification, the USS Checkout also functions
as a USS requirements test.

We tested various implementations of USS Checkouts during Technology Capability Level
(TCL)-2, TCL 3 and TCL 4 flight tests [tcl2][tcI3][tcl4] with varying degrees of success. As the
USS Checkout process evolved, we learned that a good USS Checkout process is balanced for
simplicity versus test coverage, and is amenable to automation. We also learned that when
USS Checkout is a USS prerequisite for flight tests, flight tests were more efficient and effective.

Background

A major delivery of UTM is the USS Specification (USS Spec) [Rios-spec] which consists of a
set of documents that define the expected capabilities and software requirements of a USS.
Over the course of UTM, the USS Spec was extended with features novel to sUAS airspace
management including negotiations, public safety and web-based authorization. Its
requirements were iteratively tested with our USS partners and eventually decided by
consensus across the USSs, the UTM working groups, and NASA. During this iterative
process, new requirements were added, some requirements were changed and other
requirements were dropped. To manage the publication of the USS Spec to our partners,
NASA applied version control to the USS Spec and announced the USS Spec releases to USSs
in advance of flight tests.

5

UTM partners gathered in NASA flight tests to demonstrate and validate UTM concepts such as
negotiation, strategic deconfliction and public safety. Some partners provided USSs, and other
partners provided Ground Control Software (GCS), displays and vehicles. Some flight
operations used vehicle hardware, and other operations were simulated.

USSs share data which is encoded as “data models.” The process of sharing data models
between two software services is called a “data exchange.” Each service implements an
application programming interface (API) which contains a set of “endpoints,” at least one
endpoint for each data model.

USS developers began by testing their services in isolation from other USSs. NASA's
expectation was that flight test participants were thoroughly tested against the USS Spec but we
soon discovered that we had a "weakest link in the chain" problem. Failure of one data
exchange in a single USS could cause other data exchanges to also fail, and the entire test may
be blocked and may need to be discarded, which in turn may impact the efforts of dozens of
personnel, and hardware and software resources. The cost of discarding a hardware test is
much higher than the cost of discarding a simulated test because a pilot may need to recheck
the safety of the site, or swap a battery, creating risk of weakened or invalidated NASA research
data. Thus the weakest link can jeopardize an entire scenario.

For example, a negotiation scenario is highly interdependent. In the first set of data exchanges,
all USSs deconflict their proposed UTM Operations by interacting with the UTM Discovery
Service. If a proposed UTM Operation intersects with another UTM Operation which has
already been accepted, the proposing USS must either withdraw or negotiate. If the proposing
USS wishes to negotiate, it will send a NegotiationMessage data model whereupon the other
USS responds with additional data exchanges until a negotiation agreement is complete. In this
set of interdependent data exchanges, all data models are validated. If one USS sends invalid
data (such as a timestamp that is in the past) the entire protocol fails.

This is not to say that the USSs were built with bad quality, or with disregard to the specification.
Rather, NASA'’s flight tests aligned with high complexity in project management models because
they had novel concepts, differentiation of participants and interdependencies between
processes [Cristobal]. USS industry partner organization were both large corporations and
small companies with varying business goals and differences in available resources. As
described in this document, the USS spec has hundreds of requirements, thousands of data
model validations and interrelated protocols. This document describes how NASA tried to solve
the weakest link problem, and summarizes the evolution of the checkout process through TCL
2, TCL3and TCL 4.

Checkouts for TCL 2

TCL 2 UTM did not include what is understood today as a USS; rather, the TCL 2 concepts
defined a “UTM Client,” implemented by NASA partners, and a “UTM System,” directly provided
by NASA. The UTM System provided deconfliction services and an Operator interface, and the
UTM Client consisted of the sUAS Ground Control Station (GCS) and client software to support
the Operator role.

The testing goal was to ensure a properly functioning UTM Client. The test plan was defined by
a set of documents which defined the test cases which were distributed to NASA partners. The
checkout was executed by each partner without the aid of NASA, as well as NASA-guided
executions over telecom. For each test case, the partner recorded result data in “artifact” files.
Figure 1 shows the artifact naming standard for three related Operation Rejection test cases.

1. UTM-IntegrationTest-{yourOrganizationName}-SimpleRejectAsyncResponse-{dateOfTest}-
v{versionNumber}.json

2. UTM-IntegrationTest-{yourOrganizationName}-SimpleRejectJsonQueryResult-{dateOfTest}-

v{versionNumber}.json

3. UTM-IntegrationTest-{yourOrganizationName}-SimpleRejectNationalPark-{dateOfTest}-

v{versionNumber}.json

Figure 1. TCL2 Testing Artifacts

Artifacts allowed NASA to ensure proper formatting and processing of data exchanges.
Artifacts were submitted by the partner and analyzed by a UTM engineer by making queries
against the UTM System’s database.

The TCL 2 checkout flow, described in Figure 2 below, is extracted from the testing documents.
Note that some of the test requirements were driven by NASA’s Airworthiness Flight Safety
Review Board (AFSRB) which encompassed all components of the flight test including the
aircraft itself and the GCS.

Development '”tegfation BN Ac \nce \
/Unit Testin Testing , Testing
9 (Black Box Tests) ‘ Ground Tests)

Series of tests
between UTM
Client and UTM
System without
need for vehicle in
the loop or human
coordination from
server side.

Initial
development of
UTM Client —
requires login
credentials,
vehicle IDs, dev
documentation.

Figure 2. TCL2 UAS Operator Client checkout flow

For Acceptance testing, a NASA engineer conducted scheduled telecoms with each partner.
During these testing sessions, the NASA engineer would request a series of scripted and
unscripted tests to be performed and verify the data received. Typical problems found centered
around individual components such as time synchronization strategies, GMT time conversion,
altitude units of measure, geometry or geography data models, latitude/longitude ordering, and
connections to streaming data. These telecoms were necessary to prepare for effective field
tests, but they were labor-intensive. In the next two years, the solutions to many of these
problems would be encoded into the USS-API interface and its protocols.

TCL 3 USS Checkout using Sandbox Self-Testing

In TCL3, NASA provided a cloud-based sandbox consisting of NASA's Authorization Server, the
Discovery Service and NASA’'s USS (NUSS). USSs were asked to use this sandbox to
collaboratively checkout each others’ systems over a series of NASA-defined tests. This was
accomplished by having at least two other USSs attest that another USS performed a given
exchange appropriately. For example, if the test involved the exchange of position information,
a USS would perform position data exchanges with two other USSs. For these self-tests, the
USS under test determined the testing schedule and checked the actual results with expected
results. Additionally, there was a 1.5 hour human-moderated checkout process wherein the
USS under test would interact via telecom with a NASA engineer. These tests were not
extensive, but added further confidence in the performance of the USS implementations.

The effectiveness of the self-testing was mixed. Test milestones were difficult to coordinate
across a group of USSs while simultaneously developing each USS to a common state of
test-readiness. Also the sandbox did not provide a framework to create reports containing
comparisons of actual data and expected data. In contrast, the human-moderated process,
while labor intensive, was effective because it provided a schedule and also produced
documentation of the expected data which was verified in a semi-automated way using file
transfer.

The documents written for the TCL 2 and TCL 3 checkouts proved to be a great beginning point
to write the scenario documents for the TCL 4 flight tests.

TCL 4 Interface Validation Tests

In TCL 4 we developed a simple and effective mechanism, “Tcl4Valtests” which validated the
data exchanges and their data models in isolation from the rest of the system. Tests were
scheduled to run once a day against all USSs wishing to participate in the next flight test.

Tcl4valtests were provided a number of efficiencies: they did not require set up effort by the
USS, they required a minimum of NASA maintenance and oversight, and they successfully
reduced the amount of shakedown time for flight tests.

As long as a USS’ web service was publicly accessible, Tcl4valtests required no setup from the
USS. Each test case tested a single data exchange which was initiated by NASA. Because
NASA was the only party initiating data exchanges, some data models could not be tested;
nevertheless, Tcldvaltest covered all but two of the sixteen models in the USS-API.

Tcl4valtests were straightforward to maintain because they were automated and USSs could
diagnose most problems without help from NASA engineers. A report generator automatically
produced USS-specific reports for each test execution. The report generator also maintained
an aggregated history of all the test runs. Upon the completion of a test run, NASA uploaded
one report to each USS-specific, cloud-hosted document folder. Report delivery was later fully
automated as described in the later in this document.

As described below, NASA defined a pass-rate requirement of 100% for all participating USSs.
This standard was simple to maintain because the tests were automated and the USSs could
self-diagnose their problems. While NASA was careful not to share a particular USS’ test
results with other USSs, when a USS first achieved 100% compliance, an anonymous
congratulatory announcement was posted to all the USSs. The 100% requirement kept USSs
engaged and spurred USSs forward to meet their development requirements.

In the summer of 2019, the FAA used Tcl4valtest to vet participants of the FAA UTM Pilot
Program [UPP]. We anticipate that, because the FAA will be registering USSs, the FAA may
need a process similar to the USS Checkout process for initial registration as well as for
ongoing re-verification.

Tcl4valtest Enhanced Collaborative Sprints

The rollouts of new requirements and capabilities were managed using Simulation Collaboration
Sprints (Collab Sprints) [Collab Sprint 1]. Each sprint exercised a prescribed set of USS
requirements and capabilities in the USS Spec. Tcldvaltests enhanced the effectiveness of the
Collab Sprints because it compelled USSs to immediately implement USS Spec requirements.

For each sprint, NASA and its partners used telecoms, a chat system, and UTM Github Issues
to discuss what new requirements would be tested. As per agile software methodology for
sprint goals, we chose a cohesive feature set in terms of the impacted software areas. Freezes
for each feature set were announced and carefully managed over the sprints. Collab Sprint end
dates were not altered, rather event implementation requirements, as enforced by Tcl4valtests,
were sometimes relaxed. After the tests were frozen, the USSs had two weeks to finalize their
implementations and achieve a 100% pass rate.

Tcl4valtest Coverage

Each API consists of a set of endpoints and each endpoint has at least one data model that
needs to be validated. For example, when Tcl4valtest, acting as a USS without elevated
privileges, sends a UasVolumeReservation (UVR) to the USS under test, the data exchange
should be rejected. Tcl4valtest verified that the rejection occurred and that a “forbidden”
response code was returned.

Table 1 describes some of the categories needing to be tested for all USSs. In addition to the
22 data models and 25 endpoints for the basic capability set, the USS Spec defines elevated

privileges capabilities, for example, the Public Safety role.

Table 1: Testable Categories

Testable Category Count Covered Not Covered

by tests
USS-API Data Models 22 20 Negotiation models
USS-API Endpoints 25 23 Negotiation endpoint
Public Safety Data Models 2 1 VehicleOperationData
Public Safety APl Endpoints 6 1 5 GET data endpoints

Tcl4valtest Framework

The Tcl4valtest framework was hosted by Jenkins 2.0 and written using JUnit. The software
team could quickly iterate through new versions of the USS-API because this specification is
written in a machine-readable format (swagger 2.0) which supports code generation. Codegen
allowed NASA to create new endpoints and data models, and quickly iterate through new
versions of the Tcl4valtest framework.

In each test case, the test driver initiates a data exchange against the USS under test. In HTTP
terminology, the test driver initiates an HTTP Request (of type GET or PUT) and validates the
HTTP Response. For each data model, Tcl4valtest includes the nominal test case (the “happy
path”) and a set of negative test cases. For example, a negative case for HTTP PUT will
construct a data model that deviates from the USS Spec so as to elicit an appropriate error
response from the USS under test. The HTTP GET tests require more effort to validate
because more than one response can be appropriate.

10

A daily test report is created by JUnit as part of the automation. USS engineers navigate this
HTML report to view summaries, logs and error reports, allowing self-diagnosis. Figure 2 shows
a report fragment with a summary and detail logs.

Tests

Test Duration Result
enhancedOpGETforRandomGufi_notPubsafeScope_expect403 0.646s passed
enhancedOpGETforRandomGufi_readPubsafeScope_expect404 0.746s passed
enhancedOpGETforRandomGufi_writePubsafeScope_expect404 0.618s failed
enhancedOpPUTUssnameMismatchesTokenSubject_403 0.656s passed
enhancedOpPUT_expect204 0.837s passed
enhancedOpPUT_wrongScope_expect403 0.634s passed

Standard output

2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper:319 Nei
2019-02-15 13:30:47 [Test worker] INFO org.springframework.test.context.support.AbstractContextlLoader:264 Could not ¢
2019-02-15 13:30:47 [Test worker] INFO org.springframework.test.context.support.AnnotationConfigContextLoaderUtils:8]

2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper
2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper
2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper
2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper
2019-02-15 13:30:47 [Test worker] INFO org.springframework.boot.test.context.SpringBootTestContextBootstrapper
2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.elevatedPriv.EnhancedOperationsTest:5]1 ***k*kkkkkxrrx*Noxt

2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.elevatedPriv.EnhancedOperationsTest:52 **Setup**
2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.elevatedPriv.EnhancedOperationsTest:59 **Test**
2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.TestBase:133 Resource id: null

2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.TestBase:134 Resource clientID: utmalpha.arc.nasa.gov

1206 Fc
1260 Lc
:209 Cc
:209 Cc
:187 Us
Test*?

2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.TestBase:135 Resource uri: https://utmalpha.arc.nasa.gov/fi
2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.TestBase:136 Resource grantType: client credentials
2019-02-15 13:30:47 [Test worker] INFO gov.nasa.utm.TestBase:139 Resource scope: utm.nasa.gov_write.operation

2019-02-15 13:30:48 [Test worker] INFO gov.nasa.utm.elevatedPriv.EnhancedOperationsTest:14]1 Test name: EnhancedOperat

2019-02-15 13:30:48 [Test worker] INFO gov.nasa.utm.TestBase:147 Resource clientID: utmalpha.arc.nasa.gov

2019-02-15 13:30:48 [Test worker] INFO gov.nasa.utm.TestBase:148 Resource uri: https://uss.airmap.com/enhanced,
2019-02-15 13:30:48 [Test worker] INFO gov.nasa.utm.TestBase:150 Resource scope: utm.nasa.gov_write.operation
2019-02-15 13:30:48 [Test worker] INFO gov.nasa.utm.elevatedPriv.EnhancedOperationsTest:64 *%¥¥xxxxxxxx*¥*End of Test

Figure 2: Tcl4valtest Detailed Report

The reporting framework also generated a daily summary report which NASA posted to its
internal team. With the summary reports, NASA engineers could see other noteworthy results
such as a regression, or a USS achieving 100% compliance for the first time.

Tcl4valtest Results

NASA tracked its own progress using data generated from Tcl4valtests. Figure 3 shows the
percentage of failures over all tests that were deployed at the time of testing. (Figure 4 will
show that tests were continually deployed with each Collab Sprint leading up to the flight tests.)
The X-axis represents the twelve USS participants (names not identified here). The data set
contains 1377 test executions between September 6, 2018 and May 20, 2019. For all 256 days
in this period, NASA delivered a browsable, detailed failure report to 12 USSs. To ensure
privacy between USSs, we posted reports to USS-specific shared folders.

11

100%
90%
0%
0%

o~ 0

0%
0%

un

N G B E F K D C H I A J

Figure 3: Per-USS Mean Score on Tcl4valtests

During the first Collab Sprint, NASA announced that there would be a test freeze and that after
freeze, USSs would have two weeks to reach 100% as a prerequisite for participation in the
flight tests. At the start of each Collab Sprint, NASA added new requirements and their
corresponding Tcl4valtest validation tests.

Table 2 shows events influencing the test results, and Figure 4 shows the test scores as well as
the increase in test coverage.

Table 2: Events Influencing Test Results

Event Dates Tcl4Valtest status

First two Collab Sprints June 2018-August 2018 | 100% requirement announced
Collab Sprint #3 October 2018 200 tests in place

Collab Sprint #4 December 2018 344 tests in place

Freeze date February 22, 2019 344 tests frozen

All USSs met 100% March 6, 2019 Two weeks after freeze

12

TCL 4 shakedowns and flight tests
for Nevada and Texas

May 15-Aug 23, 2019 Regressions

120
Collab Sprints

100

o]

60

40

20

0

9/5/18 10/5/18 11/5/18 12/5/18

400

Test Freeze 100% Requirement

350

300

250

200

150

100

50

1/5/19 2/5/19 3/5/19 4/5/19 5/5/19

—Score NbrTests

Figure 4: Daily Average Score of All USSs and Test Coverage

The blue line, Test Scores, shows that when a group of new validation tests was deployed, USS
scores had a period of volatility or decline. The orange line, Number of Tests, shows that over
the course of the last three sprints, test coverage increased from 200 to 344 tests.

This data shows a relationship between Collab Sprints and a subsequent period of decline. The
cause of this volatility was often that USSs had not yet correctly implemented a new USS
requirement. However sometimes the volatility occurred because NASA needed to adjust the
requirement or the testing of the requirement. Therefore the tests were helpful in refining

NASA’s USS Spec.

13

After test freeze, USSs one by one reached 100%. However after all USSs met 100%, some
USSs had intermittent failures; typically these failures were caused by USS deployment
regressions. Even with 344 tests in place, some data models could not be tested. The
untestable data models were those belonging to a protocol where the USS, (rather than the
Tcl4valtest), initiates the HTTP request. To test these aspects we developed the Protocol
Tests.

TCL 4 Protocol Tests

The primary goals of Protocol Tests were to increase test coverage relative to the Tcl4valtests,
and to implement a solution that could be used by the FAA. Other goals were to enable
USS-initiated, on-demand testing, to enable self-diagnosis and to minimize the effort needed to
add new test cases. To discover the pros and cons of our first implementation, we built a
Minimum Viable Product solution (MVP) [mvp] which was suitable for a usability study. The
usability study was human-moderated using a chat system with nine USSs for three days and
data was collected relative to each USS’ performance.

The tests were executed in isolated geographical regions, also called “grids,” creating a testing
sandbox as shown in Figure 5.

__"-.,I_GET report
grid Strategy A Strategy B
pool UT in first NASA in first
00 I."I e I."Il..ItDU' I."I f utoo "-,\
[usSL— 1 UT-00
= i (USS under test)
NUSS 01 ‘f"r/tgr-x'
u
Opponent & | \;/
02 uT-01
/ nuss
[nuss |\ |<-:_'_‘:"; :
/ \
' & 00,)
1 2 .I.' '.II | e
I-" nuss \ ; ifig-01_ p

14

Figure 5: Protocol Test Sandbox Regions

Figure 5 illustrates the Protocol Test sandbox, consisting of grid pairs over the Antarctic Ocean.
Each USS under test was assigned a single grid pair, one for each of Strategies A and B; this
corresponds to one row in Figure 5. Two weeks before the first day of the usability tests, NASA
produced setup kits containing USS-specific geometric data and operational parameters, and
distributed the kits to each USS.

The sequence diagrams in Figures 6 and 7 below illustrates the two Protocol Test strategies,
using the negotiation protocol for illustration. Strategy A verifies that the USS under test acts
properly when it receives a negotiation request, whereas Strategy B verifies that the USS under
test acts properly when it initiates a negotiation request.

In Figure 6 showing Strategy A, the USS under test “goes first” by planning its operation in an
empty grid. In Figure 7 showing Strategy B, the NUSS opponent goes first.

USS
PTD NUSS - uT
Grid Report
Plan gperation
PTD detects new UT operation vf.'ith testiD ‘;negntiaticin_a'
Plan operation which intersects .
PUT NegotiationMessage INTERSECTION [REQUESTED -

React jto the Negotiation request

Cet evidence of reaction -

Assert valid reaction and write to report

Test case 'negotiation_a' is dohe; execute other cases

Create report

Post report

Cet report
€ p

15

Figure 6: Verifying that a Negotiation Request is Handled using Strategy A

Figure 6 shows how NASA verifies that the USS under test acts properly when it receives a
negotiation request. The actors in Figure 6 are the Protocol Test Driver (PTD), the NUSS
opponent, and the USS under test. The “Grid” repository is the UTM Discovery Service which
provides deconfliction services. The “Report” repository is a shared, cloud-based document
store that is accessible to the USS under test.

As per Figure 6, when the USS under test plans its Operation, the PTD acts as the opponent
and plans an intersecting Operation. Next, in accordance with the USS Spec, the PTD
requests negotiation. Upon completion of the negotiation protocol, the PTD collects evidence of
the resulting negotiation by inspecting NUSS data, and determines whether or not this test
passed. Finally, the PTD generates the test report and transfers the report to the shared
repository.

Uss

PTD NUSS : uT
Grid Report

Plan operation

S
-
PTD ensures A-Grids are always pre-populated with NUSS operation

__ Plan gperation which intersects

-

_ PUT NegotiatignMessage INTERSECTION_REQUESTED

React tg the Negotiation request

k.
=

< Get reply from|the reaction

Get evidence of the Negotiation Message exchange _
e

Assert valid exchange and write to report

PTD tears downs and pre-populates: grid for next test

Test case 'negotiation_b' is done; execute other cases

Create report

Post report

Y

‘ ‘ < GCet report

Figure 7: Testing Negotiation using Strategy B

16

Figure 7 shows how NASA verifies that the USS under test acts properly when it initiates a
negotiation request. NUSS goes first to plan its Operation. When the USS under test is ready
to initiate the negotiation test, the USS plans an Operation which intersects the NUSS
Operation. The USS under test sends a negotiation request to NUSS. The PTD validates
whether NUSS properly received the negotiation request and then completes the test by
generating the test report.

The Protocol Test Driver

As shown in Figure 8, the Protocol Test Driver runs test cases concurrently using a pool of
virtual machines.

Listener
and
Execution Pool Dispatcher

P SR

Test Runner

& Reporter /!

Figure 8: Protocol Test Driver

Concurrency is possible because test execution and report generation are isolated and reports
are labeled uniquely using the combination of USS name, testID and Operation ID. The report
history is stored in NASA’s local machine as well as in the shared report repository.

After the completion of the MVP test, NASA implemented fully-automatic report delivery
whereby USS-specific reports were pushed to a USS-specific AWS S3 bucket.

Results of Usability Testing

In our MVP usability testing, about 40% of the test executions resulted in automatic test
validation and report generation. The Protocol Test helped partners find bugs in their USSs and

17

their associated tooling. Because USSs were injecting their own Operations, our partners used
various front end tools in addition to their USS. Engineers using these tools sometimes had
usability errors such as mis-spellings and incorrect altitude units of measure.

The MVP study showed that the dual strategy approach increased test coverage, however the
cost of adding a new test was increased. Going forward, if only a single setup strategy is
implemented, coverage would be lower, but testing would be simpler for both NASA and the
USS developer.

The MVP study demonstrated that the per-USS setup test kits worked well. Geometric flight
data and operational parameters could be predefined and delivered to the USSs and USSs
were able to self-diagnose their protocol failures.

During the MVP study we learned that to implement on-demand testing, the test framework
needed to quickly discover a newly added Operation. The MVP implemented this mechanism
using polling, because at that time NUSS did not offer a streaming endpoint. The polling
implementation introduced a time lag which sometimes cause timing problems in the test suite.
NUSS now has streaming endpoints that can be used for instant discovery.

Conclusion

The Tcl4valtest suite is effective and provides good test coverage, however, some data models
and business logic could not be covered with this approach. The Protocol Tests provided a way
to cover more models, however they required additional development to automate. The MVP
study has informed follow-up requirements for tests that helps to strike the right balance
between complexity and coverage.

The UTM Project expects that the FAA will be involved in some way to approve or “register”
USSs whereby the FAA (or an entity acting on its behalf) can evaluate a USS’ capabilities. In
addition to the basic capabilities of a USS, the FAA may want to vet enhanced USS capabilities
such as the USS Public Safety role. A test process providing even partial coverage provides
abundant, hands-on evidence related to USS capabilities. Moreover, these test suites create a
history of USS capability data.

References

[Collab Sprint 1] Rios, J., Smith, |., Venkatesen, P., Smith, D., Baskaran, V., Jurcak, S., Strauss,
R., lyer, S., Verma, P., “UTM UAS Service Supplier Development: Sprint 1 Toward Technical
Capability Level 4”, NASA Technical Memorandum, NASA/TM-2018-220024, November 2018,
<https://utm.arc.nasa.gov/docs/UTM_UAS_TCL4_ Sprint1_Report.pdf>.

18

https://utm.arc.nasa.gov/docs/UTM_UAS_TCL4_Sprint1_Report.pdf

[Collab Sprint 2] Rios, J., Smith, |., Venkatesen, P., Smith, D., Baskaran, V., Jurcak, S., lyer, S.,
Verma, P., “UTM UAS Service Supplier Development: Sprint 2 Toward Technical Capability
Level 47, NASA Technical Memorandum, NASA/TM-2018-220050, December 2018,
<https://utm.arc.nasa.gov/docs/2018-UTM_UAS_TCL4_ Sprint2_Report_v2.pdf>.

[Cristobal] San Cristébal, J., “Complexity in Project Management”, Procedia Computer Science,
November 2017, <https://www.sciencedirect.com/science/article/pii/S1877050917323001>.

[mvp] Agile Alliance, Minimum Viable Product,
<https://www.agilealliance.org/glossary/mvp/#q=~(infinite~false~filters~(tags~(~'mvp))~searchT
erm~'~sort~false~sortDirection~'asc~page~1)>.

[North] North, D., “Faster Organizations, Faster Software”,
2006,<https://dannorth.net/introducing-bdd/>

[Rios-security] Rios, J., Smith, I., Venkatesen, P., “UTM Authentication and Authorization
Framework”, NASA Technical Memorandum, NASA/TM-2019-20364, September 2019.

[Rios-spec] Rios, J., et al., “UAS Service Supplier Specification,” NASA Technical
Memorandum, NASA/TM-2019-220376, October 2019.

[tlc2] UAS Technical Capability Level 2 Unmanned Aircraft System Traffic Management (UTM)
Flight Demonstration: Description and Analysis, Homola, J., Christoph M., Dao, Q., Claudatos,
L., Martin,L., Mercer, J., IEEE-DASC-September 17-21, 2017 St. Petersburg, FL.

[tcI3] Flight Demonstration of Unmanned Aircraft System (UAS) Traffic Management (UTM) at
Technical Capability Level 3, Aweiss, A., J. Homola J., Rios, J., Jung, J., Johnson, M., Mercer,
J., Modi, H., Torres, E., IEEE-DASC, September 8-12, 2019, San Diego, CA.

[tcl4] Flight Demonstration of Unmanned Aircraft System (UAS) Traffic Management (UTM) at
Technical Capability Level 4, not yet published.

[UPP] Federal Aviation Administration, “UTM Pilot Program”, 2018,
<https://www.faa.gov/uas/research_development/traffic_management/utm_pilot_program/>.

19

https://utm.arc.nasa.gov/docs/2018-UTM_UAS_TCL4_Sprint2_Report_v2.pdf
https://www.sciencedirect.com/science/article/pii/S1877050917323001
https://www.agilealliance.org/glossary/mvp/#q=~(infinite~false~filters~(tags~(~'mvp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/mvp/#q=~(infinite~false~filters~(tags~(~'mvp))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://dannorth.net/introducing-bdd/
https://utm.arc.nasa.gov/docs/Homola_DASC2017.pdf
https://utm.arc.nasa.gov/docs/Homola_DASC2017.pdf
https://www.faa.gov/uas/research_development/traffic_management/utm_pilot_program/

