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Use of GNSS in Low Earth Orbit is now common and 
higher altitude applications are rapidly emerging. We 
stand at a moment of great potential, as several trends 
converge:

• Improvement and expansion of GNSS constellations

• Advancements in receiver technology

• Increased global interest in space exploration

This talk surveys the current state of GNSS, discusses
the most ambitious space applications, and charts a way
forward to the new frontier of GNSS-based navigation.
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The GNSS Frontier
A d v a n c i n g  S p a c e  U s e  o f  G l o b a l  N a v i g a t i o n  

S a t e l l i t e  S y s t e m s



GNSS PROVIDERS
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NASA’s Role in US PNT Policy
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GNSS Constellations: Status
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System Blocks Signals Sats (May 2019)

GPS IIA, IIR
IIR-M
IIF
III

L1 C/A, L1/L2 P(Y)
+L2C
+L5
+L1C

1, 11
7
12
(1)*

GLONASS M
M+
K1

L1/L2 C/A+P
L1/L2 C/A+P, L3 (CDMA)
L1/L2 C/A+P, L3 (CDMA)

21+(1)
2
1+(1)

BeiDou BDS-2 MEO, IGSO, GEO
BDS-3S MEO, IGSO
BDS-3 MEO, IGSO, GEO

B1-2, B2b, B3
B1, B1-2, B2a/b/ab, B3
B1, B1-2, B2a/b/ab, B3

3, 7, 5
(2), (2)
18, (1), (1)

Galileo IOV
FOC

E1, E6, E5a/b/ab
E1, E6, E5a/b/ab

3+(1)
19+(3)

QZSS Block I
Block II IGSO, GEO

L1 C/A, L1C, L2C, L5, SAIF, E6 LEX
L1 C/A, L1C, L2C, L5, L1S, E6, L5S

1
2, 1

NavIC IGSO, GEO L5, S 4+(1), 3

From “Global Navigation Satellite Systems: What’s Up?” by Dr. Oliver Montenbruck [1]

*parenthesis indicate non-operational
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• New civilian signals
• Flex power
• GPS III

GPS Status
Block IIA Block IIR Block IIR-M Block IIF GPS III/IIF

1 Operational 11 Operational 7 Operational 12 Operational 1 in Checkout
• Coarse Acquistion

(C/A) code on L1 
frequency for civil 
users

• Precise P(Y) code 
on L1/L2 
frequencies for 
military users

• 7.5-year design 
lifespan

• Launched in 1990 
-1997

• C/A code on L1
• P(Y) code on L1 & 

L2

• On-board clock 
monitoring

• 7.5-year design 
lifespan

• Launched in 1997-
2004

• All legacy 
signals

• 2nd civil signal on 
L2 (L2C)

• New military M 
code signals for 
enhanced jam 
resistance

• Flexible power 
levels for military 
signals

• 7.5-year design 
lifespan

• Launched in 
2005-2009

• All Block 11R-M 
signals

• 3rd civil signal on L5 
frequency (L5)

• Advanced atomic 
clocks

• Improved accuracy, 
signal strength, and 
quality

• 12-year design 
lifespan

• Launched in 2010-
2016

• All Block 11F signals
• 4th civil signal on L1 

(L1C)

• Enhanced signal 
reliability, accuracy 
and integrity

• No selective 
availability 

• 12-year design 
lifespan

• 111F: laser 
reflectors; search 
and rescue payload 

• First launch in 2018
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• New civilian signals: 
L2C, L5, L1C

• 3 frequencies
• Modern signal 

design, CNAV
• Designated channels 

for codeless tracking
• Flex power

• Transmit power 
variation for jamming 
resistance

• Available on IIR-M 
and IIF satellites

L2C L5 L1C

GPS Status



GPS Status: GPS III
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GPS III (SV01-10)
• New Lockheed Martin spacecraft, digital 

signal generation
• Includes L1C civil signal
• SV01 launched 23 Dec. 2018 (PRN4, 

currently set unhealthy during checkout)
• SV02 launched 22 Aug. 2019

GPS IIIF (SV11-32)
• Follow-on Block III production
• Contract awarded to Lockheed Martin 

Sept. 2018
• Will include Laser Retro-reflector Arrays 

(LRA) and Search and Rescue payloads

SV01 launch

SV02 launch

SV11-32
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BeiDou Status:
• BDS-3S: 5 experimental sats (2015-2016), inactive
• BDS-3: Global Constellation, 18 MEO sats (2017-2018), 

testing 1 IGSO and 1 GEO

GLONASS Status:
• 27 sats, 24 operational (2 in maintenance, 1 spare, 1 testing)
• Fleet predominantly block M, block K1 upcoming (2 launched)

Galileo Status:
• 22 operational sats, 5+ above 5° Elevation, 2 in eccentric orbits (set 

unhealthy)
• High accuracy (SISRE ~20 cm RMS, ~40 cm 95%) 

A Global System: 
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QZSS Status
• 4 operational sats
• Fully operational since November 2018

Regional Systems

NavIC Status (previously IRNSS)
• 8 sats, 7 operational
• Launches 2013-2018
• Fully operational



SPACE USE OF GNSS
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Routine Use of GNSS in Space
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Interagency Operations Advisory Group (IOAG) 
shows 102 current or upcoming civil missions 
utilizing GNSS

• 7 international space agencies
This data does not include:

• Commercial users 
• Other government space agencies
• Military users

Hundreds of satellites have likely used 
GNSS in space since the 1980s
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Active Space Use Cases

Earth Sciences Launch Vehicle Range Ops Attitude Determination

Real-Time On-Board Navigation Time Synchronization



• Significantly improves real-time navigation 
performance (from km-class to meter-class)

• Supports quick trajectory maneuver recovery (from 5-
10 hours to minutes)

• GNSS timing reduces need for expensive on-board 
clocks (from $100sK-$1M to $15K-$50K)

• Supports increased satellite autonomy, lowering 
mission operations costs (savings up to $500-
$750K/year)

• Enables new/enhanced capabilities and better 
performance for High Earth Orbit (HEO) and 
Geosynchronous Earth Orbit (GEO) missions

IMAGE IMAGE

IMAGE IMAGE
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Benefits of GNSS Use in Space



IMAGE IMAGE
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GNSS Service Volumes

Upper Space Service Volume

Lower Space
Service Volume

Terrestrial
Service Volume

Terrestrial Service Volume (surface to 3,000 km 
altitude)

• GNSS utilization similar to Earth surface use
• Accounts for vast majority of space users

Lower Space Service Volume (3,000 km to 
8,000 km)

• Navigation performance impaired by poor geometry, 
Earth occultation, and weak signal strength

Upper Space Service Volume (8,000 km to 
36,000 km)

• Overlaps and extends beyond the GNSS 
constellations

• Navigation beyond constellations dependent on 
reception of signals from the opposite side of Earth 



IMAGE IMAGE
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Earth shadowing

Main lobe signal

Side lobe signal

Signal Reception in the SSV
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The Rise of High Altitude GNSS
Transition from experimentation to 
operational use:

• 1990s: Early flight experiments demonstrated 
basic feasibility-–Equator-S, Falcon Gold

• 2000: Reliable GPS OD at GEO employing a 
bent pipe architecture and ground-based 
receiver (Kronman 2000 [4]) 

• 2001: AMSAT OSCAR-40 mapped GPS main 
and sidelobe signals (Davis et al. 2001 [5])

• 2015: MMS employed GPS operationally at 
76,000 km (recently increased to 187,000 km) 

• 2016–2017: GOES-16/17 employed GPS 
operationally at GEO
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Flight Example: GOES-R Series Weather Satellites
GOES-R, -S, -T, -U: 4th generation
NOAA operational weather satellites
GOES-R/GOES-16 Launch: 19 Nov 2016
GOES-S/GOES-17 Launch: 1 Mar 2018
15-year lifespan, series operational through mid-2030s

GOES-16 image of Hurricane Maria making landfall over Puerto 
Rico, 20 Sep 2017

Features new CONOPS over previous generation:
• Daily low-thrust station-keeping maneuvers, rather than 

annual high-thrust events
• Continuous data collection through maneuvers, <2 hr of 

outage per year
• Tighter navigation accuracy requirements and faster 

cadence needed to support highly increased operational 
tempo

Utilizes GPS sidelobe signals to increase SSV performance and 
ensure continuous availability



GOES-16 GPS Visibility:
• Minimum SVs visible: 7
• DOP 5-10

GOES-16 Navigation Performance (3-sigma)
• Radial: 14.1 m
• In-track: 7.4 m
• Cross-track: 5.1 m

Compare to requirement: (100, 75, 75) m
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Flight Example: GOES-R Series Weather Satellites
Features unique signal reception characteristics
• General Dynamics Viceroy GPS receiver
• Custom receive antenna designed for above-the-

constellation use: max gain at 20° off-nadir
• Tuned to process main lobe spillover and first side 

lobe

Initial GOES-16 performance Winkler et al. 2017 [5]



• Magnetospheric Multi-Scale (MMS) Mission
• Four spacecraft in a HEO form a tetrahedron near 

apogee to study magnetic reconnection energy
• Launched 12 March 2015
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Flight Example: NASA MMS Mission

• Fastest-ever use of GPS
• Velocities over 35,000 km/hr at perigee

• Highest-ever use of GPS
• Phase 1: 12 Earth Radii (RE) apogee (76,000 

km)
• Phase 2B: 25 RE apogee (~150,000 km)
• Additional apogee raising beyond 29 RE (50% 

lunar lunar distance) completed Feb 2019
• GPS enables onboard (autonomous) navigation and 

potentially autonomous station-keeping
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Flight Example: NASA MMS Mission

MMS GPS Visibility
Average of 3 signals tracked near apogee, up to 8

MMS Phase 2B results Winternitz et al. 2017 [7]

MMS Navigation Performance (1-sigma)
Description Phase 1 Phase 2B

Semi-major axis est. under 3 RE
(99%)

2 m 5 m

Orbit position estimation (99%) 12 m 55 m

MMS Navigator System:
• Ultra-stable crystal oscillator (USO)
• Navigator-GPS receiver

• Rad-hard C/A code receiver with fast unaided weak signal 
acquisition (<25 dB-Hz)

• Goddard Enhanced Onboard Navigation System (GEONS)
• UD-factorized Extended Kalman Filter
• Also flying on Terra, GPM, NICER/SEXTANT



IMAGE
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Upper Space Service Volume

Lower Space
Service Volume

Terrestrial
Service 
Volume

MMS Phase 1 
apogee altitude 

(12 RE) 
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Current MMS 
apogee 

altitude (29 RE) 

Where is the GNSS frontier?



THE WAY FORWARD
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as of May 2019



Global Interest in Lunar Exploration
The 14 space agencies of the International 
Space Exploration Coordination Group 
(ISECG) state a desire to return to the Moon 
in the next decade in the 2018 Global 
Exploration Roadmap (GER)

28

GER lists more than 20 upcoming lunar missions
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Critical technology gaps identified by the 
GER:

• AR&D Proximity Operations, Target 
Relative Navigation

• Beyond-LEO crew autonomy
GNSS on lunar missions would:

• enable autonomous navigation
• reduce tracking and operations costs
• provide a backup/redundant navigation for 

human safety
• provide timing source for hosted payloads
• reduce risk for commercial development

Recent advances in high-altitude GNSS 
can benefit and enable future lunar 
missions

The Role of GNSS
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Lunar Exploration: Roles for GNSS

Satellite Servicing Lunar Exploration Infrastructure

Human-tended Lunar Vicinity 
Vehicles (Gateway)

Earth, Astrophysics, & Solar 
Science Observations

Lunar Surface Operations, Robotic 
Prospecting,& Human Exploration

Robotic Lunar Orbiters,
Resource & Science Sentinels
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Projected GNSS Performance at the Moon

Winternitz et al. 2019 [8]
• Considered performance on Gateway of MMS-like 

navigation system with Earth-pointed high-gain antenna 
(~14 dBi) and GEONS flight filter software

• Calibrated with flight data from MMS Phase 2B
• L2 southern Near Rectilinear Halo Orbit (NRHO), 6.5 

day period 
• 40 Monte Carlo runs for cases below, w/ & w/o crew
• Uncrewed mean of 3-sigma RMS value over last orbit:

“GPS Based Autonomous Navigation Study for the Lunar Gateway” 

Conclusions
• Average of 3 GPS signals tracked in NRHO
• Fewer Ground Station tracks, larger gaps than GPS
• GPS shows additional improvement over typical ground-

based tracking when crew perturbations are included
• GPS can provide a simple, high-performance, on-

board navigation solution for Gateway 

Pos Range Pos RSS Lateral Vel Range Vel RSS Lateral

Ground Tracking 32.9 m 467.4 m 1.0 mm/s 10.6 mm/s

GPS with USO 202.9 m 31.3 m 1.9 mm/s 1.4 mm/s

GPS with space 
atomic clock

8.5 m 30.5 m 0.2 mm/s 1.2 mm/s
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Projected GNSS Performance at the Moon

Anzalone et al. 2019 [9]
• Considered similar MMS-like navigation system for Lunar Pallet 

Lander (LPL)
• Added cross-links to a cubesat navigation beacon deployed into an 

equatorial or polar 200 km altitude lunar orbit
• Steady state errors in low lunar orbit (LLO): ~50 m position and < 5 

cm/s velocity (range improved due to dynamics, lateral dominates )

“Lunar Navigation Beacon Network Using GNSS Receivers”

“Cislunar Autonomous Navigation Using Multi-GNSS and 
GNSS-like Augmentations: Capabilities and Benefits”

Generalized Dilution of Precision for GPS only, 
GPS+Galileo, and GPS+Galileo+CubeSat [10]

Singam et al. 2019 [10]
• Considered same scenario as Anzalone et al. 2019 but 

focused on signal availability and geometry and included 
other GNSS

• ~1 GPS signal available in lunar orbit, ~1 Galileo
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Projected GNSS Performance at the Moon

Delepaut et al. 2019 [11]
• Considered GPS + Galileo, receiver with 15 

dBHz tracking and acquisition threshold, 14 dBi
receiver antenna gain

• Main lobes only
• Trajectory: LUMIO CubeSat mission transfer 

from LLO to EM L2 Halo Orbit

Presentation at 7th Int’l Colloquium on Scientific & Fundamental Aspects of GNSS

“GNSS for Lunar Surface Positioning Based on 
Pseudo-satellites”

Visible GNSS satellites for LUMIO over transfer from 
LLO to NRHO [11]

Sun et al. 2019 [12]
• Considers DOP for a user at 0° lat and lon on the lunar 

surface with GPS-only and with the addition of 1+ surface 
navigation beacons

• 1 beacon reduces PDOP from 1000 to 20
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Enabling the SSV
GPS Antenna Characterization Experiment [13]

• First complete mapping of GPS L1 side lobes for all GPS satellites via GEO-
based bent pipe 

• Data set available at https://esc.gsfc.nasa.gov/navigation 

U.S. User-Provider Collaboration on GPS SSV
• 2017 joint NASA-USAF Memorandum of Understanding signed on GPS civil 

SSV requirements 
• Intent is to ensure SSV signal continuity for future space users

United Nations International Committee on GNSS 
• SSV booklet (first edition published November 2018)

• First publication of SSV performance characteristics for each GNSS 
constellation

• Conservative performance for main lobe signals only
• Working Group B subgroup on space users established in 2018 at ICG-13

• U.S., China, and ESA are co-chairs; India, Russia, Japan members

https://undocs.org/ST/SPACE/75
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Diversifying: Robust High-Altitude PNT
Robust high-altitude PNT relies 
on a diversity of navigation 
sources, each with strengths 
and weaknesses:

• GPS+GNSS
• Augmentations
• Ground-based tracking
• Optical navigation
• X-ray pulsar navigation
• Other sources (signals of 

opportunity, etc.)

High Altitude 
GNSS

Optical
Navigation

Onboard 
Navigation Filter

Ground-based
radiometrics

X-ray Nav



Conclusions
High-altitude space use (i.e. from 3,000 km to lunar orbit) represents the 
newest frontier of GNSS
High-altitude GNSS offers numerous benefits to space users, including:

• Promising new mission types and operations concepts
• Precise real-time navigation and time sensing
• Enhanced on-board autonomous operations and reduced ground support

The international GNSS community must act to realize these benefits:
• Operationalizing high-altitude GNSS in known regimes
• Enabling future development through international collaborations, data availability, and 

provider support
• Extending the boundaries of GNSS usage in space to lunar vicinity
• Diversifying to enable robust space-based PNT

The US civil space community looks forward to future collaboration, internally 
and externally, to advance space use of GNSS
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