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MOTIVATION
NASA’s Space Technology Mission Directorate is funding Pterodactyl 
through the Early Career Initiative (ECI) Award to address the need for 
deployable entry vehicles that can land small and large mass payloads 
precisely
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GOAL

Feasibility study such that the solution closes
- Targeting Performance (G&C) 
- Packaging and Structural Analysis 

Selected Lunar Return mission parameters to stress 
design for precision targeting and future scalability
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PTERODACTYL BASELINE VEHICLE 
(PBV)

asymmetric 

diameter = 1+ m

mass = 59.4 kg

L/Dtrim = 0.2

αtrim = -12o
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CONTROL SYSTEM OPTIONS
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Flaps Control 
System (FCS) 

Mass Movement 
Control System (MMCS) 

Reaction Control 
System (RCS)

4 RCS Jets
Independent 

Moveable Masses

* If selected, a control system option 
would be used independently for entry 



Need a guidance algorithm capable of exploring two different guidance and 
control techniques to determine targeting accuracy and load constraints :

Bank control methods are well known, but alpha-beta methods are not

GUIDANCE DEVELOPMENT OBJECTIVES

Pterodactyl Project, NASA STMD 6

α−β φ
Uncoupled
down/cross 

range control

Coupled
down/cross 

range control

New Development Purpose

Develop methodology for 
identifying α−β control

Precision targeting by reducing 
down range and cross range 
errors, decoupled



GUIDANCE ALGORITHM SELECTION
Selected the Fully Numerical Predictor-corrector Entry Guidance (FNPEG) 
because:

• Unlike other guidance algorithms, FNPEG is a unified method based on the 
same algorithmic principles applicable to a wide range of vehicles (low to 
high L/D)

• FNPEG can also be applied to skip as well as direct entry for orbital and 
sub-orbital entry missions

• FNPEG has good convergence rates and can enforce complicated 
(quadratic) inequality heating and aerodynamic load constraints

• Reliance on fundamental equations of motion makes FNPEG an attractive 
option to be adapted to produce angle of attack (alpha) and sideslip angle 
(beta) commands
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FNPEG BANK ANGLE PROFILE
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Bank angle sign changed to correct crossrange error 
partially incurred from bank angle modulation

* e is the total mechanical energy 
(kinetic + potential)

𝜎𝜎 𝑒𝑒 = 𝜎𝜎0 +
𝑒𝑒 − 𝑒𝑒0
𝑒𝑒𝑓𝑓 − 𝑒𝑒0

(𝜎𝜎𝑓𝑓−𝜎𝜎0)



FNPEG UNCOUPLED RANGE CONTROL
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Sideslip angle command is found using a proportional 
derivative control  for tracking azimuth angle

Structural and aerodynamic analyses for different control system architectures suggested an 
additional need for a non-bank angle guidance

FNPEG Uncoupled Range Control (URC) was created to minimize downrange & crossrange error 
using user-defined alpha and beta ranges to generate commands

Robustness is maintained by reserving lift margin for dispersed cases at the end of trajectory

ecurrent

αnew

𝛼𝛼(𝑒𝑒) = 𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛 +
𝑒𝑒 − 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐
𝑒𝑒𝑓𝑓 − 𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑐𝑐

(𝛼𝛼𝑓𝑓 − 𝛼𝛼𝑛𝑛𝑛𝑛𝑛𝑛)

FNPEG URC Profile

* e is the total mechanical energy 
(kinetic + potential)



EXAMPLE 3DOF SIMULATION SETUP

Flight Analysis and Simulation Tool (FAST) 

Earth Global Reference Atmospheric Model (GRAM) 

CBAERO -> CART3D aerodynamic model 

FNPEG URC (FNPEG used for bank-driven G&C configurations)

Initial conditions : 
‒ Guidance call rate: 1 Hz
‒ Angle of attack & sideslip angle accelerations: 5 °/s/s
‒ Angle of attack & sideslip angle rate limits: 5 °/s
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FCS Configuration 
Pterodactyl Baseline Vehicle (PBV)
1 m diameter
Mass = 72 kg

Loading Constraints
Heating Rate < 250 W/cm2

G-load < 15g’s



FNPEG AERODYNAMICS LOOKUP 
METHOD

Bank angle guidances may use current trim angle of attack to estimate aerodynamic 
lift and drag with simple table lookup or equation
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CHALLENGE IN URC IMPLEMENTATION
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Challenge: update FNPEG lookup method to include side force, CS, in addition to CL, CD with three 
independent variables 𝛼𝛼,𝛽𝛽,𝑀𝑀
Solution: Polynomial fits about beta was a discovered solution

• Distance between CD vs. Beta curves of Alpha for each Mach number were not equal (increased polynomial fit difficulty)
• To reduce computational load, a polynomial fit 2-step interpolation was used
• Coefficients used to define equations useful for automatic lateral logic gain updates based on dynamic pressure 
• Updated aerodynamic fading filters (estimate density/aero uncertainties) to include side force 
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for example 𝐶𝐶𝐷𝐷 = 𝑋𝑋𝐶𝐶𝐷𝐷𝛽𝛽
2 + 𝑌𝑌𝐶𝐶𝐷𝐷𝛽𝛽 + 𝑍𝑍𝐶𝐶𝐷𝐷



Finding the correct EI FPA and EI Latitude for good performance
• Latitude Cases: [-4.7, 36.0] (deg) 
• FPA Cases: [-7, -5] (deg)

Contour 
Graph: 
Miss 

Distance 
(km) and 

Max. Heat 
Rate ( 𝐖𝐖

𝐜𝐜𝐦𝐦𝟐𝟐) 

Nominal

CHALLENGES IN URC IMPLEMENTATION
(CONT’D)
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• Latitude increment = 0.05 (deg)
• FPA increment = 0.10 (deg)



FNPEG URC PROFILE
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note the lofted 
characteristics for 
FNPEG and URC

*Comparable profiles between the two algorithms are observed, ≤3km miss distance is desired

Entry Interface (EI) Parameters Value Units
Altitude 122 km
Latitude -4.7 deg

Longitude -112 deg
Relative Velocity 11 km/s
Relative Azimuth 0 deg

Relative Flight Path Angle -5.1 deg

Guidance Target Parameters Value Units
Altitude Target 31 km
Latitude Target 40 deg

Longitude Target -112 deg
Relative Velocity Target 0.69 km/s

This is an example trajectory path for an FNPEG-URC flaps controlled PBV, 
beginning  3200 km away from the target



URC TARGETING PERFORMANCE
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These guidance profiles resulted in:
• Trajectories that did not exceed the heating rate and g-load constraints
• Guidance solutions that typically become more lift up to protect for trajectory 

dispersions near the end of entry
• Miss distance is less than 0.5 km for four of the five cases shown

Low dynamic pressure, 
small flap effectiveness

G-load trigger,
FNPEG begins

Maximizing available lift, 
trying to avoid undershoot
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Monte Carlos (MCs) were run with typical dispersions for a lunar 
entry mission

All runs for example FNPEG-URC case satisfy heating (<250 
W/cm2), g-load (<15 g’s), and miss distance (<3 km) desired limits

Monte Carlo Variables
Standard

Deviation 𝜎𝜎
Initial Velocity ±3.33 m/s

Initial FPA ±0.03 °
Initial Azimuth ±0.1°

Initial Lat ±0.1°
Initial Lon ±0.1°

Initial Altitude ±100 m
Initial Mass ±1% kg

Monte Carlo Variables Multiplier
EARTH GRAM N/A

CD, CL, CS 0.9-1.1

Each point represents a 
1000-case  MC 

Identified FPA & range with 
smallest maximum miss is 
chosen as baseline

URC TARGETING PERFORMANCE



GUIDANCE AND CONTROL 
CONFIGURATION COMPARISON
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CONTROL SYSTEM PERFORMANCE
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𝛾𝛾𝐸𝐸𝐸𝐸=-5.2°, Range to target = 3400 km 

𝛾𝛾𝐸𝐸𝐸𝐸=-5.2°, Range to target = 3400 km 𝛾𝛾𝐸𝐸𝐸𝐸=-5.8°, Range to target = 4800 km

Dedicated aerodynamic,  aerothermal, structural, and packaging analyses defined 
operational control regimes to reach the UTTR target  [Lat = 40°, Lon = -112.1°]

1000-case MC Mean Max
Miss Distance 0.42 km 1.30 km
Peak Heat Rate 196 W/cm2 211 W/cm2

Peak G-load 5.8 g 6.5 g

• RCS Performance Statistics (FNPEG):
• 𝛼𝛼𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = -16.6°
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = 0.27
• 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓 = 54 kg/m2

• FCS Performance Statistics (URC):
• [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 1 °,-18°] , [±10 °]
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛 = [0.04, 0.30]
• [𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓] = 58 kg/m2

• MMCS Performance Statistics (URC):
• [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9 °,-17°] , [±10 °]
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛 = [0.15, 0.29]
• [𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓] = 64 kg/m2

1000-case MC Mean Max
Miss Distance 0.26 km 0. 72 km
Peak Heat Rate 243 W/cm2 260 W/cm2

Peak G-load 8.2 g 8.9 g

1000-case MC Mean Max
Miss Distance 0.42 km 0.87 km
Peak Heat Rate 202 W/cm2 217 W/cm2

Peak G-load 6.6 g 7.49 g



CONTROL SYSTEMS PERFORMANCE 
(CONT’D)
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• MMCS Performance Statistics (URC):
• [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9 °,-17°] , [±10 °]
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛 = [0.15, 0.29]
• [𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓] = 64 kg/m2

• RCS Performance Statistics (FNPEG):
• 𝛼𝛼𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = -14°
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = 0.23
• 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓 = 58 kg/m2

• Altered MMCS Performance Statistics (URC):
• [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9 °,-17°] , [±4.5 °]
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛 = [0.15, 0.29]
• [𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓] = 64 kg/m2

1000-case MC Mean Max
Miss Distance 0.76 km 3.58 km
Peak Heat Rate 243 W/cm2 260 W/cm2

Peak G-load 8.12 g 8.81 g

• Altered RCS Performance Statistics (FNPEG):
• 𝛼𝛼𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = -10°
• 𝐿𝐿/𝐷𝐷𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡 = 0.17
• 𝛽𝛽𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑛𝑛𝑓𝑓 = 58 kg/m2

𝛾𝛾𝐸𝐸𝐸𝐸=-5.2°, Range to target = 3400 km 𝛾𝛾𝐸𝐸𝐸𝐸=-5.2°, Range to target = 3400 km

𝛾𝛾𝐸𝐸𝐸𝐸=-5.8°, Range to target = 4800 km 𝛾𝛾𝐸𝐸𝐸𝐸=-5.8°, Range to target = 4800 km

Cases that 
undershoot 
target due to 
low L/D

Max miss 
distances 
increase with 
decreased 
authority

Dedicated aerodynamic,  aerothermal, structural, and packaging analyses defined 
operational control regimes to reach the UTTR target  [Lat = 40°, Lon = -112.1°]

1000-case MC Mean Max
Miss Distance 0.65 km 26.37 km
Peak Heat Rate 193 W/cm2 207 W/cm2

Peak G-load 5.6 g 6.2 g

1000-case MC Mean Max
Miss Distance 0.44 km 1.2 km
Peak Heat Rate 198 W/cm2 212 W/cm2

Peak G-load 5.8 g 6.4 g

1000-case MC Mean Max
Miss Distance 0.26 km 0. 72 km
Peak Heat Rate 243 W/cm2 260 W/cm2

Peak G-load 8.2 g 8.9 g



FCS OPERABLE REGIMES DECREASES

20

Further controls and aerodynamic analysis led to multiple iterations of alpha-beta 
operational regimes for guidance

• Iteration 1:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [+ 1 °,-20°] , [±10 °]
• Iteration 2:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 1 °,-18°] , [±10 °]
• Iteration 3a:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9.5 °,-20.5 °] , [±0.6 °]
• Iteration 3b:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 12.0 °,-17.0°] , [±1.0 °]
• Iteration 3c:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 13.5 °,-15.4°] , [±1.6 °] (not shown due to poor convergence)
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MMCS OPERABLE REGIMES DECREASES
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Further controls and aerodynamic analysis led to multiple iterations of alpha-
beta operational regimes for guidance

• Iteration 1:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 1 °,-18°] , [±10 °]
• Iteration 2:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9 °,-17°] , [±10 °]
• Iteration 3:  [𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ], [𝛽𝛽𝑐𝑐𝑏𝑏𝑛𝑛𝑟𝑟𝑛𝑛] = [- 9 °,-17 °] , [±4.5 °]



CONCLUSION
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Due to the shrinking operable alpha-beta ranges, and thus control authority, 
provided from integrated structural, aerodynamic, and controls analysis, 
alpha-beta performance is degraded. 



Pterodactyl Project, NASA STMD 23

Therefore, bank trajectories are recommended for the PBV

CONCLUSION
(CONT’D)



LESSONS LEARNED

Feasible guidance solutions exist for DEVs

FNPEG’s unified algorithmic principles allow for high flexibility with 
little/no tuning for various regimes

A new guidance method FNPEG-URC was successfully created to 
decouple downrange and crossrange control

Regions of viable EI states are identified such that each control system 
may robustly reach the target precisely (<3 km)

Success of FNPEG-URC designs (Mass Movement, Flaps) is strongly 
dependent on operational sideslip range 

Pterodactyl Project, NASA STMD 24



REFERENCES – SPECIAL SESSION

Pterodactyl Project, NASA STMD 25

Yount, B. C., Cassell, A. M., and D’Souza, S. N., “Pterodactyl: Mechanical Designs for Integrated Control Design of a 
Mechanically Deployable Entry Vehicle (DEV),” AIAA SciTech 2020 Forum, AIAA, Orlando, FL, 2020.

Nikaido, B. E., D’Souza, S. N., Hays, Z. B., and Reddish, B. J., “Pterodactyl: Aerodynamic and Aeroheating Database 
Development for Integrated Control Design of a Mechanically Deployable Entry Vehicle,” AIAA SciTech 2020 Forum, 
AIAA, Orlando, FL, 2020.

Okolo, W. A., Margolis, B. W., D’Souza, S. N., and Barton, J. D., “Pterodactyl: Development and Comparison of 
Control Architectures for a Mechanically Deployable Entry Vehicle,” AIAA SciTech 2020 Forum, AIAA, Orlando, FL, 
2020.

Hays, Z. B., Yount, B. C., Nikaido, B. E., Tran, J., D’Souza, S. N., Kinney, D. J., and McGuire, M. K., “Pterodactyl: 
Thermal Protection System for Integrated Control Design of a Mechanically Deployable Entry Vehicle,” AIAA SciTech 
2020 Forum, AIAA, Orlando, FL, 2020.

Alunni, A.I., D’Souza, S.N., Yount, B.C., Okolo, W.A., Nikaido, B.E., Margolis, B.W., Johnson, B.J., Barton, J.D., Lopez, 
G., Wolfarth, L. S., and Hays, Z. B., “Pterodactyl: Trade Study for an Integrated Control System Design of a 
Mechanically Deployable Entry Vehicle,” AIAA SciTech 2020 Forum, AIAA, Orlando, FL, 2020.



ACKNOWLEDGEMENTS

Ricky Howard
STMD ECI Program Executive

Michelle Munk
NASA STMD Mentor and
EDL Principal Technologist

Dr. Dave Kinney, Dr. Alan Cassell, and Ron Sostaric
NASA Mentors

Pterodactyl Project, NASA STMD 26

Kenneth Hibbard, Jeffrey Barton, 
Dr. Gabriel Lopez, Jeremy John, 
and Larry Wolfarth

Dr. Stephen Robinson
Brandon Reddish

Dr. Sarah D’Souza (Principal Investigator)
Antonella Alunni (Lead Systems Engineer)
Breanna Johnson (Guidance and Trajectory Design Lead)
Dr. Wendy Okolo (Control System Design Lead)
Ben Nikaido (Aerodynamics and Aeroheating Lead)
Bryan Yount (Mechanical Design and Structures Lead)
Benjamin Margolis (Controls Engineer)
Zane Hays (TPS System Modeling)

NASA Core Team

Advisors Industry Partners



QUESTIONS?
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HERITAGE
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• First Generation – Designed for low-lifting capsule vehicles in the Apollo program 
• Skip entry and final-direct entry (“Apollo entry guidance”) phase
• Flies trim alpha w/o modulation
• Relies on sensitivity coefficients from linearized reference trajectory for predicted 

downrange error 
• Crossrange controlled with bank reversal logic that changes the sign when crossrange

to landing exceeds a velocity-dependent deadband

• Second Generation – Designed for the high L/D Space Shuttle
• Compared to Apollo (low L/D) flight time and downrange traveled are much longer
• Linearized gain scheduled tracking law for bank angle modulation is employed to 

follow the reference profile (similar bank reversal logic)

• Third Generation – Depart from Apollo or Shuttle and rely more on predictor-corrector 
algorithms for real-time trajectory design and guidance solution

• No reliance on pre-planned reference trajectory or tracking law
• Primarily proposed for low lifting vehicles since satisfaction of the constraints is 

mainly through carefully chosen initial condition

28
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SIDE FORCE CHANNEL IN URC

Two Sideslip Channel Approaches Explored to Extract Commanded Side Force:

• Azimuth (error between current and target/commanded)
• Crossrange (error between current and zero)

𝑆𝑆𝐶𝐶𝐶𝐶𝐷𝐷 = 𝐾𝐾𝜓𝜓 𝜓𝜓𝑛𝑛𝑐𝑐𝑐𝑐 ± 𝜓𝜓𝑑𝑑𝑏𝑏 + 𝐾𝐾�̇�𝜓(�̇�𝜓𝑐𝑐 − �̇�𝜓) , where gains are dynamic pressure 
dependent 

• Once the commanded side force is found, 𝛽𝛽𝐶𝐶𝐶𝐶𝐷𝐷 is found

𝛽𝛽𝐶𝐶𝐶𝐶𝐷𝐷 = 𝑆𝑆𝐶𝐶𝐶𝐶𝐷𝐷 � 𝑆𝑆𝑐𝑐𝑐𝑐𝐶𝐶𝑆𝑆 −𝐶𝐶𝑆𝑆𝑡𝑡𝑏𝑏𝑥𝑥𝐶𝐶𝐶
𝐶𝐶𝑆𝑆𝑡𝑡𝑏𝑏𝑥𝑥𝐵𝐵𝐶

, where 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵0 � 𝛽𝛽 + 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0
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