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This paper considers the problem of robot-structure coupling dynamics during in-space robotic assembly
of large flexible structures. A two-legged walking robot is used as a construction agent, whose primary goal is
to stably walking on the flexible structure while carrying a substructure component to a designated location.
The reaction forces inserted by the structure to the walking robot are treated as bounded disturbance inputs,
and a trajectory tracking robotic controller is proposed that combines the standard full state feedback motion
controller and an adaptive controller to account for the disturbance inputs. In this study, a reduced-order
Euler-Bernoulli beam structure model is adapted, and a finite number of co-located sensors and actuators are
distributed along the span of the beam structure. The robot-structure coupling forces are treated as a bounded
external forcing function to the structure, and hence an output covariance constraint problem can be formu-
lated, in terms of linear matrix inequality, for optimal structure control by utilizing the direct output feedback
controllers. The numerical simulations show the effectiveness of the proposed robot-structure modeling and
control methodology.

I. Introduction

The expansion of future human space exploration to Moon, Mars and beyond requires creation of ultra-large and
flexible structures that would provide basic operational and functional needs in space. For instance, many proposed
space missions envision utilization of large space structures, such as communication antennas, astronomical observa-
tories, and solar power stations, to just name a few. One class of materials that has recently been considered for such
application is the digital composite metamaterials. These are made of a large number of physical components, but
with a small number of distinctive part types.1 Because of this high repetitive patterns in size/dimension and shape,
the autonomous or robotic in-space structure assembly becomes a tractable and viable solution for building large space
structures. While Jenett et al.2 investigated materials/structures and robotic related technical challenges in assembling
kilometer-scale space structures, this paper focuses on modeling of coupling dynamics between walking robots and vi-
brating flexible structures during in-space robotic assembly, and controlling/suppressing excessive structure vibration
by utilizing advanced control techniques.

Large flexible space structures exhibit some distinctive characteristics,3 which include: 1) low resonant frequen-
cies; often densely clustered; 2) very low natural damping; 3) very stringent mission requirements on, for instance,
pointing accuracy and alignment/orientation. Therefore, as a result of the presence of lightly damped low-frequency
structure modes, when a large space structure is disturbed or excited, it is likely to remain in vibration for quite some
time, if no counter measurement, such as active/passive structural control, is implemented. Furthermore, the robot-
structure coupling dynamics imposes a unique challenge for in-space robotic assembly, because a walking robot can
be a source of structural vibration through robot-structure interaction and will degrade the performance of structure
build-up. Therefore, it is imperative to develop a dynamic model that could accurately depict the robot-structure
coupling effect and provide a mathematical framework for formulating externally/internally actuated active/passive
mechanisms for suppression of structural vibration.

Modeling of large flexible and spatially periodic structures by utilizing distributed parameter approach often results
in a large dimensional system description. As a consequence, the resultant model does not fit to be used for practical
control design, since the limited control authority and actuator bandwidth will inevitably impose additional constraints
on achievable overall structure performance. Therefore, in order to effectively assess the structure performance, in this
paper a reduced-order control-centric robot-structure coupling dynamic model is developed, and subsequently used
for designing optimal structural controllers.

In contrast to the conventional control of structure approach, the proposed in-space robotic assembly framework
allows potential use of both walking robots and (some) instrumented building-block structure components to be ac-
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tive/passive actuation agents, so as to achieve improved structure performance while maintaining robotic efficiency.
The challenges of this cooperative actuation include: 1) workload break down between the two active agents; 2)
simplicity of actuation mechanisms; and 3) synchronous and collaborative execution of two agents. In this paper,
a mechanically compact and multi-functional two degree-of-freedom walking robot, known as BiLL-E, developed in
Jenett and Cheung4 is adapted and used for building up the space structures, as illustrated in Fig. 1. This robot-structure
teaming in the control of space structure is novel, in which the walking robots can be considered as actuators that are
”re-configurable” depending on the mission needs. In addition, the needed sensor suite can also be instrumented as
part of robot hardware, enabling also ”re-configurable” sensors, which are naturally co-located with actuators and in
compatible units, e.g. angular rate vs. torque and acceleration vs. force. The objective of this paper is to develop a
theoretical framework for modeling and control of a coupled robot-structure problem, so that a numerically tractable
problem formulation can be derived and solved.

This paper is organized as follows. Section II presents the two-legged robot (BiLL-E) and its equations of mo-
tion, which includes the reaction forces from the coupled structure. The Euler-Bernoulli beam structure model is
presented in Section III and the structure dynamics is derived by enforcing the ”free-free” boundary conditions. Sec-
tion IV contains the development of robotic and adaptive controller for trajectory tracking. Section V presents the
output covariance constraint problem for optimal structure control by utilizing a static output feedback controller, and
the numerical simulations are presented in Section VI. Finally, some concluding summaries and future research are
contained in Section VII.

Figure 1. A robot (Bill-E) assembling lattice structures

II. Walking Robot on a Structure

The robot-structure coupled system (RSCS) is graphically depicted in Fig 2, where Mi, Ii, Li, θi, and τi are mass,
moment of inertia, length, inclination angle, and applied torque at ith leg, i = 1,2. In addition, in Fig. 3 w(x, t) denotes
the transverse deflection of flexible structure. To derive the equations of motion for RSCS, we first utilize the Lagrange
equations as follows,

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Q , (1)

where L = T −V is a Lagrangian where T denotes the total kinetic energy and V the total potential energy, and Q is a
vector of generalized forces (or moments) acting in the direction of generalized coordinates q. In referring to Figs. 2
and 3, the total kinetic and potential energies of RSCS can be written as sum of energies of individual components,
and they are given by

T1 = 1
2 M1[(l1θ̇1 cosθ1− ẇ)2 +(l1θ̇1 sinθ1)

2]+ 1
2 I1θ̇ 2

1 ,

T2 = 1
2 M2[(l2θ̇2 cosθ2−L1θ̇1 sinθ1)

2 +(L1θ̇1 cosθ1 + l2θ̇2 sinθ2− ẇ)2]+ 1
2 I2θ̇ 2

2 ,

V1 = M1gl1 sinθ1−M1gw ,

V2 = M2g(L1 sinθ1− l2 cosθ2)−M2gw ,

where Ti and Vi; i = 1,2, denote the kinetic and potential energies of ith leg, and li = Li/2. Moreover, the generalized
force/moment vector Q = [τ1, τ2, − fz], where fz is the reaction force at the foot of leg-1; see Fig. 3. Though the space
structure is the primary subject of consideration in this paper, however, in derivation we decided to retain the gravity
terms, so that we could perform model validation through experiments in 1-g environment, if needed. These gravity
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terms can be readily removed for 0-g simulations. Substituting the above equations into (1) yields the equations of
motion for a walking robot as follows,

(M1l2
1 +M2L2

1 + I1)θ̈1 +M2l2L1θ̈2 sin(θ2−θ1)+M2l2L1θ̇ 2
2 cos(θ2−θ1)

+(M1l1 +M2L1)(g− ẅ)cosθ1 = τ1 ,
(2a)

(M2l2
2 + I2)θ̈2 +M2l2L1θ̈1 sin(θ2−θ1)−M2l2L1θ̇ 2

1 cos(θ2−θ1)

+M2l2(g− ẅ)sinθ2 = τ2 ,
(2b)

(M1 +M2)ẅ− (M1l1 +M2L1)θ̈1 cosθ1 +(M1l1 +M2L1)θ̇
2
1 sinθ1

−M2l2(θ̈2 sinθ2 + θ̇ 2
2 cosθ2)− (M1 +M2)g =− fz .

(2c)

Note that the equations of motion obtained above are highly coupled and nonlinear, where (θ1,θ2, θ̇1, θ̇2,w, ẇ) denote
the states and (τ1,τ2) the robot control inputs. The robot-structure coupling force fz is unknown, hence we will need
one more equation, which can be supplemented by structure dynamics in the next section.

Figure 2. Schematics of a walking robot on flexible structure

Figure 3. Free-body diagram showing coupling force between robot and structure

III. Euler-Bernoulli Beam

In this paper, we assume the space structure can be formulated as an Euler-Bernoulli (EB) beam, hence for the
varying contact force problem shown in Fig. 3, after utilizing Euler-Lagrange equation, the equations of motion for
EB beam subject to an external force applied at x = xv can be described by

EI
∂ 4w(x, t)

∂x4 +ρA
∂ 2w(x, t)

∂ t2 = fz(θ1,θ2)δ (x− xv) , (3)
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where E is the young’s modulus, I the moment of inertia, ρ the density, and A the cross-section area. In addition,
fz δ (x− xv) denotes the contact force at xv and δ the Dirac function. We assume that both EI and ρA are constants.
By utilizing Ritz-Galerkin’s method, the transverse deflection of EB beam w(x, t) can be approximated by

w(x, t)≈
n

∑
i=1

vi(t) ·Φi(x) , (4)

where Φi(x) denotes the ith normalized eigenfunction (or mode shape), vi(t) the corresponding generalized coordinate
(for deflection), and n the number of retained modes. Note that for a ”free-free” beam structure of length L, the mode
shape Φi(x) is given by

Φi(x) = sin(µix)+ sinh(µix)+
cos(µiL)− cosh(µiL)
sin(µiL)+ sinh(µiL)

[cos(µix)+ cosh(µix)] , i = 1,2, · · · ,n, (5)

where µiL are solutions to the following eigenvalue problem,

cos(µL) · cosh(µL) = 1 .

Now, substituting (4) into (3) renders,

EI
n

∑
i=1

vi(t)
d4Φi(x)

dx4 +ρA
n

∑
i=1

v̈i(t)Φi(x) = fz(θ1,θ2)δ (x− xv) . (6)

III.A. A weak-form representation

The ”weak-form” integral representation of the free-free beam dynamic equations can be attained by pre-multiplying
(6) by Φ j(x) and integrating over the beam length L, and we obtain

EI
n

∑
i=1

vi(t)
∫ L

0
Φ j(x)

d4Φi(x)
dx4 dx+ρA

n

∑
i=1

v̈i(t)
∫ L

0
Φ j(x)Φi(x)dx =

∫ L

0
Φ j(x) fz(θ1,θ2)δ (x− xv)dx . (7)

Note that by applying the integration by parts to the first integral term yields∫ L

0
Φ j(x)

d4Φi(x)
dx4 dx = (Φ j(x)

d3Φi(x)
dx3 )L

0− (
dΦi(x)

dx
d2Φi(x)

dx2 )L
0 +

∫ L

0

d2Φ j(x)
dx2

d2Φi(x)
dx2 dx ,

hence, by enforcing that the forces and moments vanish at the boundaries for a free-free beam, we obtain∫ L

0
Φ j(x)

d4Φi(x)
dx4 dx =

∫ L

0

d2Φ j(x)
dx2

d2Φi(x)
dx2 dx .

Therefore, Eq. (7) can be rewritten as
n

∑
j=1

[mi, j v̈ j(t)+ ki, jv j(t)] = Fi , i = 1,2, · · · ,n, (8)

where
mi, j = ρA

∫ L
0 Φi(x)Φ j(x)dx , ki, j = EI

∫ L
0

d2Φ j(x)
dx2

d2Φi(x)
dx2 dx ,

Fi =
∫ L

0 Φi(x) fz(θ1,θ2)δ (x− xv)dx = Φi(xv) fz(θ1,θ2) .

Furthermore, (8) can be equivalently described in a matrix form as

Ms p̈(t)+Ks p(t) = B(xv) fz(θ1,θ2) , (9)

where p(t) = [v1(t),v2(t), · · · ,vn(t)]T and

Ms =


m1,1 m1,2 · · · m1,n

m1,2 m2,2 · · · m2,n
...

... · · ·
...

m1,n m2,n · · · mn,n

 , Ks =


k1,1 k1,2 · · · k1,n

k1,2 k2,2 · · · k2,n
...

... · · ·
...

k1,n k2,n · · · kn,n

 , B(xv) =


Φ1(xv)

Φ2(xv)
...

Φn(xv)

 .

Note that Ms and Ks denote the structure mass and stiffness property, and they are symmetric (and positive-definite)
matrices. Any flexible structure possesses some level of damping effect, hence an estimated damping term Cs ṗ(t) is
injected into (9), where the damping matrix Cs is derived in the next section.
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III.B. Derivation of damping matrix

Given the structure mass and stiffness matrices Ms and Ks, we first perform singular value decomposition for Ms to
obtain

Ms =U1Λ1UT
1 ,

where U1 is an orthonormal matrix, i.e. UT
1 U1 = I, and Λ1 a diagonal matrix. Let T1 be defined as

T1 =U1Λ
1
2
1 ,

and perform singular value decomposition for T T
1 KsT1, that is

T T
1 KsT1 =U2Λ2UT

2 ,

where UT
2 U2 = I and Λ2 = diag

{
ω2

1 ,ω
2
2 , . . .

}
; ωi denotes the ith undamped natural frequency. Let T2 = U2 and

T = T1T2, then the damping matrix Cs can be given by

Cs = 2T−T Z ΩT−1 , (10)

where Z = diag{ζ1,ζ2, . . .}; ζi denotes the (estimated) ith structure mode damping ratio, and Ω = diag{ω1,ω2, . . .}.
In practice, the structure damping ratios can be estimated through a series of bench tests. Finally, with augmented
damping term, (9) can now be rewritten as

Ms p̈(t)+Cs ṗ(t)+Ks p(t) = B(xv) fz(θ1,θ2) . (11)

IV. Robotic Controller Design

Note that the transverse deflection of EB beam w(x, t) given in (4) can be expressed in a compact form as

w(x, t)≈
n

∑
i=1

vi(t) ·Φi(x) = BT (x)p(t) ,

similarly ẅ(x, t) can be given by
ẅ(x, t)≈ BT (x)p̈(t) . (12)

Now, substituting (12) into (2) gives the coupled robot-structure dynamic equations as

(M1l2
1 +M2L2

1 + I1)θ̈1 +M2l2L1θ̈2 sin(θ2−θ1)+M2l2L1θ̇ 2
2 cos(θ2−θ1)− (M1l1 +M2L1)BT p̈cosθ1 = τ1 , (13a)

(M2l2
2 + I2)θ̈2 +M2l2L1θ̈1 sin(θ2−θ1)−M2l2L1θ̇ 2

1 cos(θ2−θ1)−M2l2BT p̈sinθ2 = τ2 , (13b)

where the gravity terms are omitted to simulate a space environment. The coupled equations of motion presented above
describe the robot-structure interaction of a walking robot with either leg-1 or leg-2 moving forward. Equivalently,
Eq. (13) can be expressed in a compact form as

D(q)q̈+C(q, q̇)q̇−H(q)p̈ = τ , (14)

where q = [θ1 θ2]
T , τ = [τ1 τ2]

T , and

D(q) =

[
M1l2

1 +M2L2
1 + I1 M2l2L1 sin(θ2−θ1)

M2l2L1 sin(θ2−θ1) M2l2
2 + I2

]
, H(q) =

[
(M1l1 +M2L1)cosθ1BT

M2l2 sinθ2BT

]
,

C(q, q̇) =

[
0 M2l2L1θ̇2 cos(θ2−θ1)

−M2l2L1θ̇1 cos(θ2−θ1) 0

]
.

It should be noted that the matrices D(q) and C(q, q̇) satisfy the following properties.

Property I: D(q) is a positive definite symmetric matrix for all q.

Property II: Ḋ(q)−2C(q, q̇) is a skew-symmetric matrix for all q and q̇ 6= 0.

These properties are commonly being used when deriving for stabilizing robotic controllers.5
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IV.A. Adaptive trajectory tracking

Let qd(t) be a desired trajectory and e = q(t)− qd(t) the error. Then, ė(t) = q̇(t)− q̇d(t) and ë(t) = q̈(t)− q̈d(t). In
addition, we assume that both q(t) and q̇(t) are measurable.

Note that Eq. (14) describes a standard robot dynamics, but subjected to structure coupling dynamics. Therefore,
we propose that the robot controller τ(t) be consisted of two parts; namely,

τ(t) = us f (t)+ua(t) ,

where us f denotes the standard trajectory tracking state-feedback controller for stand-alone robot, while ua is the
adaptive controller to account for the structure coupling effect H(q)p̈. Furthermore, we may treat this coupling effect
as a disturbance input to the walking robot. Hence, let the disturbance input g(t) = H(q)p̈ be represented by

g(t) = Θ̄
T

Π(t) , (15)

where Θ̄ is an unknown constant matrix and Π(t) a known vector of basis functions, such as Chebyshev polynomials.
Now, the proposed control law is given by

τ(t) =−kpe(t)− kd ė(t)+D(q)q̈d +C(q, q̇)q̇d︸ ︷︷ ︸
us f

−Θ
T (t)Π(t)︸ ︷︷ ︸

ua

, (16)

where kp > 0 and kd > 0 are the attitude and rate control gain matrices, respectively, and Θ(t) the adaptive parameter
that estimates Θ̄. To this end, we should emphasize that our ultimate control design goal is to ensure asymptotic
trajectory tracking, i.e. e(t)→ 0 as t → ∞. In other words, whether Θ(t)→ Θ̄ as t → ∞ is not our primary design
objective, as long as Θ(t) is bounded.

Now, substituting (16) and (15) into (14), and after simple algebraic manipulations, yields the feedback-controlled
system described by

D(q)ë+C(q, q̇)ė =−kpe− kd ė+ Θ̃
T (t)Π(t) , (17)

where Θ̃(t) = Θ̄−Θ(t) denotes the estimation error. Next, we propose the following adaptation law for Θ̃(t) or Θ(t),
˙̃
Θ(t) = Θ̇(t) =−ΓΠ(t)ėT (t) , (18)

where Γ > 0 is a constant adaptive gain matrix. In what follows, we shall prove that (17) with the adaption law given
in (18) ensures the asymptotic trajectory tracking for a walking robot.

IV.B. A Lyapunov approach

Let V (e, ė,Θ̃)= 1
2 ėT D(q)ė+ 1

2 eT kpe+ 1
2 trace(Θ̃T Γ−1Θ̃) be a candidate Lyapunov function, and we note that V (e, ė,Θ̃)>

0, since D(q)> 0, kp > 0 and Γ > 0. Then, taking the time derivative of V (·) along the trajectory of (17) to obtain

V̇ = ėT D(q)ë+
1
2

ėT Ḋ(q)ė+ eT kpė+ trace(Θ̃T
Γ
−1 ˙̃

Θ) .

Now, substituting (17) into above and enforcing the Property II presented earlier, we obtain

V̇ (e, ė,Θ̃) =−ėT kd ė+ ėT
Θ̃

T
Π+ trace(Θ̃T

Γ
−1 ˙̃

Θ) .

Note that given two matrices A and B of compatible dimensions, we have the following identity:

trace(AB) = trace(BA) .

Hence, ėT Θ̃T Π = trace(Θ̃T ΠėT ). Substituting this into above yields

V̇ (e, ė,Θ̃) =−ėT kd ė+ trace[Θ̃T (ΠėT +Γ
−1 ˙̃

Θ)] ,

and by utilizing the parameter adaption law given in (18), we obtain

V̇ (e, ė,Θ̃) =−ėT kd ė≤ 0 ,

that is V̇ (·) is bounded for all (e, ė,Θ̃). To show that V̇ (·)→ 0 as t→∞, we must prove that V̇ is uniformly continuous,
which can be determined by first examining if V̈ (·) is bounded. Now, we take the time derivative of V̇ (·) along the
trajectory of (17) to obtain

V̈ (e, ė,Θ̃) =−2ėT kd ë ,

and by examining the terms in (17) we can readily deduce that ë is bounded, hence V̈ (·) is bounded. Finally, it follows
from the Barbalat’s lemma6 that V̇ (·)→ 0, and hence e(t)→ 0 as t→∞. We should also note that the estimation error
Θ̃ is only bounded. This concludes the proof. QED
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V. Control of Flexible Space Structures

Recall the flexible structure dynamics described in (11). We assume there are m number of control actuators
instrumented along the span of structure, as illustrated in Fig. 4. Then, with the implementation of active controls,
(11) can be augmented as

Ms p̈(t)+Cs ṗ(t)+Ks p(t) = B(xv) fz(θ1,θ2)+
m

∑
i=1

B(xi)ui(t) , (19)

where ui denotes the ith control input and B(xi) its location given by

B(xi) =


Φ1(xi)

Φ2(xi)
...

Φn(xi)

 .

It should be noted that, while the placement of control inputs are considered fixed, the coupling effect fz(θ1,θ2)
induced by a walking robot is changing as indicated in the matrix B(xv), where xv progresses forward. For the purpose
of control design, we treat B(xv) fz(θ1,θ2) as a vector of disturbance input Dw(t) to the beam structure, where w(t)
is considered as a weighted L2 disturbance input with weighting matrix W T = W > 0.7 In addition, we assume that
both the deflection and deflection rate are available for measurement and co-located with the actuators; that is, there
are m position sensors and m velocity sensors placed at B(xi). We are keenly aware the complication involved in data
processing and conversion required from measured strain gauge/gyro data to actually be used for feedback design.
That would be a subject for future study.

If zp(t) denotes the measured output, then

zp(t) =
[

BT
x BT

x

]
︸ ︷︷ ︸

Mp

[
p(t)
ṗ(t)

]
, where Bx =

[
B(x1) B(x2) · · · B(xn)

]
. (20)

It should be noted that Bx has full column rank, and zp and u have the same dimensions.

Figure 4. Placement of actuators in the structure.

V.A. A canonical system representation

Let xp = [pT ṗT ]T be a vector of states, then the state-space representation for (19) can be written as

Σo :


ẋp(t) = Apxp(t)+Bpu(t)+Dpw(t)
zp(t) = Mpxp(t)
yp(t) =Cpxp(t)

(21)

where u = [u1 u2 · · ·um]
T denotes the control input, yp the controlled or performance output, and

Ap =

[
0 I

−M−1
s Ks −M−1

s Cs

]
, Bp =

[
0

M−1
s Bx

]
, Dp =

[
0

M−1
s D

]
, Cp = Mp .
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In this study, we are interested in assessing the output responses at those sensor locations, hence we choose yp = zp.
Furthermore, it is important to note that the high gain matrix MpBp is nonsingular. We introduce the following
definition of system zeros for Σo.
Definition 1: A complex number s0 is a zero of the system Σo, if and only if the matrix

Λ(s0) =

[
s0I−Ap Bp

Mp 0

]
(22)

is singular.
The next lemma presents a coordinate transformation for Σo that results in a special structure. This representation

plays a key role in our subsequent derivation for the direct output feedback controllers.

Lemma 1. There exists a nonsingular coordinate transformation matrix T such that, with η(t) = T p(t), the system
Σo can be equivalently described by

Σ̂o :

{
η̇(t) = Âpη(t)+ B̂pu(t)+ D̂pw(t)
zp(t) = M̂pη(t)

(23)

where

Âp = TApT−1 =

[
A11 A12

A12 A22

]
, B̂p = T Bp =

[
0
Im

]
, D̂p = T Dp =

[
D1

D2

]
, M̂p = MpT−1 =

[
0 (MpBp)

]
.

(24)
Moreover, the eigenvalues of A11 coincide with the system zeros of Σo.

Proof: First, we perform the singular value decomposition for Bp to obtain

Bp =
[

U1 U2

][ 0
Σ

]
V T

1 ,

which implies that UT
1 Bp = 0. Now, we choose

T =

[
UT

1
(MpBp)

−1Mp

]
,

then T−1 would have the structure of [S Bp]. Let η(t) = T p(t), then Σo can be described in η−coordinate as shown
in Σ̂o. To prove that the eigenvalues of A11 are the system zeros, we first note that the system zeros are invariant under
coordinate transformation. Hence, after substituting the partitions of (Âp, B̂p,M̂p) into (22) yields

Λ̂(s0) =

 s0I−A11 −A12 0
−A21 s0I−A22 Im

0 (MpBp) 0

 .

Utilizing the fact that, given any two matrices X and Y with X invertible, then rank(XY ) = rank(Y ). We obtain

Λ̂(s0) =

 I 0 −A12(MpBp)
−1

0 Im (s0I−A22)(MpBp)
−1

0 0 Im


 s0I−A11 0 0
−A21 Im 0

0 0 (MpBp)


 I 0 0

0 0 Im

0 Im 0

 .

It can be readily shown that the matrix Λ̂(s0) becomes singular, if and only if the matrix s0I−A11 0 0
−A21 Im 0

0 0 (MpBp)

 (25)

is singular, and this is equivalent to that the matrix s0I−A11 is singular. This proves that the system zeros of Σo are
the eigenvalues of A11. QED

For a structure model given in (19), we can further prove that the system Σo is strictly minimum phase, that is, all
its system zeros lie in the open left half of the complex plane. Therefore, the matrix A11 is strictly Hurwitz. We shall
take advantage of this fact in the subsequent output control design process. One of the key features of a minimum
phase system is that, when needed, the implementation of large output control gain is possible, in order to achieve the
desired performance.
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V.B. Output covariance constraint problem

We consider the following system, {
ẋ(t) = Ax(t)+Dw(t)
y(t) =Cx(t)

(26)

where (C,A,D) are matrices of compatible dimensions and w(t) a weighted L2 disturbance input with weighting
matrix W > 0. It is given that, if A is Hurwitz, then the output covariance for (26) is given by8

Y =CXCT , (27)

where X is the controllability Gramian matrix satisfying the following Lyapunov equation

XAT +AX +DWDT = 0 . (28)

Now, if Ȳ is the desired output covariance for y(t), then the output covariance constraint problem7 for (26) is said to
be solved, if

Y ≤ Ȳ . (29)

In this paper, we focus on characterizing the output covariance optimization problem by utilizing the linear matrix
inequalities (LMIs). Let ε > 0 be given, and we consider the following parameterized Lyapunov equation,

X̄AT +AX̄ +DWDT + εI = 0 , (30)

where X̄ is a unique positive definite solution. It follows from the monotonicity of the Lyapunov solutions that X̄ > X .
Therefore, (27) and (29) can be modified as

CX̄CT < Ȳ , (31)

and (30) can be rewritten as
X̄AT +AX̄ +DWDT < 0 . (32)

Finally, by applying the Schur complement argument to (32),9 we obtain the following LMI expression,[
X̄AT +AX̄ DQ

QDT −I

]
< 0 , (33)

where Q =W
1
2 . Note that (33) is an affine function in both X̄ and Q, and hence can be effectively solved by using, for

instance, interior-point methods from convex optimization.10 In summary, the output covariance constraint problem
can be characterized in the next lemma, whose proof follows readily from the arguments given above.

Lemma 2. Consider (26) and let Ȳ > 0 be the desired output covariance. Then, the output covariance constraint
problem is solvable, if there exists X̄ > 0 satisfying

(i) (33) is feasible;

(ii) CX̄CT ≤ Ȳ .

V.C. LMI-based optimal static output feedback control

In this paper, we propose to solve the output covariance constraint problem for Σo by utilizing the static output feedback
controller of the form,

u(t) =−Kz(t) , (34)

where K is the control gain to be determined. Recall that A11 is strictly Hurwitz, then let

ᾱ =−max{Re(s0) : s0 is an eigenvalue of A11 }> 0 . (35)

Suppose we choose α > 0, with α < ᾱ , to be a desired rate of convergence for the feedback-controlled system. Since
the matrix A11 +αI is strictly Hurwitz for all α < ᾱ , thus for any given Q11 > 0, the following Lyapunov inequality
equation,

X11(A11 +αI)T +(A11 +αI)X11 +D1WDT
1 +Q11 < 0 , (36)

admits a positive definite symmetric solution X11.
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Lemma 3. Consider the system Σo. Suppose α > 0 with α < ᾱ is given. If there exist a positive definite symmetric
matrix X, a nonsingular matrix K, and a positive scalar γ satisfying

(i) X(Ap +αI)T +(Ap +αI)X− γBpBT
p +DpWDT

p < 0 ;

(ii) γK−1BT
p = MpX .

Then, the static output feedback controller given in (34) asymptotically stabilizes Σo with convergent rate α .

Proof: Let P = X−1 > 0 and pre- and post-multiply (i) by P, we obtain

(Ap +αI)T P+P(Ap +αI)− γPBpBT
p P+PDpWDT

p P < 0 . (37)

Now, substituting (ii) into (37), and add and subtract the term γPBpBT
p P, then (37) can be rewritten as

(Ap−BpKMp +αI)T P+P(Ap−BpKMp +αI)+ γPBpBT
p P+PDpWDT

p P︸ ︷︷ ︸
≥0

< 0 .

It then follows readily from the Lyapunov stability theory that the matrix (Ap−BpKMp +αI) is strictly Hurwitz.
In other words, with the output feedback controller (34), the real parts of the eigenvalues of the closed-loop system
matrix, Ap−BpKMp, are strictly less than −α . QED

In Lemma 3, the sufficient conditions for the existence of direct output feedback control are given. Now, it is left to
construct such X , K, and γ that satisfy Conditions (i) and (ii), and also solve the output covariance constraint problem.

First, partition X according to the partition of Âp as follows,

X =

[
X11 X12

XT
12 X22

]
,

where X11 > 0 solves (36) and the rest are to be determined. It follows from the matrix partitions given in (24) that
Condition (ii) becomes

γ[0 K−1] = [(MpBp)XT
12 (MpBp)X22] ,

which implies that X12 = 0, and the control gain matrix K is then given by

K = γ(MpBpX22)
−1 , (38)

where γ > 0 and X22 > 0 are yet to be determined. Consider the inequality in Condition (i), and we substitute the
system matrices given in (24) to obtain the LMI as follows,

A =

[
X11(A11 +αI)T +(A11 +αI)X11 +D1WDT

1 X11AT
21 +A12X22 +D1WDT

2
X22AT

12 +A21X11 +D2WDT
1 Y22

]
< 0 (39)

where Y22 = X22(A22 +αI)T +(A22 +αI)X22 +D2WDT
2 − γI. Then, it follows from (36) that A (1,1) = −Q11 < 0,

hence by utilizing the Schur complement argument, A < 0 if and only if there exist γ > 0 and X22 > 0, such that

Y22 +(X22AT
12 +A21X11 +D2WDT

1 )Q
−1
11 (X11AT

21 +A12X22 +D1WDT
2 )< 0 . (40)

In summary, we have the following theorem that presents a solution to the optimal output covariance constraint prob-
lem using a static output feedback controller.

Theorem 1. Consider the system Σo described in (21). Given α > 0 with α < ᾱ , the optimal output covariance control
problem, at a rate of convergence α , is solvable with the static output feedback controller given in (34), if there exist
a positive definite symmetric matrix X and γ > 0 that minimize the performance cost

min
γ,X

trace
{

CpXCT
p
}
, (41)

subject to
X(Ap +αI)T +(Ap +αI)X− γBpBT

p +DpWDT
p < 0 . (42)

Furthermore, if there exists a feasible solution to the above LMI, then the static output feedback gain K is given by

K = γ(MpBp)
−1 . (43)

Proof: The proof follows from Lemmas 2 and 3, and the arguments given above. QED
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VI. Numerical Study

We consider a robot walking on a 1-km long flexible structure. The structure is built by assembling a collection of
voxel substructures shown in Fig. 5. The pitch length of a voxel substructure is 0.3048 m and each voxel (with neces-
sary connection parts) weights 0.374 kg. The modulus of structure E is obtained from the stress analysis performed
for a structure dimension of 10-voxel by 10-voxel by 10-voxel (i.e. 1000 voxels), and it is determined that E ≈ 24.5
Mpa. As a result, the cross-sectional area of this 1-km structure is chosen to be 10-voxel by 10-voxel, therefore in total
there are 328,100 voxels, and the mass per unit length ρA is 122 kg/m and the area moment of inertia I is 7.1925 m4.

A two-legged walking robot is illustrated as in Fig. 2. For this study, the leg-1 parameters are chosen to be:
M1 = 0.414 kg, l1 = 0.1855 m, L1 = 0.4 m, I1 = 9.0269× 10−3 kg-m2, and the leg-2 parameters: M2 = 1.636 kg,
l2 = 0.4 m, L2 = 0.5 m, I2 = 4.963× 10−2 kg-m2. In this case, we are simulating a walking scenario where leg-2
is moving forward while carrying a voxel, hence leg-2 would have higher mass and inertia. Subsequently, leg-1 will
move forward and land right behind leg-2. This will complete a walking cycle.

Figure 5. A volumetric pixel (or voxel) substructure: 3×3×3 (total 27 voxels).

VI.A. Trajectory tracking

Figure 6 shows a robot walking on a flexible structure, in which θ1 and θ2 are depicted at discrete instant of time. A
third order polynomial function is used to approximate θ1 and θ2 positions; as shown in Fig. 7, and these are then used
to generate a desired robot trajectory qd(t), for t0 ≤ t ≤ t4, as follows,

qd(t) =

[
θ d

1 (t)
θ d

2 (t)

]
, θ

d
1 (t) = a0 +a1t +a2t2 +a3t3 and θ

d
2 (t) = b0 +b1t +b2t2 +b3t3 , (44)

where [a0, a1, a2, a3] = [69.7000, 3.4917,−0.2250, 0.0031] and [b0, b1, b2, b3] = [19.6143, 1.7988,−0.0039,−0.0007].
Note that Fig. 6 shows the scenario where leg-2 moves forward, however a similar trajectory can be generated for leg-1
moving forward.

The coupling force inserted by robot (leg-1) during leg-2 moving forward can be computed from (2c), except we
neglect the gravity term and the structure reaction term. This force can then be considered as an external disturbance
force w(t) to the underline structure.
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Figure 6. Robot walking on a flexible structure.

Figure 7. Desired trajectory for θ1 and θ2.

VI.B. Simulation results

We consider 10 flexible structure modes in bending and their undamped natural frequencies Ω are given by

Ω = [0.0045,0.0148,0.0314,0.0535,0.0820,0.1160,0.1562,0.2008,0.2530,0.3082] rad/sec .

In addition, as illustrated in Section III.B, we insert the structure damping ratio of 5% into the structure. As shown
in Fig. 8, there are 5 active actuators instrumented within the structure, and hence 5 position and 5 rate sensors,
where [x1, x2, x3, x4, x5] = [100, 300, 500, 700, 900]m. We assume the disturbance w(t) has the intensity W = 0.0156,
which is computed by following the walking scenario shown in Figs. 6 and 7. It was determined from Lemma 1
that ᾱ = 0.009, hence we choose α to be 0.008. The LMI constraint in Theorem 1 is implemented and solved in
MATLAB environment by utilizing SeDuMi as optimization solver and Yalmip as LMI parser, subsequently a static
output feedback controller is obtained as function of γ .

The impulse responses are assessed in this study, where an impulse is applied at point x3 in Fig. 8. Figures 9-10
show the time history of the deflection and velocity at points x1 and x3, respectively, for the open-loop and closed-loop
(with the static output feedback at γ = 100). These simulation results demonstrate that the proposed direct output
feedback controller can effectively suppress the excessive structure vibration. It is also worth mentioning that the
added control effort only amounts to about 1% and 0.1% addition to the structure damping and stiffness, respectively.
Figure 11 shows the eigenvalue map of the closed-loop system as γ increases. It can be clearly seen that, as γ ≈ ∞,
some of the closed-loop poles approach some finite values, while others move to infinity. These finite poles precisely
coincide with those (finite) system zeros, and their locations ultimately determine the closed-loop system performance
when very large control gain γ is applied. Therefore, in actual implementation a practically allowable control effort
will need to be calibrated and incorporated as an additional LMI constraint in Theorem 1.

VII. Summary

This paper presented a numerically tractable problem formulation for modeling and control of coupled robot-
structure dynamics. For controlling a walking robot on a flexible structure, we proposed a robotic controller that
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Figure 8. Distributed actuators and sensors in the structure.

Figure 9. Impulse response comparisons at point x1: (a) displacement; (b) velocity.

Figure 10. Impulse response comparisons at point x3: (a) displacement; (b) velocity.

consists of a conventional full state feedback motion controller and an adaptive controller. The adaptive controller
is designed for accommodating coupling dynamics induced from the flexible structure while robot moving forward.
The Euler-Bernoulli beam approximation was utilized to model the ”free-free” flexible space structure. A finite set
of co-located sensors and actuators were distributed along the structure, and a direct static output feedback controller
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Figure 11. Root-locus as γ increases.

was proposed by utilizing the LMI characterization for optimal output covariance constraint control problem, in which
the presence of walking robots were considered as bounded disturbance inputs to the structure. The simulation results
showed the efficacy of the proposed framework.

In this study, we have only considered the structure dynamics in bending, the torsional and bending-torsion cou-
pling are critical structure behaviors that can not be ignored. In addition, a practical number of sensors/actuators and
their placement on the structure are another important subject of research. These will be included in the future study.
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