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Background

● The study of autoignition of an isolated, single droplet is important from the spray 

combustion point of view, which is quite complex

● Earlier experimental and numerical simulations with detailed chemistry

o Tanabe et al. (1994, 1995, 1996)

o Moriue et al. (2000)

o Eigenbrod et al. (2016)

o Cuoci et al. (2015)           Numerical simulation

● Many aspects of single, isolated fuel droplet autoignition still remains to be thoroughly 

investigated, particularly at high pressures (both chemical and physical processes are 

important)

● A new experimental hardware is being developed at NASA Glenn to study high pressure 

droplet ignition and combustion

● Preliminary results using the newly developed apparatus is presented here
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NASA Glenn High Pressure Experimental Hardware

o Combustion chamber rated up to 

100 bar and 1000 K

o High speed shadowgraph imaging –

3000 frames per second

o Color camera images at 

300 frames per second

o PMT tube recorded at 1000 Hz

o 3-thermocouples (close to the droplet, oven and 

deployment)



4

Test matrix shown on homogeneous mixture induction time map (CANTERA)

 Homogeneous stoichiometric n-

dodecane/air mixture

 Experimental conditions:

o P=3 atm T= 560 to 780 K

o T=603 K and P = 2 to 25 atm

 T varying case NTC behavior

 P varying case remains in Low-T 

region: t1/t2 varies (~1 to 400) as 

P increases from 1 to 25 atm

555 K625 K714 K833 K



5

High speed video

n-dodecane droplet in air

autoignition

P = 20 atm

T = 603 K

D0 = 1.1 mm

captured at 3000 fps

playback at 30 fps

Pc = 18.1 atm

Tc =  658.2 K
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Temperature and diameter histories

P=3 atm

T=623 K
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Four different ignition scenarios

1. Cool flame only mode (CFO):

Observed at low pressures and low temperatures (e.g., P=2 atm T=603)

droplet lifetime is shorter than second induction time

2. Cool flame followed by hot flame mode (CF-HF):

Cool flame propagates and surrounds the droplet, followed by hot flame

in its wake. Observed at higher pressures and temperatures (e.g., P=3 

atm and T =643 K)

3. Cool flame and hot flame mode (CF&HF):

As the cool flame propagates, hot flame kernel appears before the CF 

reaches the droplet. Both cool and hot flame structures appear for a brief 

period.

4. Hot flame only mode (HF):

Observed at high temperatures. Cool flame never forms. The temperature 

is above the “upper-turnover” temperature (e.g, P=3 atm T=783 K)
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CF-HF mode: ( 3 atm 623 K)

High Pressure Transcritical Combustion  (HPTC)Autoignition modes

CF&HF mode: ( 10 atm 600 K)

1/3 s  time step

2/3 ms time step
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Cool and hot flame starting locations:

Lcs

P = 3 atm and 584 K < T < 780 K

Cool flame forms closer to the droplet as

The temperature is increased

Lcs ~ U tc ; tc ~ t1

Ec ~ 17.4 kcal/mole

Compared to 28 kcal/mole for homogeneous 

mixture. Physical delay is important

Lhs – controlled by second induction time

Eh ~ - 4 kcal/mole

t2 increase with T in the NTC region
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High Pressure Transcritical Combustion  (HPTC)

Lcs

Cool and hot flame starting locations:

T = 603 K;   2 atm < P < 25 atm

Non-Monotonic Pressure 

Dependence

Initial decrease in Lcs is caused by 

increased reactivity

Buoyancy induced flow dominates 

above 15 atm (Gr – increases)
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High Pressure Transcritical Combustion  (HPTC)Cool-flame front position as function of time
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High Pressure Transcritical Combustion  (HPTC)Cool-flame speed

Initially a constant speed is observed

3 atm and 603K => 14.5 mm/s

10 atm and 603 K => 23.5 mm/s

Constant-speed duration decreases 

as ambient T or P is increased

Theories of cool-flame propagation 

are needed 
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High Pressure Transcritical Combustion  (HPTC)Induction times

P = 3 atm and 584 K < T < 780 K



14

High Pressure Transcritical Combustion  (HPTC)Induction times

T = 603 K;   2 atm < P < 25 atm

Physical Delays Dominant at High Pressures and at Low Temperatures.
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High Pressure Transcritical Combustion  (HPTC)Conclusions and Future Work

o Ignition dynamics at normal gravity are much more complex 
than in microgravity because of the downward moving buoyant 
plume.

o Physical ignition delays are most important for the first-stage at 
high temperatures and low pressures, and for the Second Stage 
at low temperatures and high pressures.

o Quasi-steady Cool-Flame Propagation appears to occur in these 
experiments at measurable velocities of a few centimeters per 
second, calling for calculations to be made for comparison.

o Diffusion and heat conduction around the droplet cause 
subcritical conditions to persist at supercritical pressures and 
temperatures. 
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Questions?


