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Scalable Real Time Photon Counting Ground

Receiver System
Motivation:

« Affordable real time photon counting optical ground receivers are needed to
enable space to earth communications for both public and private applications.

Strategy:

* Develop a photon counting Real Time Optical Receiver (RealTOR) that includes
the aft optics, single photon counting detector, and real time FPGA-based
receiver.
= Scalable = Lower production cost and enable expandable architecture
" Create path to commercialization.

Goals:

 Use components already on the market as much as possible.

* Create a scalable design that can be used for a variety of:
= data rates (up to 528 Mbps)
= telescope aperture sizes
= environmental factors (background light and atmospheric turbulence levels).
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RealTOR a scalable COTS ground receiver conc’f

* Considering many COTS components and architecture solutionsf?

* Current solution under investigation:
— Photonic lantern

— Single-pixel array of commercial off the shelf single photon detectors sha
one cryostat. Detectors are fiber coupled to cryostat with SMFs or FMFs.

— CCSDS telemetry (downlink) optical waveform on a real time FPGA-basé |

receiver

Light from Back-end
Telescope Optics
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* A solution to deliver light from receiver telescope to detectors

OO0

* Photonic Lanterns:
v Collects the light aft of the telescope into a multi-mode fiber.
v Splits the multimode light to multiple smaller core fibers (traditionall y S Vi
v" Maijority of length is in graded index small core fiber minimizing jltte"

Multi-moded
Light from aft of
Receiver
Telescope

From: S. G. Leon-Saval et al. “Multimode fiber devices with single-mode performance,” Opt. Lett. 30, 2545-2547 (2005) 4.
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Evenly split light to detectors to minimize detector blocklng loss. J _
Maximize light coupled into multiple, single mode fiber (SMF) or few mode flbeF(FMF)
Minimize pulse dispersion (jitter) added to system.
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Atmospheric Effects on Lantern Coupling Efficiency

Transmitting Spacecraft

* The laser transmitted from a spacecraft
originates as a Gaussian shape (L,,)

 Atmosphere distorts the beam profile and
scatters energy into higher-order spatial
modes

* The number of fiber spatial modes coupled by
a photonic lantern matches the sum of the
modes supported by the output fibers

OL. 006 | Q0
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A 7:1 SMF photonic lantern can couple these 7 spatial modes .

Effect of atmosphere on beam intensity profile

Optical
Ground
Receiver

No Turbulence Some Turbulence

Therefore: Higher turbulence = higher number of lantern output fibers needed for efficient
coupling = higher number of detectors = increased cost.




A possible solution: Few Mode Fiber Lanterns

* For higher turbulence applications another
solution to is needed to increase mode
coupling capacity

* Since single photon detectors can be coupled
with FMFs without loss, we can create a new
type of lantern with FMFs

Increase the number of modes supported by each
fiber output leg (1 mode—=>6 modes)

* Enables higher number of modes coupled with same
number of detectors (7 fibers = 42 modes)

* Compare 7:1 SMF lantern to 7:1 FMF lantern

* Coupling efficiency of fiber modes

* Effect on Coupling efficiency of:
> Free space Gaussian input numerical aperture
> Free space Gaussian input mode field diameter

* Analysis of Jitter added to system
* Evenness of power splitting to each lantern leg.
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7:1 FMF Photonic Lantern fabricated at GRC

At d

Light from Back-
end Telescope -
Optics :

|
30 um
(core)

1
250 pm
(inner dia.)

40 mm

Section 1 = -
Light is coupled out of 7 —_— Section 2

Cladding

Light from
telescope couples
into MMF side of
lantern

N

Light is split into 7
Multimode input of lantern FMF’s

An unpackaged 7:1 FMF photonic lantern. A packaged 7:1 FMF photonic lantern.
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Measured Coupling Efficiency for Fiber Spatial __ l.
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Measured Power Split
SMF photonic lantern FMF photonic lante

MMF input of lanterns
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Results imply that a beam varying in distortion caused by atmospheric conditions would produce less varied splitting

with a FMF lantern. Therefore a FMF lantern would have lower detector blocking loss.
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Commercial SNSPD Detector System Description

Opus One™ from Quantum Opus, LLC

System Parameters Previous Current Specs
Specs

Wavelength 1550 nm 1550 nm
Fiber coupling SMF SMF and FMF
Dark counts <100 cps < 103 cps (SMF) Quantum Opus SNSPD
< 10° cps (FMF) and electronics
Reset time 50 ns 20 ns
Jitter (SNSPD + Amp) <100 ps 45 - 60 ps min
Electronics Room temp Room temp
amplifiers, 500 amplifiers, 500
MHz, AC- MHz, DC-coupled
coupled

Evaluating differences versus previous
year’s data set: DC-coupled
electronics and few mode fiber
coupling
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Helium compressor

Amplitude (mV)
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Detector Pulse
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Parameter Measured '

Reset time (90/10) 20 ns

Pulse height 300-600 mV

Rising edge 850 ps
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Single-Mode and Few-Mode Fiber Coupling

* Single mode fiber is standard SMF-28
* Few mode fiber (FMF) is 20-micron core graded index

* FMF propagates up to 6 LP modes (ignoring
pOlarization): LPOl' LPllel LP110, LPZleI LP210, LPOZ

LPy, LP,, LPZ;

Theoretical mode profile

N
&
¥

Fiber “butt-coupling” to detectors Measured mode profile at detector box{{f;i

Detection Efficiency Per Mode

Il FMF
094 B SMF
0.8+ FMF mode avg
== T71.56
0.7 4
Miller, et. al. Optics Express 2011 http://www.quantumopus.com/web/product-info/custom-products/ 5’ 061
-% 0.5 a
= 3
M o044 ps;
FMF-coupled max detection efficiency = 60% — 80% 031
SMF mode av
per mode, = 71% average over all modes —about 4 021 S
dB improvement over SMF coupling 0.1
0.0 -
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http://www.quantumopus.com/web/product-info/custom-products/

System Detection Efficiency (SDE) vs. Bias Curr'

SDE = (R,yut —BCR)/R;p,

R,y = measured output count rate
BCR = measured background count rate
R;, = estimated input photon rate

Power
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Single Detector Count Rate and lJitter

Counts Out vs. Photon Flux
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e Linear response to input photon flux up to
= 28 Mcps for = 65 M-photons/s input; 3
dB blocking loss

 Maximum achievable count rate on the
order of 85 — 100 Mcps

* Trade-off between count rate and
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Optical Communications System Test Bed

* Testing performed with Optical Transmitter Link Emulation
the fOllOWlng CCSDS HPE SDR: CCSDS Optical Communications
. Waveform ,
:NaVEfOI'm. | . (:g\'lc\;cearll
PPM-32 Driver Driver monitor meter

* Coderate:1/3 Amplifier Amplifier
* Slot width: 1 ns
* Data rate: 40 Mbps

EO Modulator EO Modulator

Variable 50/50
Attenuator splitter

¢ |nC|UdES two. EO . Optical Receiver Polarization
modulators in cascaded in B T e controllers
series with a time offset A SNSPD 1 o /%
. . . | SMF
in the electrical signal A — T e
driving the modulators, Output ples \\ T | X
improving the extinction p————, ber optic
ratlo Oscillosco:ceOupler

 No additional noise Bias;LNA S
- Bias/LNA
I nse rtEd Control &
e Kb=0.0001 baCkground Software Receiver

.

photons/slot
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Optical Receiver — Waveform

* Detector pulses are sampled at 2 GHz with
an oscilloscope and post-processed using a

Matlab receiver model

 SCPPM decoder performs iterative
decoding using the BCJR algorithm

* Sample jitter introduced by 2 GHz sampling

of 850 ps detector pulse is “45 ps RMS

* Calculated total receiver jitter:
* Channel 1: 61 ps RMS
* Channel 2: 68 ps RMS

SPIE Photonics West 2019
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System Testing Results

* PPM-32
Cod t 1/3 0 Bit Error Rate (BER) for PPM-32, 40 Mbps
* ode rate 107 3 i |
5 —— Capacity s
e 1 ns slot width : :easure:, E:; -
easureq,
-1 ) i
 Guard band: 8 slots (25%) 10 —— Sim, 0yy:=61 ps (RMS)
40 Mbobs dat t ] —=- Sim, 0ss=68 ps (RMS)
¢ PS dala rate
102 -
Kb =0.0001 background - '
photons/slot @
1077 5
1074 5
107
-20 -19 -18 -17

Ks/M (dB)
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Vadatech Platform Overview

Description

* Industry standard modular uTCA form factor — same as SGSS
* High bandwidth backplane connects multiple FPGA or CPU cards together
* Ethernet interfaces for control and data

* GPS Receiver — can act as the master clock, IEEE1588

* Remote reconfiguration/debugging through JTAG over Ethernet
FMC follows VITA 57

Common Carrier Card: AMC 516

e Xilinx Virtex 7 690T -2 speed grade

* FreeScale QorlQ P2040 PowerPC running Linux
* 2 GBRAM to FPGA, 1 GB RAM to PowerPC

Upgrades are

planned to the
Receiver: FMC211 platform once the
* FMC211: ADC EV10AS150B 10-bit @ 2.6 GSps (ADC) necessary
* Final solution dependent on channel combining method capability is

Transmitter: determined
« FMC218: AD9739 DAC 14-bit at 2.5 GSps :
e Custom Card commercialized FMC218

(DAC)

Custom Card
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FPGA-based Simple Receiver

¢ & (@ 172.23.40.107/hrhv_datapath.html ww I @ =

(€)

Purpose:

* Implement a simple receive waveform which
checks for bit errors produced by the

NASA Glenn Research Center

CCSDS Optical HPE Telemetry Link Simple Receiver
Successfully Initialized
Remote STRS Handle => 12648454

transmitter. B S TR
Accom plish ments: Modulation Select 2: PPM-16 v
Code Rate Select 2:2f3 ~
v’ Completed development of VHDL for simple Slot Clock nagH v
r e C e |V e r Pulse Detect Threshold 860
’ Pulse Detect Memory 4
v’ Completed development of GUI, based on the Timing Recovery Symbols %
STRS Core Flight implementation. CSM Threshold 0
CSM Lock Threshold 2
v’ Successfully received the transmitted signal from TFSM Threshold 5
y
FPGA-based transmitter. TFSM Lock Threshold 2
Tracking Loop Lock v
Next StepS 9 Tracking Errors ]
. . . Guard Slot Errors 2]
> Verify receiver Ethernet output interface Slot Mappor Errors -
> Resume development on SCPPM decoder and — _ :
timing recovery tracking loop P —— -
CRC Errors [¢]
Good CRC 183

Picture shows the optical simple receive wavefo
operation. The GUI is based on the STRS Core
implementation on the Vadatech platform.



Simple Receive Waveform Block Diagram

* Implements a FPGA Wrapper
simple receive — ¢
waveform for the | ra;j?;?“l Optical Simple Receive Waveform

CCSDS HPE
transmitter

* Checks for bit
errors produced by
the transmitter.

* Sends out received

Ethernet packets
for analysis

2 GHzADC

a
Processing Top




Channel Combining

 10-bit ADC per detector A|  Photonic Detectors Phase Vadatech platform
channel lantern shifters |
 2GHz Sample clock with Bl % :‘ i
. . . — ———— - 4
interpolation in FPGA - ng =  — e
* Can be commercialized M e
through Vadatech
e Passive channel B Photonic Detectors Phase Vadatech platform
combining reduces lantern shifters
phase alignment 7 .*J:
difficulty and hardware - T e 3 praes g-g
required making system s & =%
more scalable. - |
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Summary

Few mode fiber coupling is a viable solution for a scalable photon counting
ground receiver, adding additional performance without detector redesign

» Increases mode coupling capacity at higher the turbulence levels without increasing number
of detectors.

> Splitting is more even than SMF lantern leading to reduction in detector blocking loss

« Commercial SNSPDs can be arrayed in parallel to reduce blocking loss and
scaled to reach higher data rates

» Can achieve 40 Mbps with a single SNSPD in an SCPPM link
» Can be coupled to FMF with minimal loss for ~ 4 dB detection gain vs. SMF

BER curve results from the system test bed align with simulation results
> Sources of loss in the system have been accurately characterized
» Model can be used to predict performance of other waveforms

Real-time receiver VHDL implementation in progress
> Simple receiver for transmitter bit error successfully implemented

» Proceeding with development on SCPPM decoder and timing recovery tracking loop
» Determining channel combining options for performance and scalability

e /J
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