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Abstract 
 
This report provides an overview and description of commands used in the Computational 
Materials mini-application, AladynPi. AladynPi is an extension of a previously released 
mini-application, Aladyn (https://github.com/nasa/aladyn; Yamakov, V.I., and Glaessgen, 
E.H., NASA/TM-2018-220104). Aladyn and AladynPi are basic molecular dynamics codes 
written in FORTRAN 2003, which are designed to demonstrate the use of adaptive neural 
networks (ANNs) in atomistic simulations. The role of ANNs is to efficiently reproduce 
the very complex energy landscape resulting from the atomic interactions in materials with 
the accuracy of the more expensive quantum mechanics-based calculations. The ANN is 
trained on a large set of atomic structures calculated using the density functional theory 
method. An input for the ANN is a set of structure coefficients, characterizing the local 
atomic environment of each atom, for which the atomic energy is obtained in the ANN 
inference process. In Aladyn, the ANN gives directly the energy of interatomic interactions. 
In AladynPi, the ANN gives optimized parameters for a predefined empirical function, 
known as bond-order-potential (BOP). The parameterized BOP function is then used to 
calculate the energy. AladynPi code is being released to serve as a training testbed for 
students and professors in academia to explore possible optimization algorithms for parallel 
computing on multicore central processing unit (CPU) computers or computers utilizing 
manycore architectures based on graphic processing units (GPUs). The effort is supported 
by the High Performance Computing incubator (HPCi) project at NASA Langley Research 
Center. 
 
 
1.  Introduction 
 
The use of Adaptive Neural Networks (ANN) in atomistic simulations follows a recent 
effort in materials science to employ machine-learning methods in reproducing materials 
properties from physics-based first principles [1]. ANNs, when properly trained, have been 
proven to successfully emulate very complex functional dependences, which are 
impossible or computationally very expensive to calculate directly [2]. Atomic energies, 
defined by quantum mechanics, are an example of such complex calculations. In most cases, 
approximate methods based on Density Functional Theory (DFT) are used [3]. The 
computational cost of DFT methods typically scale as O(N3), with N being the number of 
atoms in the simulated system. Even if the most modern supercomputers are employed, 
this cubic scaling makes the method applicable only to relatively very small systems of a 
few hundred to a few thousand atoms. 

A conventional approach to decrease computational cost in atomistic simulations is 
to use approximate functional forms, empirically fitted through a set of variable parameters, 
to emulate atomic energies as direct functions of atomic coordinates. These empirical 
functions are tailored to be relatively simple to compute, while still preserving some of the 
features of the quantum calculations related to many-body interactions. Examples include 
the Embedded-Atom-Method (EAM) potential, which is based on the effective medium 
theory approximation [4], or the 3-body Tersoff-type potentials aimed at reproducing the 
angular dependence of the covalent chemical bond [5]. Nevertheless, empirical potentials 
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were shown to be substantially less accurate compared to quantum calculations [6], and 
only applicable to very specific atomic configurations or predefined crystallographic 
phases. 

Another approach is to use heuristic machine learning (ML) methods to predict 
atomic energies based on a limited knowledge of the closest atomic surrounding, rather 
than the whole system. ML methods reduce the computational scaling to being proportional 
to N, which allows simulations of orders of magnitude larger systems without 
compromising accuracy. Recent studies have shown that ANNs can be successfully used 
to predict the complex atomic energy landscape in a given material [7,8] for simulating the 
atomic motions through the method of molecular dynamics (MD) [9]. In addition, ANNs 
expressed in the form of a series of matrix operations are highly parallelizable, thus being 
able to benefit fully from the latest generation of supercomputers, and can potentially 
become equal or better in computational speed to empirical potentials. In this way, ANNs 
are proving to be a promising stepping stone between the high accuracy of first principle 
quantum mechanics methods and the high computational efficiency of the classical 
empirical potentials in molecular dynamics simulations. 

A substantial weakness of using ANNs, and ML techniques in general, is that the 
results are unpredictable, and generally poor, outside the training set. In the case of 
atomistic simulations, the configurational space of possible atomic structures is enormous, 
and it is practically impossible to be covered entirely in a training set. Thus, it is essential 
for the created ANN-based potential to have a good transferability outside the training set 
to guarantee reliable simulation results. To address this shortcoming, a new approach [10] 
is to combine the heuristic ANN method with empirical potential functions, that 
incorporate some of the basic physics behavior of the system, such as metallic or covalent 
bonding, excluded volume interactions (atomic repulsion at small distances), etc. The result 
is known as a physically-informed-neural-network (PINN), which combines both heuristic 
and physics-based knowledge to yield more accurate and reliable reconstruction of 
interatomic interactions. The approach has been successfully demonstrated to be superior 
to the traditional pure ANN inference method for the aluminum system [10]. From a 
computational perspective, the addition of an empirical function substantially increases 
(two to three times) the complexity of the calculations, which results in slower and smaller 
simulations. For this reason, the optimized computational implementation of the more 
complex mathematical algorithm of PINN is of even greater importance than the pure 
ANN-based approach.    

AladynPi is an extension of the previously released mini-application, Aladyn 
[11,12], which employed a trained ANN to calculate internal potential energy of a crystal. 
In AladynPi, a trained ANN gives optimized parameters of a predefined empirical function, 
known as bond-order-potential (BOP) [13], which is then used to calculate the atomic 
energy and forces. The procedure is described in detail in the literature [10]. The utilized 
BOP incorporates in itself a pairwise repulsion term for nuclear repulsion, bond-dependent 
two- and three-body attraction terms to account for the attractive covalent bonding in 
molecules, a many-body “embedded energy” term to account for the electron density 
governed metallic bonding in metals, and a screening term to introduce an effective 
decrease of the chemical bonding due to the presence of a nearby atom. Additional terms, 
such as long-range Coulomb interactions can also be incorporated if needed.  

As its predecessor, Aladyn, AladynPi demonstrates the process in a simple 
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molecular dynamics simulation of a silicon crystal to test the efficiency and accuracy of 
the computation. The mini-application code presented here simulates only a constant 
number of particles, volume, and energy (NVE) ensemble on a set of predefined single 
crystal structures containing from 8,000 to 1,000,000 atoms. The accuracy of the energy 
and force calculation is monitored by following the energy conservation law in the system 
(i.e., the total computed energy must be constant during the simulation). The trained ANN 
for this demonstration code was provided by J. Hickman from the National Institute of 
Standards and Technology. The AladynPi code is meant to serve as a test and training case 
for students and academia for optimization on parallel multicore central processing unit 
(CPU) computers or massively parallel manycore GPUs architectures. A successful 
optimization of the Aladyn code will show which optimization strategies work best for 
PINN-based simulations that can be implemented in some of the MD simulation codes 
used by NASA to achieve increased computational efficiency and enhanced capability to 
simulate large-scale atomic structures with DFT precision. 

 
 

2.  Code Description and Algorithm 
 
2.1. General description 
 
AladynPi demonstrates the use of an ANN in combination with a BOP function in 
calculating atomic energy and forces in a silicon crystal, which are then used to perform a 
step integration of the equations of motion of all atoms to simulate structure evolution. The 
block scheme of the algorithm is given in Figure 1. At the beginning of the simulation, 
AladynPi reads the input structure as a list of atomic coordinates and velocities, together 
with the parameters of a trained ANN. The atomic velocities define the initial temperature 
of the system. Following the work by Pun et al. [10], atomic coordinates are used to create 
a set of Local Structure Parameters (LSPs) [7,8,10] defined for each atom as functions of 
the relative positions of its neighbors contained in a sphere of cut-off radius, 𝑟"#$%. A fast 
search for neighbors in the vicinity of 𝑟"#$% is performed by applying the link-cell method 
[9].  

The LSPs are used as an input to the ANN. In the previous mini-application, Aladyn 
[11,12], the output of the ANN was used to directly predict the atomic energy and forces 
after differentiation. This option is still retained in AladynPi when an ANN potential is 
used as an input to the code. In the case of a PINN potential, the ANN is used to predict 
the coefficients in the BOP function, which is then used to compute the energy of an atom. 
To emphasize the two different options, the bold-contour boxes in the flowchart reflect the 
part of the algorithm which is directly inherited from Aladyn, while the shaded boxes are 
specific only for the PINN algorithm in AladynPi.  

Following the energy calculation, interatomic forces are then calculated based on 
the spatial gradient of the energy and are used to solve the Newtonian equations of motion 
to evolve the system in a classical molecular dynamics algorithm. For faster performance, 
AladynPi uses analytically differentiated energy equations, for which the ANN equations 
have also been differentiated with respect to the atomic coordinates, and are provided as 
part of the ANN computation. 
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AladynPi contains two execution kernels. One is built for using Open Multi-
Processing (OpenMP), and the other is built for using Open Accelerators (OpenACC) 
programming interfaces. When compiled for both interfaces (using the PGI compiler, with 
the “makefile.pgi” file and the option ACC=TRUE, provided in the AladynPi package), 
the code automatically checks if a graphic processing unit (GPU) accelerator is present, 
and if so, it uses the OpenACC kernel, otherwise, the OpenMP kernel is executed. 
 

	
Figure 1. Flowchart summarizing the algorithm implemented in AladynPi for performing ANN- 
based molecular dynamics simulation. 
 
2.2. Local structure parameters 
 
After identifying all neighbors (j) in the cut-off radius for each atom (i), the code calculates 
individual LSPs for this atom. The full set of equations, describing the LSP coefficients, 
𝐺'
(),+), are given as follows: 

𝐺'
(),+) = 𝑠𝑖𝑛ℎ23 𝛤'

(),+) = 𝑙𝑛 6𝛤'
(),+) + 8𝛤'

(),+)9 + 1;,	 	 	 	 	 (1)	

with 
 

𝛤'
(),+)<𝑟'=> = ∑ 𝑃)<cos 𝜃'=E>𝑓+<𝑟'=>𝑓+(𝑟'E)

GHIJGK
=,EL' 		(𝑙 = 0,1,2,4,6; 		𝑠 = 1,2, . .		8),	 (2)	
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where 𝑃)<cos 𝜃'=E> are Legendre polynomials of order (𝑙 = 0,1,2,4,6) defined through the 
iteration: 
 
𝑃)U3(𝑥) = [(2𝑙 + 1)𝑥𝑃) − 𝑙𝑃)23] (𝑙 + 1)⁄ ;				𝑃[(𝑥) = 1;			𝑃3(𝑥) = 𝑥,	 	 (3)	
	
and 𝜃'=E is the bond angle between the (i-j) and (i-k) bonds of atom (i), which expressed 
through the relative cartesian interatomic coordinates <𝑥'= = 𝑥= − 𝑥', 	𝑦'= = 𝑦= − 𝑦',
𝑧'= = 𝑧= − 𝑧'>, and (𝑥'E = 𝑥E − 𝑥', 	𝑦'E = 𝑦E − 𝑦', 𝑧'E = 𝑧E − 𝑧'), is: 
 
cos 𝜃'=E = <𝑥'=𝑥'= + 𝑦'=𝑦'= + 𝑧'=𝑧'=> <𝑟'=𝑟'E>^ .      (4) 
 
The functions 
	
𝑓+<𝑟'=> =

3
G_
𝑒2<GHI2G_>

a ba^ 𝑓"<𝑟'=>,	 	 	 	 	 	 	 (5)	
	
are Gaussians with a set of expectation values, 𝑟+  (𝑠 = 1,2, . .		8), defined to probe the 
surrounding atomic environment at eight distances from the central atom. To limit the 
range of interactions, these Gaussians are multiplied by a cut-off function, 
 

𝑓"<𝑟'=> = c
<GHI2GK>

d

eKdU<GHI2GK>
d 			 ∶ 						 𝑟'= ≤ 𝑟"#$%

									0													 ∶ 							 𝑟'= > 𝑟"#$%
,	 and		 𝑑" = 0.5 = 𝑐𝑜𝑛𝑠𝑡,	 	 (6)	

	
which provides a smooth transition to 0 when 𝑟'=	approaches 𝑟"#$%. 

The specific choice of (𝑙, 𝑠)-set in Eq. (2), including the values of 𝜎, 𝑟+o3,9,..p, 𝑟"#$%, 
and 𝑑", are determined on a case-by-case basis during training of the ANN for a given 
system. These parameters are provided in the neural network potential file, “PINN.dat”. 
The resulting set of LSPs coefficients, 𝐺'

(qro3,..s[) from Eq. (1), where 𝑀[ counts all (𝑙, 𝑠)-
combinations, 40 in total, as given in Eq. (2), are supplied as an input vector to the first 
input layer of the ANN. 

 
2.3. Artificial neural network 

 
The implemented ANN is a forward-propagating neural network [7], consisting of an input 
first layer, one or more hidden layers, and an output layer. Each layer 𝑛 of atom (𝑖) is 
represented as a vector 𝒖vv⃗ (x)(𝑖) = y𝑢3

(x)(𝑖), 𝑢9
(x)(𝑖), …	𝑢q|

(x)(𝑖)} of length 𝑀x, with 𝑀[ =

40 set as the length of the 𝑮vv⃗ ' vector.  The mathematical form of the ANN is expressed in 
matrix form through the iterations 
	
𝒖vv⃗ (3)(𝑖) = 𝑮vv⃗ ' ∗ 𝒘�([,3) + 𝒃vv⃗ (3)				 	 	 	 	 	 	 (7a)	
𝒖vv⃗ (x)(𝑖) = 𝒇v⃗ y𝒖vv⃗ (x23)(𝑖)} ∗ 𝒘�(x23,x) + 𝒃vv⃗ (x); 				𝑛 > 1.	 	 	 	 (7b)	
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The LSPs, 𝑮vv⃗ ', of atom (𝑖), are used as an input to the first layer, 𝒖(3)(𝑖) in Eq. (7a), 

where they are weighted by the dot product (∗) with the weight matrix 𝒘�([,3)  of size 
(𝑀[ × 𝑀3). Next, layers, 𝒖vv⃗ (x)(𝑖), are calculated using Eq. (7b), where the input from the 
previous layer, 𝒖vv⃗ (x23)(𝑖), is modified through a transfer function  

	
𝑓(𝒖) = 3

3U��𝒖
	.		 	 	 	 	 	 	 	 	 (8)	

	
The last layer gives a set of coefficients, which become parameters, (𝜒3, 𝜒9, … )',  

in the BOP function, used to calculate the energy of atom (i), 
	
	(𝜒3, 𝜒9, … )' = 𝒖vv⃗ ()�+�)(𝑖).	 	 	 	 	 	 	 	 (9)			
	
2.4. Bond order potential 
 
The BOP function, giving the potential energy, 𝐸', of atom (i) is defined as: 
 
𝐸' =

3
9
∑ 	�𝑒<�2�GHI> − 𝑆'=𝑏'=𝑒<�2�GHI>�𝑓"<𝑟'=>=L' +𝑊'    (10) 

 
where the coefficients, 𝐴 and 𝛼, in the first term define repulsion, 𝐵 and 𝛽, in the second 
term define attraction. The attraction term also includes a multiplication with a screening 
coefficient, 𝑆'=, and with a bond-order parameter, 𝑏'=.  

The screening coefficient is calculated as 
	
𝑆'= = ∏ 𝑆'=E

GH�,			GI�	�	3.��K
EL',= ,	 	 	 	 	 	 	 	 (11a)	

	
where 
 
𝑆'=E = 1 − 𝑓"<𝑟'E + 𝑟=E − 𝑟'=>𝑒2�<GH�UGI�2GHI>.     (11b) 
 
From Eq. (11a) and Eq. (11b), it follows that 𝑆'= ∈ (0, 1), with 0 representing full screening, 
and 1 representing no screening.  

The cut-off function, 𝑓"(𝑥) in Eq. (11b), is the same as given through Eq. (6) with 
the only difference that the cut-off radius is 𝑟"��% instead of 𝑟"#$%. There is a fixed relation 
between 𝑟"��% and 𝑟"#$%, which is defined by the screening function as (see Appendix) 
 
𝑟"#$% =

 
9
𝑟"��%.          (11) 

 
The bond-order parameter, 𝑏'=, is defined as 

 
𝑏'= = <1 + 𝑧'=>

23 9⁄ ,         (12a) 
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where 
 
𝑧'= = ∑ 𝑎𝑓"(𝑟'E)𝑆'E<cos 𝜃'=E − ℎ>

9GHI,			GH�	�	�K
EL',= .     (12b) 

 
In addition, an embedded term, 𝑊', is added to represent metallic bonding, when 

present. The definition of 𝑊' is given as: 
 
𝑊' = −𝜎𝜓'

3 9⁄           (13a) 
 
With 
 
𝜓' = ∑ 𝑓"<𝑟'=>𝑆'=𝑏'=£L' .        (13b)  
 

Finally, the total system potential energy, 𝐸, is obtained as a sum of the potential 
energies of all atoms 
 
𝐸	 = ∑ 𝐸'' .           (14) 
 

Equations (1) through (14) contain 8 fitting parameters: (𝐴, 𝛼, 𝐵, 𝛽, 𝜆, 𝑎, ℎ, 𝜎) 
which are given by the 8-component output vector, (𝜒3, 𝜒9, … , 𝜒p)', of the ANN (Eq. 9), 
produced for atom (i). In this way, the BOP equations are customized by the ANN for each 
individual atom according to its specific atomic surroundings, producing an accurate 
estimate of its potential energy, 𝐸'.  

The forces acting on atom (i) are calculated as the spatial derivatives of 𝐸. The 
overall procedure of obtaining E, starting from Eq. (1) through Eq. (14), form a complex 
function: 

 
 𝐸	 = 𝐸<¥𝑟'=¦> = 	𝐸 y§y𝜒3 y𝑮vv⃗ '<¥𝑟'=¦>} , 𝜒9, … , 𝜒p}

'
¨ , ¥𝑟'=¦}.    (15) 

 
Analytical differentiation of Eq. (15), using the chain rule for complex function 
differentiation, is encoded in AladynPi, allowing for fast and efficient force calculations. 
Once the forces are known, a high precision 5-th order predictor-corrector scheme [14] is 
used to integrate the Newtonian equations of motion for each atom. The use of a high-order 
predictor-corrector integrator allows for accurate monitoring of the energy of the system 
[15] to identify any erroneous deviations from the energy conservation law as the system 
evolves. 
 
3. Code Execution 
 
3.1. Input files 
 
For proper execution, AladynPi needs the following input files: an input model structure 
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file, “structure.plt”, and a file defining a trained ANN, “PINN.dat”. 
 
3.1.1. Input structure file: structure.plt 
 

The input atomic structure is given in a text file format, named “structure.plt”, which 
lists all of the atoms in the structure with their chemical type and position in Cartesian 
coordinates. To preserve compatibility with other MD codes, the file format follows a 
simplified version of the format, called “plt”, where some of the header information is 
preserved, but not used. The first nine lines in the file form the file header describing the 
dimensions of the system and the number of atoms it contains.  

 
Example: 
 
--- structure.plt --- 
 
  -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02   ! -h11/2 -h22/2 -h33/2 initial 
   0.1008890500E+02  0.1008890500E+02   0.1008890500E+02   !  h11/2  h22/2  h33/2 initial 
  -0.1008890500E+02 -0.1008890500E+02 -0.1008890500E+02   ! -h11/2 -h22/2 -h33/2 current 
   0.1008890500E+02  0.1008890500E+02   0.1008890500E+02   !  h11/2  h22/2  h33/2 current 
       1     500     500     500                 ! N_elements N_atoms n/a n/a 
   0.67248840E+01       1       1       1         ! n/a   
      -1      -1      -1                   ! n/a   
       0       0            ! n/a   
  -0.3346355136E+01      95.2          ! Pot.energy/atom, T of the system 
       1  0.9950327408E+01  0.1000432080E+02 -0.9896154520E+01  1  0  ! id X Y Z chem.type constraint 
       2 -0.8166704053E+01 -0.8205995631E+01  0.1005817294E+02  1  0  ! id X Y Z chem.type constraint 
         . 
     500  0.5821800387E+01  0.8042023494E+01  0.8000757656E+01  1  0 
 1                                ! a separation line between coordinates and velocities 
       1 -0.1393116149E+01 -0.2181636385E+01  0.1421376560E+01 ! id Vx Vy Vz 
       2 -0.1969236850E+01  0.1003207253E+01  0.2951624507E+00 ! id Vx Vy Vz 
         . 
     500  0.2141071866E+01 -0.5388138108E+00  0.1865096587E+01 
 0        ! end of file 

	
In the above example, h11, h22, and h33 are the system dimensions in the x-, y-, and 

z- directions, given in (Å). The first two lines give the initial system dimensions (not used 
in AladynPi), while the third and the forth lines give the current dimensions, which are 
used at the start of the simulation. The fifth line describes the structure content: N_elements 
gives the number of chemical elements present in the system, N_atoms gives the number 
of all the atoms in the system. The last two numbers are not used in AladynPi, and are set 
equal to N_atoms to preserve compatibility with plt-file format. The next three lines are 
also not used in AladynPi.  

The ninth line gives the average potential energy per atom of the system, expressed 
in electron-volts (eV), and the system temperature, T, expressed in Kelvin (K). The 
potential energy value is used for verification when compared with the calculated energy 
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at the start of the simulation. Deviations larger than 0.1% from that value are reported as a 
warning for the user to verify the implemented potential or if there were changes in the file. 
T is the system temperature of the last simulation and is derived from the average kinetic 
energy of all the atoms. 

The atoms are listed after the header. Each atom is described by its identification (ID) 
number, atomic position given in Cartesian (x, y, z) coordinates in Å, a number identifying 
the associated chemical element, and a code number for the constraint degrees of freedom 
for this atom, if any. The atomic velocities, if available from a previous MD simulation, 
are listed after the atomic coordinates, separated by a line with a nonzero number (“1”), 
indicating continuation of the file. The file ends with a line containing a 0 number, 
indicating “end-of-file”. 

 
3.1.2. Input potential and adaptive neural network files: pot.dat and ann.dat 

 
The type of interacting atoms and the source for the interatomic potential are 

defined in the “pot.dat” file. This file gives the number and type of the chemical elements 
in the structure, the potential functional type number of the interatomic potential 
implemented, followed by a list of files which define the interatomic potential between 
these elements.  

 
Example: 

An example of a “pot.dat” file for a silicon system described is the following: 

 --- pot.dat --- 
  
 1 - number of chemical species in the system 
 'Si'  28.085   ! element symbol and atomic mass  
 100               ! straight neural network potential 
 './PINN.dat'      ! filename containing the neural network parameters   
 

The “PINN.dat” file contains all of the parameters for the LSP functions, and the 
weights and biases of all the layers of the trained ANN. The file format is shown in the 
example below. 

 
 --- PINN.dat --- 
  
 6 0.000000 1 - ANN version, reference LSPs, and type of the activation function. 
 1 - number of chemical species in the system. 
 Si 28.085500 
 0 0.50000 4.5 1.0 0.5   
 5 0 1 2 4 6 
 8 2.0000 2.2860 2.5710 2.8570 3.1430 3.4290 3.7140 4.0000 
 1 10.787010 5.237710 4.040920 1.365000 0.104528 0.979074 0.891061 0.803526 
 4 40 16 16 8  
  3.04159433e-01   0.0000 
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 -1.71123564e-01   0.0000 
  1.28102273e-01   0.0000 

The first line specifies the parameters to identify the type of the ANN used. For 
example, if the first number is 6, then the ANN output is used to set the parameters of the 
BOP function in the PINN algorithm. If the first number is 5, then the ANN output gives 
the atomic energy directly. The next two numbers are used to specify some additional 
variations in the ANN type, such as providing the possibility of using a reference LSPs, in 
addition to the calculated ones, together with the possibility to apply different forms of 
activation functions in Eq. (8). The last two numbers are not used in AladynPi, as only one 
type of the LSPs and of the activation function are used, as described in Sec. 2. 

The next two lines give the number and type of the chemical elements for which 
the ANN has been trained. For demonstration purpose and simplicity, AladynPi works only 
with monoatomic systems. 

Line 4 contains parameters that are fixed (i.e., not predicted by the ANN) in the 
PINN formulation. Those are, from left to right: a flag allowing for different types of LSP 
functions (not active in AladynPi);	minimum and maximum range of the BOP potential 
(the later being equivalent to 𝑟"��%, giving also 𝑟"#$% = 1.5𝑟"��% in Eq. 6); 𝜎 in Eq. (5); and 
𝑑"  in Eq. (6). 

Line 5 gives the number, and the order, l, of the Legendre polynomials in Eq. (3). 
Line 6 gives the number and values of Gaussians expectation points, 𝑟+ 

(𝑠 = 1,2, . .		8) in Eq. (5). 
Line 7 gives the number of the BOP parameters predicted by the ANN, together 

with their baseline values, when this number is not zero. The baseline BOP parameters are 
used as fixed parameters, and the ANN provides only corrections to them, rather than their 
absolute values. It was found that, while principally no different from providing the 
absolute BOP parameters, the use of an ANN which gives only corrections to a baseline 
set of parameters helps significantly in the training process. It also gives a possibility for 
using lower floating point (fp) precision (single or even half fp formats) in the LSPs and 
ANN computations, which can benefit from the use of highly efficient tensor-core GPUs, 
specifically designed for Artificial Intelligence (AI) training and inference. 

Line 8 gives the structure of the ANN which, for the provided Si potential, consists 
of 4 layers with 40 nodes in the first layer, 16 nodes in the second and third layers, and 8 
nodes in the fourth layer. The eight output values of the 4-th layer are the BOP fitting 
parameters (see Eq. 9) arranged as: (𝐴, 𝛼, 𝐵, 𝛽, ℎ, 𝜎, 𝑎, 𝜆). The number of ANN layers and 
coefficients in each layer are chosen during the preparation of the potential through an 
optimization procedure for training the ANN [10].  

The rest of the PINN.dat file gives the weights, 𝑤ª«
(+), and biases, 𝑏ª

(+), of all of the 
layers listed in the following order: 𝑤ª«

(3), 𝑏ª
(3), 𝑤ª«

(9), 𝑏ª
(9), 𝑤ª«

( ), 𝑏ª
( ), and 𝑤ª«

(s), 𝑏ª
(s), where 

in this specific example, 𝑝 = (1, . . 40), 𝑞 = (1, . . 16)	 in 𝑤ª«
(3) and 𝑏ª

(3) ; 𝑝 = (1, . . 16),
𝑞 = (1, . . 16)	in 𝑤ª«

(9, )and 𝑏ª
(9, ); and 𝑝 = (1, . . 16), 𝑞 = 8	in 𝑤ª«

(s)and 𝑏ª
(s). 

 
3.2. Output files 
 
As a result of the simulation, AladynPi produces the following output files: (i) an output 
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structure file, (ii) an output data file, and (iii) a log file. 
The output structure file has the same format as the input structure file “structure.plt”, 

but its name is appended with the number of the performed MD steps as, for example 
“structure.00123456.plt” is the name of an output structure file after 123,456 MD steps. 
The output file can be used directly as an input file, after renaming to “structure.plt”, so 
that a follow up simulation can be started where the first simulation has been interrupted. 

The results are given as a printout on the screen (that can be redirected to a file) in 
columns, giving the run time-step, the simulated time in femtoseconds (10-15 s), kinetic and 
potential energy, total system energy, and temperature in (K): 

 
Run step  Time(fs)       Ek                  Ep                 Etot               T(K)     
        0         0.00        0.01230883  -3.34635515  -3.33404633     95.23     
        1         1.00        0.01238930  -3.34642943  -3.33404013     95.85     
        2         2.00        0.01246350  -3.34650749  -3.33404399     96.42     
        3         3.00        0.01254594  -3.34658884  -3.33404290     97.06     
        4         4.00        0.01263003  -3.34667294  -3.33404291     97.71     
        5         5.00        0.01271631  -3.34675922  -3.33404291     98.38     
        6         6.00        0.01280416  -3.34684707  -3.33404291     99.06     
        7         7.00        0.01289296  -3.34693587  -3.33404290     99.74     
        8         8.00        0.01298207  -3.34702497  -3.33404290    100.43     
        9         9.00        0.01307082  -3.34711372  -3.33404290    101.12     
      10       10.00        0.01315856  -3.34720146  -3.33404290    101.80     

 
3.3. Command line options 
 

To control the execution, AladynPi accepts the following command-line options: 
 
-n # – Specifies the number [# = 1,2, .. ] of iterations (molecular dynamics steps - MDS) 
of the system evolution. The timestep of each MDS is equal to 1 fs (10-15 s). 
Default value: -n 10. 
Example: aladyn_pi –n 10    ! executes 10 MDS.  
 
-m # – Specifies the measurement period in MDS. 
Default value: -m 1. 
Example: aladyn_pi –m 5    ! measurements of the system state (energy and temperature) 
are taken and reported every fifth MDS. 
 
All of the command line options are optional, and if missing, the default value will be used. 
 
 
4. Source Code Description 
 
The source code of AladynPi, written in FORTRAN 2003, consists of several files. The 
main program with subroutines global for the entire code are in “aladyn_pi.f”. The 
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remaining files contain modules as listed in Table 1. 
  
 
Module	Name	 File	 Contains	
constants	 aladyn_pi_mods.f some constants used throughout the code	
sim_box	

		

aladyn_pi_mods.f variables and subroutines defining the 
simulated system box	

Atoms 
		

aladyn_pi_mods.f variables and subroutines related to atomic 
structure	

pot_module 
 
 	

 
aladyn_pi_mods.f 

variables and subroutines related to the form 
of the interatomic potential, such as cut-off 
distance, potential file type (ANN in this 

case), etc.	

string_mod 	

aladyn_pi_mods.f variables and subroutines related to string 
operations	

IO	 aladyn_pi_IO.f	 input/output procedures and functions	
MEASURE	 aladyn_pi_MSR.f	 data reporting procedures and functions	

MD 
 	

 
aladyn_pi_MD.f	

procedures and functions related to the MD 
simulation, such as the predictor-corrector 

integrator.	

ANN_OMP 
 
 	

 
aladyn_pi_ANN_OMP.f	

procedures and functions which calculate the 
LSPs of each atom and perform the ANN 
computation using OpenMP programming 

interface	

ANN_ACC 
 
 	

 
aladyn_pi_ANN_ACC.f	

procedures and functions which calculate the 
LSPs of each atom and perform the ANN 

computation using OpenACC programming 
interface	

 
Table	1:	Description	of	the	existing	modules	in	the	code,	with	the	file	where	they	are	placed,	
and	what	type	of	subroutines	and	functions	they	contain.		 
 
5.  Summary 
 
This report presents the basic algorithm and software description of the AladynPi mini-
application, which is an extension of the previously released Aladyn mini-application.  
These are a part of a series of Computational Materials mini-applications developed and 
released by NASA to assist the high-performance computing effort in increasing the 
performance of the simulation and modeling tools in materials science. AladynPi 
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demonstrates a recent new approach in the use of artificial neural networks in atomistic 
simulations, known as a physically-informed neural network. The mini-application 
implements a neural network trained to reproduce the interatomic energy of a variety of Si 
crystalline structures and defects. The code is intended to be used to study the scalability 
and efficiency of implementing various optimization techniques on different computing 
platforms, including multicore systems and graphic accelerators to perform a basic 
molecular dynamics simulation on a Si crystal as a test example. The effort is related to the 
High Performance Computing Incubator (HPCI) project at NASA Langley Research 
Center in collaboration with George Mason University. 
 
	
Appendix	
	
Screening	Function	for	BOP	in	PINN	
	
The	screening	function	in	PINN	is	defined	as	follows:	
	
𝑆'= = ∏ 𝑆'=E

GH�,			GI�	�	3.��K
EL',= 	 	 	 	 	 	 	 	 (A1)	

	
where	
	
𝑆'=E = 1 − 𝑓"<𝑟'E + 𝑟=E − 𝑟'=>𝑒2�<GH�UGI�2GHI>	 	 	 	 	 (A2)	
	
represents	the	screening	contribution	of	atom	(k)	to	the	(i-j)	bond.		
	

	
Figure A1. A 2-dimensional cross-section of the screening iso-ellipsoid for atoms (i), (j), and (k).  
 

For	 a	 fixed	𝑟'= ,	 the	 condition,	𝑟'E + 𝑟=E − 𝑟'= = 𝑐𝑜𝑛𝑠𝑡 ,	 defines	 an	 ellipsoid	 for	
atom	(k)	in	the	3-dimensional	space	with	focal	points	being	the	positions	of	atoms	(i)	
and	(j),	from	where	atom	(k)	induces	the	same	amount	of	screening	on	the	(i-j)	bond	
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(see	 Fig.	 A1).	 The	 cut-off	 function,	𝑓" 	,	 in	 Eq.	 (A1)	 sets	 an	 upper	 bound	 for	 the	
screening	distances	as	
	
	𝑟'E + 𝑟=E − 𝑟'= ≤ 𝑟"��% .		 	 	 	 	 	 	 	 (A3)	
	

From	Fig.	(A1),	it	is	seen	that	the	furthest	position	of	atom	(k)	with	respect	to	
atom	(i)	on	the	defined	ellipsoid	is	the	position	(k’),	which	is	on	the	same	line	with	(i)	
and	(j),	at	a	distance	
	
	𝑟'E’ = 𝑟'= + 𝑟=E’.		 	 	 	 	 	 	 	 	 (A4)	
	
Substituting	Eq.	(A4)	in	Eq.	(A3)	gives	
	
2𝑟=E’ ≤ 𝑟"��% .	 	 	 	 	 	 	 	 	 	 (A5)	
	

Using	the	short-range	condition,	𝑟'= ≤ 𝑟"��% ,	combined	with	Eq.	(A4)	and	Eq.	
(A5)	gives	the	range	for	the	distance,	𝑟'E ,	at	which	(k)	can	still	screen	(i)	from	(j):	
	
𝑟'E = 𝑟'= + 𝑟=E ≤ 𝑟"��% +

3
9
𝑟"��% =

 
9
𝑟"��% .	 	 	 	 	 	 (A6)	

	
Equation	(A6)	indicates	that	all	atoms	(j)	at	a	distance	of		𝑟'= ≤

 
9
𝑟"��%	 from	

atom	 (i)	 are	 affecting	 the	 energy	of	 (i).	As	 such,	 in	order	 for	 the	ANN	 to	 correctly	
predict	the	BOP	parameters,	all	atoms	in	a	sphere	of	radius,	 

9
𝑟"��% ,	need	to	be	counted,	

which	defines	the	relation:	
𝑟"#$% =

 
9
𝑟"��% .		 	 	 	 	 	 	 	 	 (A7)	
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