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Cloud and precipitation systems over the tropics and subtropics are simulated with a multi-
scale modeling framework (MMF) and compared against the TRMM radar precipitation features
(RPFs) product. A methodology, in close analogy to the TRMM RPFs, is developed to analyze
simulated cloud precipitating structures from the embedded two-dimensional cloud-resolving
models (CRMs) within an MMF. Despite the two-dimensionality of the CRMs, the simulated
RPFs population distribution, and horizontal and vertical structure are in good agreement with
TRMM observations. However, some deficits are also found in the model simulations. The
model tends to overestimate mean convective precipitation rates for RPFs with a size less than
100 km, contributing to the excessive precipitation biases in the warm pool and western Pacific,
western and northern India Ocean, and eastern Pacific commonly found in most MMFs. For
large features with a size greater than 150 km, both convective and stratiform rain rates are
underestimated. The distribution of maximum radar echo top heights as a function of RPF size
is well simulated except the model tends to underestimate the occurrence frequency of
maximum heights greater than 15 km. The maximum echo top heights for convective cells
embedded within large RPFs with a size greater than 150 km are also underestimated. The
cyclic lateral boundary with a limited model domain generates artificial occurrences for RPFs
with a size close to the model domain size, producing a significant contribution to the total
rainfall due to their sizes. This cyclic lateral boundary effect can be easily identified and
guantified in both probability and cumulative distribution functions of RPFs. The geophysical
distribution of the population of the largest RPFs in the control experiment shows they are
mainly located in the Subtropics but also partially contribute to the common MMF biases of
excessive precipitation in the Tropics. Sensitivity experiments using CRMs with different domain
sizes and different grid spacings show larger domains (higher resolution) tend to shift the RPFs
distribution to large (small) sizes. The cyclic lateral boundary biases increase as CRM domain
size decreases. The impacts of model horizontal and vertical resolution on simulated convective
systems are also investigated.
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