
December 2019

NASA/TM–2019-220431

AladynPi – Adaptive Neural Network
Molecular Dynamics Simulation Code with
Physically Informed Potential: Computational
Materials Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

NASA	STI	Program	.	.	.	in	Profile	

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in both
non-NASA channels and by NASA in the NASA STI
Report Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA
Programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain minimal
annotation. Does not contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from NASA
programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION.
English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI program,
see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question to help@sti.nasa.gov

• Phone the NASA STI Information Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

National	Aeronautics	and	
Space	Administration	

Langley	Research	Center		
Hampton,	Virginia	23681-2199	

December 2019

NASA/TM–2019-220431

AladynPi – Adaptive Neural Network
Molecular Dynamics Simulation Code with
Physically Informed Potential: Computational
Materials Mini-Application

Vesselin I. Yamakov
National Institute of Aerospace, Hampton, Virginia

Edward H. Glaessgen
Langley Research Center, Hampton, Virginia

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
Fax: 757-864-6500

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

 Acknowledgments

The development of the AladynPi mini-application software was initiated through funding
from the NASA High-Performance Computing Incubator project. V. Yamakov is sponsored
through cooperative agreement NNL09AA00A with the National Institute of Aerospace. The
authors are especially grateful to Yuri Mishin from George Mason University for providing the
mathematical algorithm implemented in the code, and for indepth discussions throughout this
project. The authors are also especially grateful to James Hickman from the National Institute of
Standards and Technology for providing the trained neural network for silicon used in this
package, and for actively assisting with its implementation.

5	
	

Abstract

This report provides an overview and description of commands used in the Computational
Materials mini-application, AladynPi. AladynPi is an extension of a previously released
mini-application, Aladyn (https://github.com/nasa/aladyn; Yamakov, V.I., and Glaessgen,
E.H., NASA/TM-2018-220104). Aladyn and AladynPi are basic molecular dynamics codes
written in FORTRAN 2003, which are designed to demonstrate the use of adaptive neural
networks (ANNs) in atomistic simulations. The role of ANNs is to efficiently reproduce
the very complex energy landscape resulting from the atomic interactions in materials with
the accuracy of the more expensive quantum mechanics-based calculations. The ANN is
trained on a large set of atomic structures calculated using the density functional theory
method. An input for the ANN is a set of structure coefficients, characterizing the local
atomic environment of each atom, for which the atomic energy is obtained in the ANN
inference process. In Aladyn, the ANN gives directly the energy of interatomic interactions.
In AladynPi, the ANN gives optimized parameters for a predefined empirical function,
known as bond-order-potential (BOP). The parameterized BOP function is then used to
calculate the energy. AladynPi code is being released to serve as a training testbed for
students and professors in academia to explore possible optimization algorithms for parallel
computing on multicore central processing unit (CPU) computers or computers utilizing
manycore architectures based on graphic processing units (GPUs). The effort is supported
by the High Performance Computing incubator (HPCi) project at NASA Langley Research
Center.

1. Introduction

The use of Adaptive Neural Networks (ANN) in atomistic simulations follows a recent
effort in materials science to employ machine-learning methods in reproducing materials
properties from physics-based first principles [1]. ANNs, when properly trained, have been
proven to successfully emulate very complex functional dependences, which are
impossible or computationally very expensive to calculate directly [2]. Atomic energies,
defined by quantum mechanics, are an example of such complex calculations. In most cases,
approximate methods based on Density Functional Theory (DFT) are used [3]. The
computational cost of DFT methods typically scale as O(N3), with N being the number of
atoms in the simulated system. Even if the most modern supercomputers are employed,
this cubic scaling makes the method applicable only to relatively very small systems of a
few hundred to a few thousand atoms.

A conventional approach to decrease computational cost in atomistic simulations is
to use approximate functional forms, empirically fitted through a set of variable parameters,
to emulate atomic energies as direct functions of atomic coordinates. These empirical
functions are tailored to be relatively simple to compute, while still preserving some of the
features of the quantum calculations related to many-body interactions. Examples include
the Embedded-Atom-Method (EAM) potential, which is based on the effective medium
theory approximation [4], or the 3-body Tersoff-type potentials aimed at reproducing the
angular dependence of the covalent chemical bond [5]. Nevertheless, empirical potentials

6	
	

were shown to be substantially less accurate compared to quantum calculations [6], and
only applicable to very specific atomic configurations or predefined crystallographic
phases.

Another approach is to use heuristic machine learning (ML) methods to predict
atomic energies based on a limited knowledge of the closest atomic surrounding, rather
than the whole system. ML methods reduce the computational scaling to being proportional
to N, which allows simulations of orders of magnitude larger systems without
compromising accuracy. Recent studies have shown that ANNs can be successfully used
to predict the complex atomic energy landscape in a given material [7,8] for simulating the
atomic motions through the method of molecular dynamics (MD) [9]. In addition, ANNs
expressed in the form of a series of matrix operations are highly parallelizable, thus being
able to benefit fully from the latest generation of supercomputers, and can potentially
become equal or better in computational speed to empirical potentials. In this way, ANNs
are proving to be a promising stepping stone between the high accuracy of first principle
quantum mechanics methods and the high computational efficiency of the classical
empirical potentials in molecular dynamics simulations.

A substantial weakness of using ANNs, and ML techniques in general, is that the
results are unpredictable, and generally poor, outside the training set. In the case of
atomistic simulations, the configurational space of possible atomic structures is enormous,
and it is practically impossible to be covered entirely in a training set. Thus, it is essential
for the created ANN-based potential to have a good transferability outside the training set
to guarantee reliable simulation results. To address this shortcoming, a new approach [10]
is to combine the heuristic ANN method with empirical potential functions, that
incorporate some of the basic physics behavior of the system, such as metallic or covalent
bonding, excluded volume interactions (atomic repulsion at small distances), etc. The result
is known as a physically-informed-neural-network (PINN), which combines both heuristic
and physics-based knowledge to yield more accurate and reliable reconstruction of
interatomic interactions. The approach has been successfully demonstrated to be superior
to the traditional pure ANN inference method for the aluminum system [10]. From a
computational perspective, the addition of an empirical function substantially increases
(two to three times) the complexity of the calculations, which results in slower and smaller
simulations. For this reason, the optimized computational implementation of the more
complex mathematical algorithm of PINN is of even greater importance than the pure
ANN-based approach.

AladynPi is an extension of the previously released mini-application, Aladyn
[11,12], which employed a trained ANN to calculate internal potential energy of a crystal.
In AladynPi, a trained ANN gives optimized parameters of a predefined empirical function,
known as bond-order-potential (BOP) [13], which is then used to calculate the atomic
energy and forces. The procedure is described in detail in the literature [10]. The utilized
BOP incorporates in itself a pairwise repulsion term for nuclear repulsion, bond-dependent
two- and three-body attraction terms to account for the attractive covalent bonding in
molecules, a many-body “embedded energy” term to account for the electron density
governed metallic bonding in metals, and a screening term to introduce an effective
decrease of the chemical bonding due to the presence of a nearby atom. Additional terms,
such as long-range Coulomb interactions can also be incorporated if needed.

As its predecessor, Aladyn, AladynPi demonstrates the process in a simple

7	
	

molecular dynamics simulation of a silicon crystal to test the efficiency and accuracy of
the computation. The mini-application code presented here simulates only a constant
number of particles, volume, and energy (NVE) ensemble on a set of predefined single
crystal structures containing from 8,000 to 1,000,000 atoms. The accuracy of the energy
and force calculation is monitored by following the energy conservation law in the system
(i.e., the total computed energy must be constant during the simulation). The trained ANN
for this demonstration code was provided by J. Hickman from the National Institute of
Standards and Technology. The AladynPi code is meant to serve as a test and training case
for students and academia for optimization on parallel multicore central processing unit
(CPU) computers or massively parallel manycore GPUs architectures. A successful
optimization of the Aladyn code will show which optimization strategies work best for
PINN-based simulations that can be implemented in some of the MD simulation codes
used by NASA to achieve increased computational efficiency and enhanced capability to
simulate large-scale atomic structures with DFT precision.

2. Code Description and Algorithm

2.1. General description

AladynPi demonstrates the use of an ANN in combination with a BOP function in
calculating atomic energy and forces in a silicon crystal, which are then used to perform a
step integration of the equations of motion of all atoms to simulate structure evolution. The
block scheme of the algorithm is given in Figure 1. At the beginning of the simulation,
AladynPi reads the input structure as a list of atomic coordinates and velocities, together
with the parameters of a trained ANN. The atomic velocities define the initial temperature
of the system. Following the work by Pun et al. [10], atomic coordinates are used to create
a set of Local Structure Parameters (LSPs) [7,8,10] defined for each atom as functions of
the relative positions of its neighbors contained in a sphere of cut-off radius, 𝑟"#$%. A fast
search for neighbors in the vicinity of 𝑟"#$% is performed by applying the link-cell method
[9].

The LSPs are used as an input to the ANN. In the previous mini-application, Aladyn
[11,12], the output of the ANN was used to directly predict the atomic energy and forces
after differentiation. This option is still retained in AladynPi when an ANN potential is
used as an input to the code. In the case of a PINN potential, the ANN is used to predict
the coefficients in the BOP function, which is then used to compute the energy of an atom.
To emphasize the two different options, the bold-contour boxes in the flowchart reflect the
part of the algorithm which is directly inherited from Aladyn, while the shaded boxes are
specific only for the PINN algorithm in AladynPi.

Following the energy calculation, interatomic forces are then calculated based on
the spatial gradient of the energy and are used to solve the Newtonian equations of motion
to evolve the system in a classical molecular dynamics algorithm. For faster performance,
AladynPi uses analytically differentiated energy equations, for which the ANN equations
have also been differentiated with respect to the atomic coordinates, and are provided as
part of the ANN computation.

8	
	

AladynPi contains two execution kernels. One is built for using Open Multi-
Processing (OpenMP), and the other is built for using Open Accelerators (OpenACC)
programming interfaces. When compiled for both interfaces (using the PGI compiler, with
the “makefile.pgi” file and the option ACC=TRUE, provided in the AladynPi package),
the code automatically checks if a graphic processing unit (GPU) accelerator is present,
and if so, it uses the OpenACC kernel, otherwise, the OpenMP kernel is executed.

	
Figure 1. Flowchart summarizing the algorithm implemented in AladynPi for performing ANN-
based molecular dynamics simulation.

2.2. Local structure parameters

After identifying all neighbors (j) in the cut-off radius for each atom (i), the code calculates
individual LSPs for this atom. The full set of equations, describing the LSP coefficients,
𝐺'
(),+), are given as follows:

𝐺'
(),+) = 𝑠𝑖𝑛ℎ23 𝛤'

(),+) = 𝑙𝑛 6𝛤'
(),+) + 8𝛤'

(),+)9 + 1;,	 	 	 	 	 (1)	

with

𝛤'
(),+)<𝑟'=> = ∑ 𝑃)<cos 𝜃'=E>𝑓+<𝑟'=>𝑓+(𝑟'E)

GHIJGK
=,EL' 		(𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		8),	 (2)	

	

9	
	

where 𝑃)<cos 𝜃'=E> are Legendre polynomials of order (𝑙 = 0,1,2,4,6) defined through the
iteration:

𝑃)U3(𝑥) = [(2𝑙 + 1)𝑥𝑃) − 𝑙𝑃)23] (𝑙 + 1)⁄ ;				𝑃[(𝑥) = 1;			𝑃3(𝑥) = 𝑥,	 	 (3)	
	
and 𝜃'=E is the bond angle between the (i-j) and (i-k) bonds of atom (i), which expressed
through the relative cartesian interatomic coordinates <𝑥'= = 𝑥= − 𝑥', 	𝑦'= = 𝑦= − 𝑦',
𝑧'= = 𝑧= − 𝑧'>, and (𝑥'E = 𝑥E − 𝑥', 	𝑦'E = 𝑦E − 𝑦', 𝑧'E = 𝑧E − 𝑧'), is:

cos 𝜃'=E = <𝑥'=𝑥'= + 𝑦'=𝑦'= + 𝑧'=𝑧'=> <𝑟'=𝑟'E>^ . (4)

The functions
	
𝑓+<𝑟'=> =

3
G_
𝑒2<GHI2G_>

a ba^ 𝑓"<𝑟'=>,	 	 	 	 	 	 	 (5)	
	
are Gaussians with a set of expectation values, 𝑟+ (𝑠 = 1,2, . .		8), defined to probe the
surrounding atomic environment at eight distances from the central atom. To limit the
range of interactions, these Gaussians are multiplied by a cut-off function,

𝑓"<𝑟'=> = c
<GHI2GK>

d

eKdU<GHI2GK>
d 			 ∶ 						 𝑟'= ≤ 𝑟"#$%

									0													 ∶ 							 𝑟'= > 𝑟"#$%
,	 and		 𝑑" = 0.5 = 𝑐𝑜𝑛𝑠𝑡,	 	 (6)	

	
which provides a smooth transition to 0 when 𝑟'=	approaches 𝑟"#$%.

The specific choice of (𝑙, 𝑠)-set in Eq. (2), including the values of 𝜎, 𝑟+o3,9,..p, 𝑟"#$%,
and 𝑑", are determined on a case-by-case basis during training of the ANN for a given
system. These parameters are provided in the neural network potential file, “PINN.dat”.
The resulting set of LSPs coefficients, 𝐺'

(qro3,..s[) from Eq. (1), where 𝑀[counts all (𝑙, 𝑠)-
combinations, 40 in total, as given in Eq. (2), are supplied as an input vector to the first
input layer of the ANN.

2.3. Artificial neural network

The implemented ANN is a forward-propagating neural network [7], consisting of an input
first layer, one or more hidden layers, and an output layer. Each layer 𝑛 of atom (𝑖) is
represented as a vector 𝒖vv⃗ (x)(𝑖) = y𝑢3

(x)(𝑖), 𝑢9
(x)(𝑖), …	𝑢q|

(x)(𝑖)} of length 𝑀x, with 𝑀[=

40 set as the length of the 𝑮vv⃗ ' vector. The mathematical form of the ANN is expressed in
matrix form through the iterations
	
𝒖vv⃗ (3)(𝑖) = 𝑮vv⃗ ' ∗ 𝒘�([,3) + 𝒃vv⃗ (3)				 	 	 	 	 	 	 (7a)	
𝒖vv⃗ (x)(𝑖) = 𝒇v⃗ y𝒖vv⃗ (x23)(𝑖)} ∗ 𝒘�(x23,x) + 𝒃vv⃗ (x); 				𝑛 > 1.	 	 	 	 (7b)	

10	
	

	
The LSPs, 𝑮vv⃗ ', of atom (𝑖), are used as an input to the first layer, 𝒖(3)(𝑖) in Eq. (7a),

where they are weighted by the dot product (∗) with the weight matrix 𝒘�([,3) of size
(𝑀[× 𝑀3). Next, layers, 𝒖vv⃗ (x)(𝑖), are calculated using Eq. (7b), where the input from the
previous layer, 𝒖vv⃗ (x23)(𝑖), is modified through a transfer function

	
𝑓(𝒖) = 3

3U��𝒖
	.		 	 	 	 	 	 	 	 	 (8)	

	
The last layer gives a set of coefficients, which become parameters, (𝜒3, 𝜒9, …)',

in the BOP function, used to calculate the energy of atom (i),
	
	(𝜒3, 𝜒9, …)' = 𝒖vv⃗ ()�+�)(𝑖).	 	 	 	 	 	 	 	 (9)			
	
2.4. Bond order potential

The BOP function, giving the potential energy, 𝐸', of atom (i) is defined as:

𝐸' =

3
9
∑ 	�𝑒<�2�GHI> − 𝑆'=𝑏'=𝑒<�2�GHI>�𝑓"<𝑟'=>=L' +𝑊' (10)

where the coefficients, 𝐴 and 𝛼, in the first term define repulsion, 𝐵 and 𝛽, in the second
term define attraction. The attraction term also includes a multiplication with a screening
coefficient, 𝑆'=, and with a bond-order parameter, 𝑏'=.

The screening coefficient is calculated as
	
𝑆'= = ∏ 𝑆'=E

GH�,			GI�	�	3.��K
EL',= ,	 	 	 	 	 	 	 	 (11a)	

	
where

𝑆'=E = 1 − 𝑓"<𝑟'E + 𝑟=E − 𝑟'=>𝑒2�<GH�UGI�2GHI>. (11b)

From Eq. (11a) and Eq. (11b), it follows that 𝑆'= ∈ (0, 1), with 0 representing full screening,
and 1 representing no screening.

The cut-off function, 𝑓"(𝑥) in Eq. (11b), is the same as given through Eq. (6) with
the only difference that the cut-off radius is 𝑟"��% instead of 𝑟"#$%. There is a fixed relation
between 𝑟"��% and 𝑟"#$%, which is defined by the screening function as (see Appendix)

𝑟"#$% =

9
𝑟"��%. (11)

The bond-order parameter, 𝑏'=, is defined as

𝑏'= = <1 + 𝑧'=>

23 9⁄ , (12a)

11	
	

where

𝑧'= = ∑ 𝑎𝑓"(𝑟'E)𝑆'E<cos 𝜃'=E − ℎ>

9GHI,			GH�	�	�K
EL',= . (12b)

In addition, an embedded term, 𝑊', is added to represent metallic bonding, when

present. The definition of 𝑊' is given as:

𝑊' = −𝜎𝜓'

3 9⁄ (13a)

With

𝜓' = ∑ 𝑓"<𝑟'=>𝑆'=𝑏'=£L' . (13b)

Finally, the total system potential energy, 𝐸, is obtained as a sum of the potential
energies of all atoms

𝐸	 = ∑ 𝐸'' . (14)

Equations (1) through (14) contain 8 fitting parameters: (𝐴, 𝛼, 𝐵, 𝛽, 𝜆, 𝑎, ℎ, 𝜎)
which are given by the 8-component output vector, (𝜒3, 𝜒9, … , 𝜒p)', of the ANN (Eq. 9),
produced for atom (i). In this way, the BOP equations are customized by the ANN for each
individual atom according to its specific atomic surroundings, producing an accurate
estimate of its potential energy, 𝐸'.

The forces acting on atom (i) are calculated as the spatial derivatives of 𝐸. The
overall procedure of obtaining E, starting from Eq. (1) through Eq. (14), form a complex
function:

 𝐸	 = 𝐸<¥𝑟'=¦> = 	𝐸 y§y𝜒3 y𝑮vv⃗ '<¥𝑟'=¦>} , 𝜒9, … , 𝜒p}

'
¨ , ¥𝑟'=¦}. (15)

Analytical differentiation of Eq. (15), using the chain rule for complex function
differentiation, is encoded in AladynPi, allowing for fast and efficient force calculations.
Once the forces are known, a high precision 5-th order predictor-corrector scheme [14] is
used to integrate the Newtonian equations of motion for each atom. The use of a high-order
predictor-corrector integrator allows for accurate monitoring of the energy of the system
[15] to identify any erroneous deviations from the energy conservation law as the system
evolves.

3. Code Execution

3.1. Input files

For proper execution, AladynPi needs the following input files: an input model structure

12	
	

file, “structure.plt”, and a file defining a trained ANN, “PINN.dat”.

3.1.1. Input structure file: structure.plt

The input atomic structure is given in a text file format, named “structure.plt”, which
lists all of the atoms in the structure with their chemical type and position in Cartesian
coordinates. To preserve compatibility with other MD codes, the file format follows a
simplified version of the format, called “plt”, where some of the header information is
preserved, but not used. The first nine lines in the file form the file header describing the
dimensions of the system and the number of atoms it contains.

Example:

--- structure.plt ---

 -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02 ! -h11/2 -h22/2 -h33/2 initial
 0.1008890500E+02 0.1008890500E+02 0.1008890500E+02 ! h11/2 h22/2 h33/2 initial
 -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02 ! -h11/2 -h22/2 -h33/2 current
 0.1008890500E+02 0.1008890500E+02 0.1008890500E+02 ! h11/2 h22/2 h33/2 current
 1 500 500 500 ! N_elements N_atoms n/a n/a
 0.67248840E+01 1 1 1 ! n/a
 -1 -1 -1 ! n/a
 0 0 ! n/a
 -0.3346355136E+01 95.2 ! Pot.energy/atom, T of the system
 1 0.9950327408E+01 0.1000432080E+02 -0.9896154520E+01 1 0 ! id X Y Z chem.type constraint
 2 -0.8166704053E+01 -0.8205995631E+01 0.1005817294E+02 1 0 ! id X Y Z chem.type constraint
 .
 500 0.5821800387E+01 0.8042023494E+01 0.8000757656E+01 1 0
 1 ! a separation line between coordinates and velocities
 1 -0.1393116149E+01 -0.2181636385E+01 0.1421376560E+01 ! id Vx Vy Vz
 2 -0.1969236850E+01 0.1003207253E+01 0.2951624507E+00 ! id Vx Vy Vz
 .
 500 0.2141071866E+01 -0.5388138108E+00 0.1865096587E+01
 0 ! end of file

	
In the above example, h11, h22, and h33 are the system dimensions in the x-, y-, and

z- directions, given in (Å). The first two lines give the initial system dimensions (not used
in AladynPi), while the third and the forth lines give the current dimensions, which are
used at the start of the simulation. The fifth line describes the structure content: N_elements
gives the number of chemical elements present in the system, N_atoms gives the number
of all the atoms in the system. The last two numbers are not used in AladynPi, and are set
equal to N_atoms to preserve compatibility with plt-file format. The next three lines are
also not used in AladynPi.

The ninth line gives the average potential energy per atom of the system, expressed
in electron-volts (eV), and the system temperature, T, expressed in Kelvin (K). The
potential energy value is used for verification when compared with the calculated energy

13	
	

at the start of the simulation. Deviations larger than 0.1% from that value are reported as a
warning for the user to verify the implemented potential or if there were changes in the file.
T is the system temperature of the last simulation and is derived from the average kinetic
energy of all the atoms.

The atoms are listed after the header. Each atom is described by its identification (ID)
number, atomic position given in Cartesian (x, y, z) coordinates in Å, a number identifying
the associated chemical element, and a code number for the constraint degrees of freedom
for this atom, if any. The atomic velocities, if available from a previous MD simulation,
are listed after the atomic coordinates, separated by a line with a nonzero number (“1”),
indicating continuation of the file. The file ends with a line containing a 0 number,
indicating “end-of-file”.

3.1.2. Input potential and adaptive neural network files: pot.dat and ann.dat

The type of interacting atoms and the source for the interatomic potential are

defined in the “pot.dat” file. This file gives the number and type of the chemical elements
in the structure, the potential functional type number of the interatomic potential
implemented, followed by a list of files which define the interatomic potential between
these elements.

Example:

An example of a “pot.dat” file for a silicon system described is the following:

 --- pot.dat ---

 1 - number of chemical species in the system
 'Si' 28.085 ! element symbol and atomic mass
 100 ! straight neural network potential
 './PINN.dat' ! filename containing the neural network parameters

The “PINN.dat” file contains all of the parameters for the LSP functions, and the
weights and biases of all the layers of the trained ANN. The file format is shown in the
example below.

 --- PINN.dat ---

 6 0.000000 1 - ANN version, reference LSPs, and type of the activation function.
 1 - number of chemical species in the system.
 Si 28.085500
 0 0.50000 4.5 1.0 0.5
 5 0 1 2 4 6
 8 2.0000 2.2860 2.5710 2.8570 3.1430 3.4290 3.7140 4.0000
 1 10.787010 5.237710 4.040920 1.365000 0.104528 0.979074 0.891061 0.803526
 4 40 16 16 8
 3.04159433e-01 0.0000

14	
	

 -1.71123564e-01 0.0000
 1.28102273e-01 0.0000

The first line specifies the parameters to identify the type of the ANN used. For
example, if the first number is 6, then the ANN output is used to set the parameters of the
BOP function in the PINN algorithm. If the first number is 5, then the ANN output gives
the atomic energy directly. The next two numbers are used to specify some additional
variations in the ANN type, such as providing the possibility of using a reference LSPs, in
addition to the calculated ones, together with the possibility to apply different forms of
activation functions in Eq. (8). The last two numbers are not used in AladynPi, as only one
type of the LSPs and of the activation function are used, as described in Sec. 2.

The next two lines give the number and type of the chemical elements for which
the ANN has been trained. For demonstration purpose and simplicity, AladynPi works only
with monoatomic systems.

Line 4 contains parameters that are fixed (i.e., not predicted by the ANN) in the
PINN formulation. Those are, from left to right: a flag allowing for different types of LSP
functions (not active in AladynPi);	minimum and maximum range of the BOP potential
(the later being equivalent to 𝑟"��%, giving also 𝑟"#$% = 1.5𝑟"��% in Eq. 6); 𝜎 in Eq. (5); and
𝑑" in Eq. (6).

Line 5 gives the number, and the order, l, of the Legendre polynomials in Eq. (3).
Line 6 gives the number and values of Gaussians expectation points, 𝑟+

(𝑠 = 1,2, . .		8) in Eq. (5).
Line 7 gives the number of the BOP parameters predicted by the ANN, together

with their baseline values, when this number is not zero. The baseline BOP parameters are
used as fixed parameters, and the ANN provides only corrections to them, rather than their
absolute values. It was found that, while principally no different from providing the
absolute BOP parameters, the use of an ANN which gives only corrections to a baseline
set of parameters helps significantly in the training process. It also gives a possibility for
using lower floating point (fp) precision (single or even half fp formats) in the LSPs and
ANN computations, which can benefit from the use of highly efficient tensor-core GPUs,
specifically designed for Artificial Intelligence (AI) training and inference.

Line 8 gives the structure of the ANN which, for the provided Si potential, consists
of 4 layers with 40 nodes in the first layer, 16 nodes in the second and third layers, and 8
nodes in the fourth layer. The eight output values of the 4-th layer are the BOP fitting
parameters (see Eq. 9) arranged as: (𝐴, 𝛼, 𝐵, 𝛽, ℎ, 𝜎, 𝑎, 𝜆). The number of ANN layers and
coefficients in each layer are chosen during the preparation of the potential through an
optimization procedure for training the ANN [10].

The rest of the PINN.dat file gives the weights, 𝑤ª«
(+), and biases, 𝑏ª

(+), of all of the
layers listed in the following order: 𝑤ª«

(3), 𝑏ª
(3), 𝑤ª«

(9), 𝑏ª
(9), 𝑤ª«

(), 𝑏ª
(), and 𝑤ª«

(s), 𝑏ª
(s), where

in this specific example, 𝑝 = (1, . . 40), 𝑞 = (1, . . 16)	 in 𝑤ª«
(3) and 𝑏ª

(3) ; 𝑝 = (1, . . 16),
𝑞 = (1, . . 16)	in 𝑤ª«

(9,)and 𝑏ª
(9,); and 𝑝 = (1, . . 16), 𝑞 = 8	in 𝑤ª«

(s)and 𝑏ª
(s).

3.2. Output files

As a result of the simulation, AladynPi produces the following output files: (i) an output

15	
	

structure file, (ii) an output data file, and (iii) a log file.
The output structure file has the same format as the input structure file “structure.plt”,

but its name is appended with the number of the performed MD steps as, for example
“structure.00123456.plt” is the name of an output structure file after 123,456 MD steps.
The output file can be used directly as an input file, after renaming to “structure.plt”, so
that a follow up simulation can be started where the first simulation has been interrupted.

The results are given as a printout on the screen (that can be redirected to a file) in
columns, giving the run time-step, the simulated time in femtoseconds (10-15 s), kinetic and
potential energy, total system energy, and temperature in (K):

Run step Time(fs) Ek Ep Etot T(K)
 0 0.00 0.01230883 -3.34635515 -3.33404633 95.23
 1 1.00 0.01238930 -3.34642943 -3.33404013 95.85
 2 2.00 0.01246350 -3.34650749 -3.33404399 96.42
 3 3.00 0.01254594 -3.34658884 -3.33404290 97.06
 4 4.00 0.01263003 -3.34667294 -3.33404291 97.71
 5 5.00 0.01271631 -3.34675922 -3.33404291 98.38
 6 6.00 0.01280416 -3.34684707 -3.33404291 99.06
 7 7.00 0.01289296 -3.34693587 -3.33404290 99.74
 8 8.00 0.01298207 -3.34702497 -3.33404290 100.43
 9 9.00 0.01307082 -3.34711372 -3.33404290 101.12
 10 10.00 0.01315856 -3.34720146 -3.33404290 101.80

3.3. Command line options

To control the execution, AladynPi accepts the following command-line options:

-n # – Specifies the number [# = 1,2, ..] of iterations (molecular dynamics steps - MDS)
of the system evolution. The timestep of each MDS is equal to 1 fs (10-15 s).
Default value: -n 10.
Example: aladyn_pi –n 10 ! executes 10 MDS.

-m # – Specifies the measurement period in MDS.
Default value: -m 1.
Example: aladyn_pi –m 5 ! measurements of the system state (energy and temperature)
are taken and reported every fifth MDS.

All of the command line options are optional, and if missing, the default value will be used.

4. Source Code Description

The source code of AladynPi, written in FORTRAN 2003, consists of several files. The
main program with subroutines global for the entire code are in “aladyn_pi.f”. The

16	
	

remaining files contain modules as listed in Table 1.

Module	Name	 File	 Contains	
constants	 aladyn_pi_mods.f some constants used throughout the code	
sim_box	

		

aladyn_pi_mods.f variables and subroutines defining the
simulated system box	

Atoms
		

aladyn_pi_mods.f variables and subroutines related to atomic
structure	

pot_module

 	

aladyn_pi_mods.f

variables and subroutines related to the form
of the interatomic potential, such as cut-off
distance, potential file type (ANN in this

case), etc.	

string_mod 	

aladyn_pi_mods.f variables and subroutines related to string
operations	

IO	 aladyn_pi_IO.f	 input/output procedures and functions	
MEASURE	 aladyn_pi_MSR.f	 data reporting procedures and functions	

MD
 	

aladyn_pi_MD.f	

procedures and functions related to the MD
simulation, such as the predictor-corrector

integrator.	

ANN_OMP

 	

aladyn_pi_ANN_OMP.f	

procedures and functions which calculate the
LSPs of each atom and perform the ANN
computation using OpenMP programming

interface	

ANN_ACC

 	

aladyn_pi_ANN_ACC.f	

procedures and functions which calculate the
LSPs of each atom and perform the ANN

computation using OpenACC programming
interface	

Table	1:	Description	of	the	existing	modules	in	the	code,	with	the	file	where	they	are	placed,	
and	what	type	of	subroutines	and	functions	they	contain.		

5. Summary

This report presents the basic algorithm and software description of the AladynPi mini-
application, which is an extension of the previously released Aladyn mini-application.
These are a part of a series of Computational Materials mini-applications developed and
released by NASA to assist the high-performance computing effort in increasing the
performance of the simulation and modeling tools in materials science. AladynPi

17	
	

demonstrates a recent new approach in the use of artificial neural networks in atomistic
simulations, known as a physically-informed neural network. The mini-application
implements a neural network trained to reproduce the interatomic energy of a variety of Si
crystalline structures and defects. The code is intended to be used to study the scalability
and efficiency of implementing various optimization techniques on different computing
platforms, including multicore systems and graphic accelerators to perform a basic
molecular dynamics simulation on a Si crystal as a test example. The effort is related to the
High Performance Computing Incubator (HPCI) project at NASA Langley Research
Center in collaboration with George Mason University.

	
Appendix	
	
Screening	Function	for	BOP	in	PINN	
	
The	screening	function	in	PINN	is	defined	as	follows:	
	
𝑆'= = ∏ 𝑆'=E

GH�,			GI�	�	3.��K
EL',= 	 	 	 	 	 	 	 	 (A1)	

	
where	
	
𝑆'=E = 1 − 𝑓"<𝑟'E + 𝑟=E − 𝑟'=>𝑒2�<GH�UGI�2GHI>	 	 	 	 	 (A2)	
	
represents	the	screening	contribution	of	atom	(k)	to	the	(i-j)	bond.		
	

	
Figure A1. A 2-dimensional cross-section of the screening iso-ellipsoid for atoms (i), (j), and (k).

For	 a	 fixed	𝑟'= ,	 the	 condition,	𝑟'E + 𝑟=E − 𝑟'= = 𝑐𝑜𝑛𝑠𝑡 ,	 defines	 an	 ellipsoid	 for	
atom	(k)	in	the	3-dimensional	space	with	focal	points	being	the	positions	of	atoms	(i)	
and	(j),	from	where	atom	(k)	induces	the	same	amount	of	screening	on	the	(i-j)	bond	

18	
	

(see	 Fig.	 A1).	 The	 cut-off	 function,	𝑓" 	,	 in	 Eq.	 (A1)	 sets	 an	 upper	 bound	 for	 the	
screening	distances	as	
	
	𝑟'E + 𝑟=E − 𝑟'= ≤ 𝑟"��% .		 	 	 	 	 	 	 	 (A3)	
	

From	Fig.	(A1),	it	is	seen	that	the	furthest	position	of	atom	(k)	with	respect	to	
atom	(i)	on	the	defined	ellipsoid	is	the	position	(k’),	which	is	on	the	same	line	with	(i)	
and	(j),	at	a	distance	
	
	𝑟'E’ = 𝑟'= + 𝑟=E’.		 	 	 	 	 	 	 	 	 (A4)	
	
Substituting	Eq.	(A4)	in	Eq.	(A3)	gives	
	
2𝑟=E’ ≤ 𝑟"��% .	 	 	 	 	 	 	 	 	 	 (A5)	
	

Using	the	short-range	condition,	𝑟'= ≤ 𝑟"��% ,	combined	with	Eq.	(A4)	and	Eq.	
(A5)	gives	the	range	for	the	distance,	𝑟'E ,	at	which	(k)	can	still	screen	(i)	from	(j):	
	
𝑟'E = 𝑟'= + 𝑟=E ≤ 𝑟"��% +

3
9
𝑟"��% =

9
𝑟"��% .	 	 	 	 	 	 (A6)	

	
Equation	(A6)	indicates	that	all	atoms	(j)	at	a	distance	of		𝑟'= ≤

9
𝑟"��%	 from	

atom	 (i)	 are	 affecting	 the	 energy	of	 (i).	As	 such,	 in	order	 for	 the	ANN	 to	 correctly	
predict	the	BOP	parameters,	all	atoms	in	a	sphere	of	radius,	

9
𝑟"��% ,	need	to	be	counted,	

which	defines	the	relation:	
𝑟"#$% =

9
𝑟"��% .		 	 	 	 	 	 	 	 	 (A7)	

	
	
References	
	
[1] Mueller, T., Kusne. A. G., Ramprasad, R., “Machine Learning in Materials Science:
Recent Progress and Emerging Applications”, in: Parrill, A. L., Lipkowitz, K.B. (Eds.),
Reviews in Computational Chemistry, 29, Wiley (2016) 186-273.
[2] Cheng, B. Titterington, D. M., “Neural Networks: A Review from a Statistical
Perspective”, Statistical Science 9 (1994) 2-30.
[3] Lejaeghere, K., et al., “Reproducibility in Density Functional Theory Calculations of
Solids”, Science 351 (2016) aad3000-1-7.
[4] Daw, M. S., Baskes, M. I., “Embedded-Atom Method: Derivation and Application to
Impurities, Surfaces, and Other Defects in Metals”, Phys. Rev. B 29 (1984) 6443-6453.
[5] Tersoff, J., “Empirical Interatomic Potential for Carbon, with Applications to
Amorphous Carbon” Phys. Rev. Lettrs. 61 (1988) 2879-2882.

19	
	

[6] Brenner, D. W., “The Art and Science of an Analytical Potential”, Phys. Stat. Sol. (b)
217, (2000) 23-40.
[7] Behler, J., Parrinello, M., “Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces”, Phys. Rev. Lett. 98 (2007) 146401-1-4.
[8] Behler, J., “Perspective: Machine Learning Potentials for Atomistic Simulations”, J.
Chem. Phys. 145 (2016) 170901-1-9.
[9] Frenkel, B., Smit, B., “Understanding Molecular Simulation”, Academic Press,
London, (2001).
[10] Pun, G. P. P., Batra, R., Ramprasad, R., Mishin, Y., “Physically-Informed Artificial
Neural Networks for Atomistic Modeling of Materials”, Nature Communications 10
(2019) 2339.
[11] Yamakov, V.I., Glaessgen, E.H., “Aladyn – Adaptive Neural Network Molecular Dynamics
Simulation Code: Computational Materials Mini-Application,” NASA/TM-2018-220104.
[12] Yamakov, V.I., Jost, G., Kokron, D.S., Mishin, Y. and Glaessgen, E.H., “High-Performance
Computing Optimization for Aladyn – Adaptive Neural Network Molecular Dynamics Mini-
Application,” NASA/TM-2019-220409.
[13] Gillespie, B. A. et al. Bond-order potential for silicon. Phys. Rev. B 75 (2007) 155207.
[14] Gear, C. W., “The Numerical Integration of Ordinary Differential Equations of
Various Orders”, Technical Report ANL 7126 (1966) Argonne National Laboratory,
Argonne, IL.
[15] Schlick, T., Skeel, R. D., Brunger, A. T., Kale, L. V., Hermans, J., Schulten, K.,
“Algorithmic Challenges in Computational Molecular Biophysics”, J. Comp. Phys. 151
(1999) 9-48.

REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)
(757) 864-9658

NASA Langley Research Center
Hampton, VA 23681-2199

National Aeronautics and Space Administration
Washington, DC 20546-0001

NASA-TM-2019-220431

8. PERFORMING ORGANIZATION
REPORT NUMBER

L-21087

1. REPORT DATE (DD-MM-YYYY)
1-12-2019 Technical Memorandum

STI Help Desk (email: help@sti.nasa.gov)

U U U UU

4. TITLE AND SUBTITLE

AladynPi-Adaptive Neural Network Molecular Dynamics Simulation
Code with Physically Informed Potential: Computational Materials
Mini-Application

6. AUTHOR(S)

PAGES

NASA

698259.02.07.07.03.01

Unclassified-
Subject Category 24
Availability: NASA STI Program (757) 864-9658

14. ABSTRACT
This report provides an overview and description of commands used in the Computational Materials mini-application, AladynPi.
AladynPi is an extension of a previously released mini-application, Aladyn (https://github.com/nasa/aladyn). Aladyn and AladynPi
are basic molecular dynamics codes written in FORTRAN 2003, which are designed to demonstrate the use of adaptive neural
networks (ANNs) in atomistic simulations. The role of ANNs is to efficiently reproduce the very complex energy landscape resulting
from the atomic interactions in materials with the accuracy of the more expensive quantum mechanicsbased calculations.

15. SUBJECT TERMS

High Performance Computing; atomistic simulation; metal alloy; molecular dynamics

Yamakov, Vesselin I.; Glaessgen, Edward H.

20

