

Domestic Proton Facilities for Radiation Testing of Electronics: Snapshot Report

Kenneth A. LaBel – SME, SSAI (for NASA) Thomas Turflinger – The Aerospace Corporation Jonathan A. Pellish - NASA

Acknowledgment:

This work was partially sponsored by: NASA Office of Safety & Mission Assurance

To be presented by Kenneth A. LaBel at the SAE Meeting, JEDEC, New Orleans, LA, January 6-9, 2020.

Acronyms

Acronym	Definition
BLUF	Bottom Line Up Front
CNL	Crocker Nuclear Lab
DD	Displacement Damage
DOE	Department of Energy
HUPTI	Hampton University Proton Therapy Institute
IUCF	Indiana University Cyclotron Facility
JSC	Johnson Space Center
LBNL	Lawrence Berkeley National Laboratories
NSRL	NASA Space Radiation Laboratory
POC	Point of Contact
PTCOG	Particle Therapy Co-Operative Group
sec	second
SEE	Single Event Effects
TAMU	Texas A&M University
TBD	to be determined
TID	Total ionizing dose
UCD	University of California at Davis
UMD	University of Maryland Proton Therapy Center

BLUF

- This set of charts is a snapshot of domestic proton capability/availability as applies to the testing of electronics.
 - The focus is primarily on higher energy protons (>200 MeV) utilized for single event effects (SEE) testing.
- Current status shows sufficient availability domestically, however, there are two prime issues:
 - Single point failures at highly utilized facilities, and,
 - Volatility within the proton oncology facility utilization due to insurance acceptance, medical oncologist acceptance, and other economic factors.

Outline

- Background 1: Why we perform proton testing
 - Environment
 - Effects on Electronics
 - Testing on the Ground
 - Market Consideration
- Background 2: Domestic Proton Therapy
 - Status
- The Study
 - Requirements and Considerations
- Facility Availability Status
 - Business Models
 - Status Tables (>200 MeV)
 - General Discoveries
 - Medium Energy Facilities
- The Future
- Summary

Sunset from California Protons 9730 Summers Ridge Rd, San Diego, CA 92121

Background 1

Protons in Space

- Protons of various energies exist in space.
 - Primarily in trapped belts due to magnetic fields, and from,
 - Solar Particle Events (SPEs).
- The image below shows the proton energy spectra for representative large SPE.

Protons – Impact on Electronics

• Single Event Effects (SEEs)

- Two mechanisms for depositing energy that depend on the device sensitivity:
 - Indirect ionization: the energy deposited by nuclear recoils with device materials, and,
 - Direct ionization: the energy deposited by the proton as it passes through the device.
- Two types of effects observed:
 - Soft errors: upsets, interrupts, etc...
 - Hard errors (possible destructive): latchup, rupture, etc...
- Total lonizing Dose (TID)
 - Cumulative long term ionizing damage due to protons.
 - May cause threshold shifts, increased device leakage (& power consumption), timing changes, decreased functionality, etc.
- Displacement Damage (DD)
 - Cumulative long term non-ionizing damage due to protons.
 - May have similar failure modes to TID.

Proton Energies for Test nominal break points and solar event

To be presented by Kenneth A. LaBel at the SAE Meeting, JEDEC, New Orleans, LA, January 6-9, 2020.

Proton Energy Regimes

- For SEE testing (indirect ionization)
 - Most common rate prediction method utilizes the Bendel 2-parameter fit to the test data.
 - This method uses data points usually in both the high and medium energy regimes (curve fitting).
 - High energy provides the "worst case" device sensitivity (go/no-go).
- For SEE testing (direct ionization)
 - Testing is performed in the low energy regime.
- TID or DD
 - May use both medium and high energy protons.
 - Medium energy is the "go-to" energy regime for testing optics/sensors/etc...
 - Low energy may not have sufficient penetration for a packaged device, but is used for DD such as with solar cells.

Electronics and Proton Effects *The Customer Base is More Than Space*

• Space products

- Proton SEE tests are used for mission risk analyses (reliability, availability)
- Protons are used to VALIDATE radiation tolerance approaches or in development cycles
 - Device level tests
 - System level tests

• Space researchers

- Uses protons to develop test methods or knowledge of tolerance of new technologies or electronic designs
- Other space research with protons – human protection and material studies

- Commercial terrestrial
 - Provide higher performance, but have proton sensitivities
 - Manufacturers use protons to test for terrestrial neutron reliability

Automotive

- Largest growth area in the electronics market
- Have safety critical aspects (selfdriving and driver assist)
- Systems validation is growing area
- Aviation
 - Increased use of electronics in new planes, drones, etc...
 - System manufacturers use protons for validation
- Medical
 - High reliability requirement

- Instrument calibrations

Examples: Growing Markets

The two major trends in the aerospace community are driving the use of more non-space/radiation hardened products that require proton testing:

- The advent of small spacecraft, and,
- The increased number of "commercial" space providers.

More parts need testing!

Automotive Electronics

Electronics are continuing their rapid increase in usage within the automotive industry.

Consider the vast array of systems ranging from tire pressure to selfdriving and safety features to entertainment to comfort control and so on, the 2020 automotive electronics market is approaching \$240B/yr! There already well over 100 processors in a typical car.

While some features are not safety critical (entertainment, for example), clearly some like brake assist are.

(data from: https://autotechreview.com/features/growth-ofautomotive-electronics-infographic)

This market needs testing for terrestrial soft errors on safety critical systems! Background 2: Domestic Proton Therapy Sites – Operational and Under Construction

U.S. Protons – Operating Centers (1 of 4)

(information from ptcog.ch)

	WHO, WHERE	PARTICLE	MAX. ENERGY (MeV), ACCELERATOR TYPE, (VENDOR)	BEAM DIRECTIONS; NO. OF TREATMENT ROOM	START OF TREATMENT PLANNED
USA, CA.	<u>J. Slater PTC,</u> Loma Linda	р	S 250	3 gantries, 1 horiz. fixed beam	1990
USA, CA.	<u>UCSF-CNL, San</u> Francisco	р	C 60	1 horiz. fixed beam	1994
USA, MA.	MGH Francis H. Burr PTC, Boston	р	C 235	2 gantries***, 1 horiz. fixed beam	2001
USA, TX.	MD Anderson Cancer Center, Houston	р	S 250	3 gantries***, 1 horiz. fixed beam	2006
USA, FL.	<u>UFHPTI,</u> Jacksonville	р	C 230	3 gantries***, 1 fixed beam	2006
USA, OK.	<u>Oklahoma</u> <u>Proton Center,</u> Oklahoma City	р	C 230	1 gantry, 3 fixed beams	2009
usa, pa.	<u>Roberts</u> <u>PTC,UPenn,</u> <u>Philadelphia</u>	р	C 230	4 gantries***, 1 horiz. fixed beam	2010
USA, IL.	<u>Chicago Proton</u> <u>Center,</u> <u>Warrenville</u>	р	C 230	1 gantry**, 3 fixed beams	2010
USA, VA.	HUPTI, Hampton	р	C 230	4 gantries, 1 fixed beam	2010
USA, NJ.	ProCure Proton Therapy Center, Somerset	р	C 230	4 gantries***	2012

U.S. Protons – Operating Centers (2 of 4) (information from ptcog.ch)

	WHO, WHERE	PARTICLE	MAX. ENERGY (MeV), ACCELERATOR TYPE, (VENDOR)	BEAM DIRECTIONS; NO. OF TREATMENT ROOM	START OF TREATMENT PLANNED
USA, WA.	SCCA ProCure Proton Therapy Center, Seattle	р	C 230	4 gantries***	2013
USA, MO.	S. Lee Kling PTC, Barnes Jewish Hospital, St. Louis	р	SC 250	1 gantry	2013
USA, TN.	ProVision Cancer Cares Proton Therapy Center, Knoxville	р	C 230	3 gantries**	2014
USA, CA.	California Protons Cancer Therapy Center, San Diego	р	C 250	3 gantries**, 2 horiz. fixed beams**	2014
USA, LA.	Willis Knighton Proton Therapy Cancer Center, Shreveport	р	C 230	1 gantry**	2014
USA, FL.	<u>Ackerman</u> <u>Cancer Center,</u> Jacksonville	р	SC 250	1 gantry	2015
USA, MN.	<u>Mayo Clinic</u> <u>Proton Beam</u> <u>Therapy Center,</u> <u>Rochester</u>	р	S 220	4 gantries**	2015
USA, NJ.	Laurie Proton Center of Robert Wood Johnson Univ. Hospital, New Brunswick	р	SC 250	1 gantry	2015
USA, TX.	<u>Texas Center for</u> <u>Proton Therapy,</u> <u>Irving</u>	р	C 230	2 gantries**, 1 horiz. fixed beam	2015
USA, TN.	St. Jude Red Frog Events Proton Therapy Center, Memphis	р	S 220	2 gantries**, 1 horiz. fixed beam	2015

U.S. Protons – Operating Centers (3 of 4) (information from ptcog.ch)

	WHO, WHERE	PARTICLE	MAX. ENERGY (MeV), ACCELERATOR TYPE, (VENDOR)	BEAM DIRECTIONS; NO. OF TREATMENT ROOM	START OF TREATMENT PLANNED
USA, AZ.	<u>Mayo Clinic</u> <u>Proton Therapy</u> <u>Center, Phoenix</u>	р	S 220	4 gantries**	2016
USA, MD.	Maryland Proton Treatment Center, Baltimore	р	C 250	4 gantries**, 1 horiz. fixed beam**	2016
USA, FL.	<u>Orlando Health</u> <u>PTC, Orlando</u>	р	SC 250	1 gantry	2016
USA, OH.	<u>UH Sideman CC,</u> <u>Cleveland</u>	р	SC 250	1 gantry	2016
USA, OH.	<u>Cincinnati</u> <u>Children's Proton</u> <u>Therapy Center,</u> <u>Cincinnati</u>	р	C 250	3 gantries**	2016
USA, MI.	<u>Beaumont</u> <u>Health Proton</u> <u>Therapy Center,</u> <u>Detroit</u>	р	C 230	1 gantry**	2017
USA, FL.	<u>Baptist Hospital's</u> <u>Cancer Institute</u> <u>PTC, Miami</u>	р	C 230	3 gantries**	2017
USA, DC.	<u>MedStar</u> <u>Georgetown</u> <u>University</u> <u>Hospital PTC,</u> <u>Washington DC</u>	p	SC 250	1 gantry**	2018
USA, TN.	Provision CARES Proton Therrapy Center, Nashville	р	C 230	2 gantries**	2018
USA, GA.	Emory Proton Therapy Center, Atlanta	р	C 250	3 gantries**, 2 horiz. fixed beams**	2018

U.S. Protons – Operating Centers (4 of 4) (information from ptcog.ch)

	WHO, WHERE	PARTICLE	MAX. ENERGY (MeV), ACCELERATOR TYPE, (VENDOR)	BEAM DIRECTIONS; NO. OF TREATMENT ROOM	START OF TREATMENT PLANNED
USA, OK.	<u>Stephensen</u> <u>Cancer Center,</u> <u>Oklahoma</u>	р	SC 250	1 gantry**	2019
USA, MI.	<u>McLaren PTC,</u> <u>Flint</u>	р	S 250/330	3 gantries**	2019
USA, NY.	<u>The New York</u> Proton Center, East Harlem, <u>New York</u>	р	C 250	3 gantries**	2019
USA, DC.	<u>Johns Hopkins</u> <u>National Proton</u> <u>Center,</u> <u>Washington</u>	р	S 250	3 gantries**,1 horiz. fixed beam*	2019
USA, FL.	<u>South Florida</u> Proton Institute, SFPTI, Delray Beach	р	C 250	1 gantry**	2019
USA, FL.	<u>UFHPTI,</u> Jacksonville	р	C 230	1 gantry**	2019

Proton Therapy – Industry Snapshot

- Additional data on U.S. sites from ptcog.ch
 - 6 additional facilities under construction
 - 6 additional facilities being planned including
 - 1st Carbon ion facility in U.S.
 - <u>https://www.jacksonville.com/news/20191119/mayo-</u> <u>clinic-in-jacksonville-plans-north-americarsquos-</u> <u>first-carbon-ion-therapy-center-to-fight-cancer</u>
- Rest of the world also increasing number of sites, Asia seems to be leading that charge, but facilities are spread around the world
 - China
 - 5 operational (3 Carbon ion)
 - 8 under construction (1 Carbon ion)
 - 8 in planning (1 Carbon and proton combined site)

Proton Therapy – Industry Snapshot Comments

- As noted by the previous slides, there are an increasing number of facilities that are operational (treating patients), under construction, or in planning.
- While some continue to be very successful with patient loads and research (in some instances), a number are struggling with:
 - Patient load
 - "Owner of Scripps Proton Therapy Center files for bankruptcy"
 - https://www.beckershospitalreview.com/finance/owner-of-scripps-proton-therapycenter-files-for-bankruptcy.html

Insurance

- "Patients Struggle To Get Coverage For Proton Therapy"
 - https://www.news9.com/story/39647201/9-investigates-patients-struggle-to-getcoverage-for-proton-therapy
- Local Medical Community acceptance
- Changes in management/staff (high demand personnel)
- This creates a dynamic situation such as Scripps (aka, California Protons) where access was quickly halted for the electronics test community

The Study

Options for Proton Facilities in North America

- While the team has mostly been focused on high energy regime facilities to replace the nowdefunct Indiana University Cyclotron Facility (IUCF),
 - Both the low and medium regimes also need to be considered for testing needs.
- The following charts present this investigation to date with focus on the high energy proton regime.

Basic Study Requirements for High Energy Proton Facility

- Acceptable for ~90% of Users
- Energy range:
 - 125 MeV to > 200 MeV
- Proton flux rates:
 - 1e7 p/cm²/sec to 1e9 p/cm²/sec
- Test fluences:
 - 1e9 p/cm² to 1e11 p/cm²
- Irradiation area:
 - Small (IC ~ 1cm²) to Large > 15cm x 15cm
- Beam uniformity:
 - >80%
- Beam structure:
 - Cyclotron *preferred* (random particle delivery over time)
 - Synchrotrons acceptable (pulsed beam)
 - Fixed spot or scatter (random particle delivery over area)

Background: Proton Beam Delivery for Cancer Therapy

- There are two types of facilities being used for proton cancer therapy:
 - Cyclotrons, and,
 - Synchrotrons.
- In addition, there are three types of beam delivery methods used.
 - Scatter,
 - Wobble/uniform scan, and,
 - Pencil beam scan.
- IUCF was a cyclotron and utilized a scatter beam delivery system.
 - Other options require thought for utilization, but successful tests have been performed with scan beams when "scan" is turned off.

Sample Considerations for Electronics Proton Testing at Cyclotrons

- Practical
 - Technical
 - Mechanical/mounting
 - Cabling/feedthroughs
 - Ethernet, Wi-Fi,...
 - Power
 - Ancillary test equipment location (in vault or user area)
 - Test specific issues
 - Thermal
 - Speed/performance
 - Test conditions

Logistics

- Contracts/purchase
- Safety rules (patients first)
 - Personal dosimeters?
- Shipping/receiving
- Staging/user areas
- Operator model
- Activated material storage

- Particle
 - Test energies
 - Dosimetry/particle detectors
 - Uniformity
 - Particle range
 - Spot size/collimation
 - Test levels
 - Flux and fluence rates
 - Beam stability
 - Particle localization
 - Stray particles
 - Beware of "scatter" designs (neutrons)
 - Beam structure

Patient vs. Electronics Proton Exposure

Patient (Typical)

- Measurement
 - Dose (tissue/water)
- Beam penetration
 - Use Bragg peak to STOP beam in patient
- Exposure stop
 - Cumulative dose
- Target size
 - Tumor
- Beam delivery
 - Pencil beam, wobble, uniform scan or fixed point/scatter
- Beam timing structure
 - Timing can be important
- Patient exposure
 - A few minutes
- Beam movement
 - Gantry or fixed/scan

Electronics (typical)

- Measurement
 - Dose (material Si, SiO2, GaAs, ...) and particle rates (Fluence -protons/cm2, and flux - protons/cm2/sec)
- Beam penetration
 - Beam goes THROUGH target
 - Beam STOP post-target needed
- Exposure stop
 - Cumulative dose or Fluence or
 - Number of recorded events or degradation or
 - "Unusual" event or failure
- Target size
 - Single chip (1cmx1cm) to full assembly (20cm x 20cm or larger)
- Beam delivery
 - Prefer fixed point/scatter
- Beam timing structure
 - When particle arrives versus electronics operation CAN be important (but not always)
- Target exposure
 - Seconds to minutes to ??? Depending on STOP criteria – usually under 2 minutes
 - Often MANY exposures (test runs) per target (10's to 100's)
- Beam movement
 Fixed

To be presented by Kenneth A. LaBel at the SAE Meeting, JEDEC, New Orleans, LA, January 6-9, 2020.

Status

(sans NASA Space Radiation Laboratory (NSRL) – it is in its own category!)

Business Models for "Selling" Protons

(Therapy Sites)

- Available hours
 - Weekends
 - One day or both days
 - 2 weekends a month, 3 out of 4 weekends a month
 - 6, 12, or 16 hours each day
 - Evenings
 - After patient treatment
 - 4-8 hours (we're used to "the graves")
 - Interleaving during the patient treatment hours
 - Lowest priority patient model
 - Assumes "Isolation" from patient area (dedicated research room)
 - ~15 minutes of beam per hour (in 2-3 minute blocks)
 - 15-20 minutes of beam per hour is a sweet spot for users
 - Minimizes additional staffing
 - Model changes if no patients are being treated with a machine (dedicated time available)
- Pricing
 - Ranges from ~\$1000 to \$1700/hr
 - Contracts, purchase orders, cash, check, charge no insurance

To be presented by Kenneth A. LaBel at the SAE Meeting, JEDEC, New Orleans, LA, January 6-9, 2020.

Domestic >200 MeV Protons – Selling Time

				<u>~ Yearly</u>			
				<u>Hours</u>	Current Load		
Organization	Location	<u>POC(s)</u>	Email(s) 💽	Offered 💽	Prediction •	Notes 💌	<u>Comment</u>
James M. Slater							
MD Proton						Usually need 3-4 months to	
Treatment &						obtain longer time blocks	
Research Center	Loma Linda, CA	Andrew Wroe	awroe@llu.edu	<u>600</u>	<u>100%</u>	than a few hours	Continue to be busy.
						Availability on most	
						Saturdays when not being	
Northwestern						used for internal purposes	
Medicine Chicago						or holidays. Usually 11-13	
Proton Center	Warrenville, Il	Steven Laub	<u>steven.laub@nm.org</u>	<u>600</u>	<u>70%</u>	hours of 16 hour slots used.	
						Mostly fully booked through	
						2020, except two weekends	
The MGH Francis						that were recently	
H. Burr Proton						rereleased (one in Aug &	
Beam Therapy						one in Oct). 3 out of 4	What happens when Ethan
Center	Boston, MA	Ethan Cascio	ecascio@partners.org	<u>1000</u>	<u>100</u>	weekends a month access.	retires?
						Banker's hours: 9-5 Mon-Fri.	
						Dedicated research	Have suggested they create a
Provision CARES						machine. Looking to	website with
Proton Therapy			khai.lai@provisionproton.			increase customer base in	capabilities/availability.
Center	Knoxville, TN	Khai Lai	<u>com</u>	<u>1000</u>	<u>30%</u>	2020.	Planning to exhibit at NSREC.
Mayo Clinic Proton						Weekend time - in	
Beam facility -			Remmes.Nicholas@mayo.			competition with internal	Not looking for additional
Rochester	Rochester, MN	Nicholas Remmes	<u>edu</u>	<u>~100</u>	<u>100%</u>	research. No evening access.	customers at this time.
Mayo Clinic Proton							
Beam Facility -			Robertson.Daniel@mayo.e			Facility available most Friday	
Phoenix	Phoenix, AZ	Daniel Robertson	<u>du</u>	<u>~500</u>	<u>20%</u>	Evenings and on Saturdays.	
Tri-University							
Meson Facility							
(TRIUMF) Proton	Vancouver,	Ewart Blackmore,	<u>ewb@triumf.ca,</u>				"Majority" of hours are for
Irradiation Facility	CAN	Mike Trinczek	trinczek@triumf.ca	<u>850</u>	<u>80%</u>	BL1B (480 and 355 MeV)	commercial electronics testing
Tri-University							
Meson Facility							
(TRIUMF) Proton	Vancouver,	Ewart Blackmore,	ewb@triumf.ca,				"Majority" of hours are for
Irradiation Facility	CAN	Mike Trinczek	trinczek@triumf.ca	1150	<u>50%</u>	BL2C (105 MeV and lower)	commercial electronics testing

To be presented by Kenneth A. LaBel at the SAE Meeting, JEDEC, New Orleans, LA, January 6-9, 2020.

Domestic Facilities >200 MeV –

Limited Test Time Available

Organization -	Location	POC(s)	Email(s)	Notes
				Had plans, but
				internal/external
Proton Therapy		Abram		biological research load
at University of		Gordon,		higher than anticipated.
Cincinnati	Liberty	Anthony	Abram.Gordon@cchmc.org,	Awaiting further
Medical Center	Township, OH	Mascia	Anthony.Mascia@cchmc.org	response.
Hampton				Research room area still
University				in plans, but indefinite
Proton Therapy		Vahagn	vahagn.nazaryan@hamptonu	(hopeful for ?). Limited
Institute (HUPTI)	Hampton, VA	Nazaryan	<u>.edu</u>	access until this occurs.
MD Anderson				Limited access
Proton Therapy				(NASA/JSC) with possible
Center	Houston, TX	TBD		future access to others.

Domestic Facilities >200 MeV – Not accessible or maybe someday

Organization	Location	POC(s)	Email(s)	Notes
				Early planning stages and considering research room. Julie
Ohio State				Sussi and Nilendu Gupta are POCS, but can work via James
University	Columbus, OH			DeFilippi.
Maryland Proton				Dynamic situation with change in management. Katja is now
Therapy Center	Baltimore, MD	Katja Langen	<u>klangen@umm.edu</u>	at Emory. Unlikely near term. Need to find a new POC.
Miami Cancer				
Institute Proton				Now operational. Having internal discussions on future
Therapy Center	Miami, FL	Alonso Gutierrez	AlonsoG@baptisthealth.net	access. Should know something in a few months.
ProCure Proton				
Therapy Center in	Oklahoma City,			
Oklahoma City	ОК	Andrew Knizley	andrew@PriorityHealthMgmt.com	No response to inquiries.
Seattle Cancer				
Care Alliance				
(SCCA) Proton				
Therapy Center	Seattle, WA	Unknown		
University of				
Florida Health				2nd source (IBA Proteus One) has now treated 1st patient.
Proton Therapy				NASA botany researcher in discussion for experiments in
Institute	Jacksonville, Fl	Stuart Klein	sklein@floridaproton.org	summer 2020. Will follow up again in late 1Q CY20.
Texas Center for				
Proton Therapy	Irving, TX			
Roberts Proton				Lei still very interested, but way too busy to discuss in near
Therapy Center	Philadelphia, PA	Lei Dong	Lei.Dong@uphs.upenn.eduE11	term.
California Protons				
Cancer Therapy				
Center	San Diego, CA	Andrew Chang	andrewlchangmd@gmail.com	Have sent follow-on email, but awaiting response.
				Had some discussions last year. Nearly operational. Katja
Emory Proton				(former UMD) is now head physicist. James DeFilippi
Therapy Center	Atlanta, GA			formerly supported. No response to initial contacts.
Georgetown				
Lombardi				
Comprehensive				
Cancer Center	Washington, DC			TBD
				James DeFilippi is supporting them - might be a good time to
Inova Schar Cancer				talk. Keith Gregory (former HUPTI, UMD) is there, so will
Institute	Fairfax, Va			reach out to him.

Need to review "new" facilities and those under construction

General Things We've Discovered

- The medical physicists are REALLY bright, but
 - They speak a different language.
 - We talk flux, fluence, and dose in Silicon.
 - They talk beam current, monitor units/counts, and dose in water/tissue.
- Cable run lengths between the user area and beam line area varies wildly.
 - 65-125' depending on the facilities.
 - Some may have limited cable runs already in place.
- The technical is the easy part.
 - Government contracting is a lot different than medical insurance for "paying the bill".
 - Things like "indemnification clauses" and federal procurement regulations are new to them and they're not really set up for this.
- The playing field is very fluid.
 - Which facilities are available and how they're interested in working with our community changes nearly continuously.

- Commonly used medium energy proton facilities:
 - University of California at Davis (UCD) Crocker Nuclear Laboratory (CNL) – (63 MeV)*,
 - Lawrence Berkeley National Laboratories (LBNL)*
 (50 MeV),
 - Texas A&M University (TAMU) 50 MeV, and,
 - University of Washington (50 MeV).
- Detailed discussion of LBNL's future and CNL's upgrade potential are out-of-scope for this report.

* also in use for low energy proton testing

The Future

Protons – Future Considerations

- Scenario 1: Insurance and medical needs stays the same
 - Status quo: we should have enough proton beam time options via existing sites plus new ones being built (30+ total).
 - Mostly weekends
- Scenario 2: insurance and medical industry will not have the need for the number of facilities being built
 - We get more access
 - Some sites may close
 - Possibility of buying a site or turning it into a dedicated test facility
- Scenario 3: insurance and medical industry have increased needs for cancer therapy sites
 - We get limited access
 - More sites may be built
 - Access for SEE testing will be very limited
- Scenario 4: government determines that assured access to a proton site is needed
 - Upgrade existing facilities (DOE? Crocker? Other?) or build a new site using more modern proton source options.

Protons Assured Access – Possible Options

- Government lab LANSCE (DOE) upgrade
 - Pulsed beam with max energy of 800 MeV
 - Steve Wender developing white paper
 - White paper is on reducing flux to SEE test levels and obtaining 200 MeV regime
- Build a new (government/industry) facility
 - Room-size sources are in the \$3-5M range, but this is only a part of the cost
 - May include some heavy ion capability?
- Upgrade Crocker they have experience
 - ROM is anywhere from \$15-50M
- Private company builds research facility
 - Example: former founder of Mevion (proton source manufacturer) has expressed interest in a privately funded research facility

Do We Build One Ourselves?

- Example, IBA Proteus One
 - Newer proton therapy sources take ~ 1/3 of the space and accompanying power of previous options.
 - Cost range for source is ~ \$3-5M
 - Building, licenses, et al add to this cost
- This is a conceivable and realistic possibility, however, business model, return on investment (ROI), long-term maintenance and operation, etc., all need to be factored in.

Are Protons for Oncology Passé?

- Despite the challenges for proton therapy with insurance companies as well as medical community acceptance, newer light ion therapy (i.e., Carbon) and/or other ions is an emerging direction.
 - Theory is that the ions will cause less radial damage to "good" tissue near tumor and can be more precise a tool.
 - Japan is leader in this area, but other non-U.S. entities are performing research as well.
 - Mayo (Jacksonville) has announced plans for 2025 access.
- 5 years from now? Unclear future for protons if light ions become "the new thing".

Summary

- An overview of Domestic Proton Facility status for electronics testing has been shared.
- We note that this is a fluid area where the facilities and players change on a regular basis.
 - The future may be bright or dark, but mission success often depends on this access.