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The need for precision landing of high mass payloads on Mars and the return of sensitive 

samples from other planetary bodies to specific locations on Earth is driving the development 

of an innovative NASA technology referred to as the Deployable Entry Vehicle (DEV). A DEV 

has the potential to deliver an equivalent science payload with a stowed diameter 3 to 4 times 

smaller than a traditional rigid capsule configuration. However, the DEV design does not 

easily lend itself to traditional methods of directional control. The NASA Space Technology 

Mission Directorate (STMD)’s Pterodactyl project is currently investigating the effectiveness 

of three different Guidance and Control (G&C) systems – actuated flaps, Center of Gravity 

(CG) or mass movement, and Reaction Control System (RCS) – for use with a DEV using the 

Adaptable, Deployable, Entry, and Placement Technology (ADEPT) design. This paper details 

the Thermal Protection System (TPS) design and associated mass estimation efforts for each 

of the G&C systems. TPS is needed for the nose cap of the DEV and the flaps of the actuated 

flap control system. The development of a TPS selection, sizing, and mass estimation method 

designed to deal with the varying requirements for the G&C options throughout the trajectory 

is presented. The paper discusses the methods used to i) obtain heating environments 

throughout the trajectory with respect to the chosen control system and resulting geometry; 

ii) determine a suitable TPS material; iii) produce TPS thickness estimations; and, iv) 

determine the final TPS mass estimation based on TPS thickness, vehicle control system, 

vehicle structure, and vehicle payload. 
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I.  Nomenclature 

α = Angle of Attack (Alpha) 

ADEPT = Adaptable, Deployable Entry Placement Technology 

 β = Sideslip Angle (Beta) 

DEV = Deployable Entry Vehicle 

G&C = Guidance and Controls 

HEEET = Heatshield for Extreme Entry Environment Technology 

OML = Outer Mold Line 

PBV = Pterodactyl Baseline Vehicle 

RCS = Reaction Control System 

TPS = Thermal Protection System 

II.  Introduction 

Thermal Protection Systems (TPS) are essential components for atmospheric entry vehicles and often impact 

mission capabilities significantly. As new technologies and methods for entry are developed, the processes used to 

determine TPS thicknesses must also adapt to new challenges. The Pterodactyl project at NASA Ames Research 

Center (Ref. [1]) pushes TPS analysis methods into a more complicated realm than that of the common bank control 

and ballistic entry vehicle problem. The complication arises from the non-traditional vehicle configuration being 

considered by the Pterodactyl group for precision targeting. Specifically, the Pterodactyl group is investigating novel 

control systems for integration with a Deployable Entry Vehicle (DEV) as discussed in Ref [2]. The current state-of-

the-art for precision targeting of traditional entry vehicles is rooted in rigid entry vehicles such as Mars Science 

Laboratory and Apollo, which primarily utilize reaction control system (RCS) thrusters attached to the back shell to 

control the bank angle of the vehicle (Ref. [3]). In contrast, the Pterodactyl Baseline Vehicle (PBV) (Ref. [2]), a 

modified DEV-style vehicle, has no back shell on which to attach a G&C system. In addition, the Pterodactyl group 

was investigating novel control effectors which could provide sufficient control authority to meet precision targeting 

requirements (Ref. [1]). The Pterodactyl group’s primary focus was on three different control effectors: i) flap control 

system, ii) mass movement control system, and iii) RCS.  

 The TPS analyses for mass movement and RCS align with traditional approaches for TPS sizing because neither 

of these control effectors are exposed to the high heat flow field. However, for the flap control system, control surfaces 

are dynamically exposed to the high heat flow field and therefore require a TPS. Current TPS sizing and analysis tools 

allow for a single static geometry for a given trajectory and are not set up to handle the flap control system’s morphing 

geometry. Therefore, adaptations to current tools were developed and implemented to enable analysis of the changing 

geometry caused by varying flap deflections throughout the trajectory. In addition, these adaptations account for 

varying sideslip angles which allow for more complicated angle of attack-sideslip angle trajectories to be explored. In 

the following sections a flap control surface TPS sizing method, including capabilities for both sideslip angle 

trajectories and shape morphing geometries, is described. 

III.  Method Overview 

The main intent of this analysis method is to extend the capabilities of TPSSizer (Ref. [4]) and CBAERO (Ref. 

[5]) to encompass morphing geometries and sideslip angles in order to perform an accurate TPS sizing analysis of the 

PBV. The following steps were used to perform the TPS analysis: acquire inputs, select TPS material, determine the 

geometry changes required, run CBAERO for each sideslip angle at each geometry change, run CBTPS on each 

CBAERO database, interpolate the CBTPS results to match the required control commands and trajectory parameters, 

apply bump factors to the heating environments, and run TPSSizer on the resulting bumped CBTPS database. Fig. 1 

shows a flow diagram of the analysis. 
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Fig. 1: Analysis Flow Diagram 

A. Assumptions 

Several assumptions were made to reduce the complexity of the TPS sizing analysis presented in this paper. It was 

assumed that the PBV’s aft body’s TPS design would not greatly impact the vehicle mass and thus could be excluded 

from the analysis. As the RCS jets were angled back away from the vehicle’s payload and skirt, the fluid interactions 

with the aft body were also assumed to cause little effect on the TPS mass and were neglected from the analysis. The 

sizing of the PBV’s carbon fabric skirt was assumed to be out of scope for this analysis and was sized using a rule of 

thumb that relates maximum heat rate to the number of carbon fabric layers as discussed in Ref. [2]. The nose cap for 

all three G&C methods experience similar heating through their respective trajectories (Ref. [6]), so it was assumed 

that the nose cap could be sized for all cases using the flap method’s G&C trajectory. The aerodynamics group assumed 

that for the G&C flap method, the flaps’ flow interactions were decoupled from each other as discussed in Ref. [7]. 

Using on this assumption, the TPS group was able to analyze individual flap heating and did not have to account for 

interactions between adjacent flaps.  Finally, it was assumed that a one-dimensional, engineering-level TPS analysis 

would be sufficient for the purposes of this trade study.  

B. Vehicle Geometry 

The PBV is a DEV designed to deliver a relatively large payload for the allowable stowed diameter of a launch 

vehicle in comparison to a more traditional rigid vehicle. The lifting nature of the vehicle provides for an increased 

cross range, permitting a wide range of landing options. The PBV is comprised of three sections, as shown in Fig. 2a.  

 
Fig. 2: PBV without G&C modifications 
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The skirt section is folded up around the central payload on launch, shown in Fig. 2b, and is deployed on entry to act 

as an extension of the heat shield, shown in Fig. 2a. The nose cap is designed to take the peak entry heating by using 

a solid, more traditional TPS. The geometry remains constant for all three G&C methods being investigated. Only the 

actuated flap method adds components that interact with the external flow field around the vehicle, causing it to require 

further TPS analysis. Fig. 3a shows the flap geometry attached to the PBV and Fig. 3b demonstrates the definition of 

positive and negative flap deflection angles. The hinge point, located such that the hinge rotates smoothly around the 

rib tip radius, allows for flap deflection angles between -45° and 20°. 

 
 

Fig. 3: PBV flap G&C configuration 

As each flap’s heating environment was assumed to have no impact on the two adjacent flaps, there was no need to 

create geometries for all possible combination of flap deflections. Instead, five geometries were created with all flaps 

at the following deflection angles: -45°, -20°, 0°, 10°, & 20°. Fig. 4 shows the flow facing geometry for all eight flaps 

at 0° deflection.  

 

 
 

Fig. 4: PBV with Integrated Flaps at 0° Deflection 
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To account for the combinations of flaps seen at any point in the trajectory, each flap’s deflection angle was derived 

by interpolating between the nearest of the five geometries run. Thus, at a given point in time, each of the eight flaps 

may be deflected at a unique angle to match the required entry control schema. 

C. Aerodynamics, Controls, and Trajectory 

The PBV was flown through a lifting lunar return trajectory detailed in Ref. [6]. As mentioned above, the flap 

G&C trajectory was used to size both the nose cap and flap TPS. The aerodynamics group decided to create a large 

solution space surrounding all likely trajectories because the trajectory was being iterated for control methods and 

geometry changes. The aerodynamic parameter bounds used for the trajectory solution space are discussed in depth 

in Ref. [7] and summarized in Table 1 below. 

Table 1: Aerodynamic Parameter Bounds 

Parameter Maximum Minimum 

Angle of Attack 0° -20° 

Sideslip Angle 10° -10° 

Mach Number 40.1 2 

Dynamic Pressure 3090 Pa 1.2 Pa 

 

The aerodynamics group selected a set of values across the solution space, including the bounding values, to form the 

aerodynamic run matrix. Once the trajectory converged to the final solution, a controls schema for the flaps was 

determined as discussed in Ref. [8] and shown in Fig. 5. 

 
Fig. 5: Flap deflection angles through trajectory 

D. Required Inputs 

The TPS analysis requires input geometries, a high-fidelity aerodynamic database, a controls schema, and a 

trajectory. A list of the required input parameters is shown in Fig. 6 below.  
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Fig. 6: Required input data 

The uncertainty of the aero-thermodynamic environments produced from CBAERO can be reduced by anchoring the 

CBAERO data to high-fidelity aerodynamic data at several points. The number of high-fidelity points needed for an 

accurate TPS analysis depends on the complexity of the geometry and the trajectory flown. For example, a capsule 

entry vehicle is a relatively simple geometry and could be modeled accurately with as few as four high-fidelity points. 

However, if the vehicle is more complicated and has flaps that actuate in and out of the flow field, it is essential to 

define several of these flap positions with high-fidelity points in order to accurately capture performance. 

E. Tools 

A combination of several engineering-level analysis tools was employed to perform the TPS analysis. CBAERO 

(Ref. [5]) predicts the aerodynamic and aero-thermodynamic environments for a given vehicle. The predictions are 

calculated for a single geometry with a single sideslip angle for a list of Mach numbers, dynamic pressures, and angles 

of attack and saved in a database. The CBAERO distribution has a utility, CBTPS, which uses the environments 

database and a trajectory to calculate the aero-thermodynamic environment time history required for TPSSizer. 

TPSSizer (Ref. [4]) is a tool designed to work with CBAERO and FIAT (Ref. [9]) to determine the required TPS 

thickness for specified sizing points on a vehicle flown through a given trajectory. TPSSizer calculates the mass and 

optimizes TPS thickness for both non-ablative and ablative TPS materials, while satisfying the allowable temperature 

constraints applied to the TPS material stack-up. These tools were wrapped in a Python script to extend their 

capabilities to multiple sideslip angles and morphing geometries. 

F. TPS Analysis Methodology 

The analysis method aims to extend the capabilities of TPSSizer and CBAERO to encompass varying geometries 

and sideslip angles. The first step is to obtain the required inputs to run CBAERO and TPSSizer. Next, the TPS 

material is selected. For the Pterodactyl project, several alternatives for the material were examined for the nose cap. 

The material that minimized the step between nose cap and skirt was chosen to be the final nose cap TPS material. 

The flaps’ TPS material was chosen based on structural strength and TPS thickness. Once the material was chosen, 

CBAERO and CBTPS were run for each sideslip angle and geometry change. In the case of the Pterodactyl’s flap 

control system, 25 databases were created, one for each of the five sideslip angles (-10°, -5°, 0°, 5°, & 10°) at each of 

the 5 flap deflection angles (-45°, -20°, 0°, 10°, & 20°). As explained above, the 5 flap deflection angle geometries 

were constructed using the PBV with the all 8 flaps rotated to the same deflection angle. Nine databases where 

constructed, one for each of the 8 flaps and one for the nose cap. These databases contained the respective aero-

aeroheating dynamic environments pulled from the 25 CBTPS flap runs and the 5 CBTPS nose cap runs (one for each 

sideslip angle). Next, the databases were interpolated to match the control scheme at each time step in the trajectory, 

creating 9 new aero-aerothermal dynamic environments, one for each of the 8 flaps and one for the nose cap.  

For the simple geometry of the nose cap, CBAERO captured the heating well enough and a bump factor was not 

needed. The flaps, however, have a much more complicated geometry, and needed higher fidelity CFD to capture the 

more complicated flow. A bump factor was created using high-fidelity aerodynamics from Cart3D (Ref. [10]) with 
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real gas effects and applied to the flap databases. The bump factor was applied via the film coefficient because FIAT 

uses film coefficient and recovery enthalpy to calculate heating. The bump factor applied to the film coefficient was 

based on the heat rate at a stagnation point using Tauber’s equation and is discussed in Ref. [11]. The evaluation of 

the velocity gradient at a hemispherical stagnation point using Newtonian theory provides a relationship between 

velocity gradient and the square root of the ratio of freestream pressure and stagnation pressure. As the film coefficient 

is a function of the edge velocity (Ref. [12]), a reasonable relationship between convective heating and pressure can 

be established. The resulting relationship between the enthalpy-based film coefficient and the pressure ratio of the 

high-fidelity pressure to CBAERO pressure results is a better estimate of the more complicated aerodynamic shock 

and pressure interactions around the flap geometry. Equation (1) shows the form of the bump factor used in this 

analysis. 

 

𝐵𝑢𝑚𝑝  𝐹𝑎𝑐𝑡𝑜𝑟 (𝐵𝐹) =  √
𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐻𝑖𝑔ℎ 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒𝐶𝐵𝐴𝑒𝑟𝑜

 

(1) 

The bump factor was bounded so it would be greater than or equal to 1.0.  It is then applied to the CBAERO film 

coefficient, as Eq. (2) illustrates. 

 𝐶𝑓𝑖𝑙𝑚 𝑓𝑖𝑛𝑎𝑙 =  𝐶𝑓𝑖𝑙𝑚 𝐶𝐵𝐴𝑒𝑟𝑜 ∙ (𝐵𝐹) (2) 

This approximation helps to account for some of the shock-shock interactions observed around the flaps. Once the 

bump factor was applied to the film coefficient at each time step in the trajectory, the aero-aerothermal dynamic 

environments were re-built using the new film coefficients. These eight bumped, aero-aerothermal dynamic 

environments and the nose cap aero-aerothermal dynamic environments were input into TPSSizer, which used FIAT 

to determine the resulting masses and optimized TPS thicknesses for each of the nine regions of interest. 

IV.  Nose Cap Analysis and Results 

A single CAD model and the flap configuration G&C trajectory and controls schema with the appropriate input 

parameters were provided for the nose cap TPS sizing analysis.  

A. Nose Cap Geometry, Aerothermal, and TPS Selection and Analysis 

The nose cap of the asymmetric, ~1-meter diameter PBV’s nose cap is shown in red in Fig. 7. The shape change 

due to recession for the nose cap TPS was predicted to be minimal, so a single geometry Outer Mold Line (OML) was 

used. However, due to the five different sideslip angles required for the trajectory solution space and control scheme, 

the single OML was run five times in CBAERO to cover the aerodynamic solution space. 
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Fig. 7: PBV Nose Cap Geometry 

Based on the CBAERO results, expert opinion, and group interest, three TPS materials for the nose cap were 

examined: PICA (Ref  [13]), C-PICA (Ref [14]), and 2D Carbon phenolic (Ref  [15]). TPS aerothermal sizing analyses 

were run for each option to determine approximate trends between the different materials. Fig. 8 illustrates the material 

stack-ups for the three different TPS options.  

 
Fig. 8: Nose Cap TPS Stack-ups 

As discussed earlier, the nose cap TPS material selection was based on TPS thickness. The analysis indicated that the 

use of C-PICA resulted in the thinnest material stack, so it was chosen for the nose cap throughout the rest of the 

analysis cycle.  

 

Side View Front View 
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B. Nose Cap Analysis 

The CBTPS aero-aerothermal dynamic environment files were interpolated to match the trajectory’s sideslip angle 

conditions and TPSSizer was run. The resulting nose cap heat rate versus time for this trajectory is shown in Fig. 9. 

 
Fig. 9: Nose Cap Heat Rate vs. Time 

Next, it was noted that C-PICA’s ablation should be negligible when the amount of dissociated oxygen is small. Fig. 

10, which shows a time history of the amount of dissociated oxygen for the trajectory, was consulted to determine 

when the amount of dissociated oxygen was below 10−5 𝑘𝑔

𝑘𝑚𝑜𝑙
. The ablation was turned off after this point in the 

trajectory (433 seconds) so that the recession and final TPS thickness would not be over-predicted.  

 
Fig. 10: C-PICA Dissociated Oxygen vs. Time 
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C. Nose Cap Results 

The sizing analysis predicted that the PBV’s nose cap requires a C-PICA thickness of 27.0 mm (1.06 inches) 

resulting in a mass of 1.22 kg (2.68 lb). The total amount predicted of recession was 8.0 mm, measured from the OML. 

The final material stack-up is shown below in Fig. 11.  

 
Fig. 11: C-PICA Nose Cap Material Stack-up Thicknesses 

V.  Flap Analysis and Results 

There are two main differences between the nose cap analysis and the flap analysis – the number of required 

geometries and the complexity of those geometries. Due to the complex nature of the flow around the flap geometry 

resulting from deflections, the CBAERO anchoring process was used to increase the accuracy of the aerodynamic and 

aeroheating predictions by incorporating high-fidelity aerodynamics. Cart3D was chosen to be the high-fidelity CFD 

code used by the aerodynamics group (Ref. [7]) to compute the anchoring cases. The flap analysis was performed 

using the same PBV geometry and trajectory inputs used for the nose cap, with the addition of the flap control data 

and flap geometries. 

A. Flap TPS Material Selection 

To ensure an adequate seal between the flap and the PBV’s rib tip, the mechanical design group requested the 

thinnest flap possible to aid with integrating the flaps onto the PBV. To accomplish this, much of the flap structure 

had to be made of TPS material, resulting in the need for a TPS material option that could act as a structural component. 

Two materials were initially considered - 2D carbon phenolic (Ref [15]) and Heatshield for Extreme Entry 

Environment Technology (HEEET) (Ref  [16]) because they both can sustain structural loads. However, 2D carbon 

phenolic, while strong, is brittle and highly conductive (Ref [15]). As the flaps would be placed under varying 

aerodynamic loads during the trajectory, the brittle nature of 2D carbon phenolic was deemed structurally inadequate. 

Additionally, carbon phenolic is highly conductive and would result in a large amount of heat flowing directly to the 

hinge joint, requiring a thicker layer of TPS to maintain the joints structural integrity. The alternative, HEEET, was 

developed to meet needs for extreme heating entry environments and is comprised of 3D woven layers of carbon 

fabric injected with medium density phenolic resin to create a dense solid which was tested to withstand 6000 
𝑊

𝑐𝑚2 

(Ref. [16]). HEEET consists of two layers. The outer recessive layer is comprised of high density all carbon layers 

and the inner insulative layer is made from a combination of lower density carbon and phenolic yarns (Ref. [16]). The 

dual layers allow for structural integrity while maintaining a lower thermal conductivity than carbon phenolic. To 

verify HEEET could meet the structural strength needed for the Pterodactyl’s trajectory, an FEA model was 
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constructed to determine that the flap can sustain the maximum forward-facing pressure load of 8230 Pa, the maximum 

seen during the trajectory. Fig. 12 shows the FEA model with the von Mises Stress on the Titanium spar due to the 

pressure load. The stress and deflection values were determined to be well below the allowable limits for the material. 

Therefore, HEEET was chosen over carbon phenolic for its superior thermally and structurally properties when applied 

to the PBV’s flap application.  

 
Fig. 12: HEEET Maximum Forward-facing Pressure load FEA Model 

TPS thickness optimization is typically driven by the material layer in the stack-up with the lowest allowable 

maximum temperature. In many cases this is the adhesive used to attach the TPS to the structure. To further reduce 

the required TPS thickness for this problem, the TPS flap structure was designed with a mechanical rather than 

adhesive attachment, greatly increasing the design’s maximum allowable internal temperature constraint. The design 

uses a titanium spar pinned inside of a HEEET sleeve, as shown in Fig. 13. This results in a material stack-up from 

bottom to top consisting of titanium, HEEET insulative layer, and HEEET recessive layer. 

 
Fig. 13: HEEET Flap Design 

Each flap encounters slightly different heating environments. Rather than sizing each flap independently, it was 

decided to choose the point that experienced the worst integrated heating to size all the flaps.  The thermal response 

of the flap design is highly multi-dimensional due to the relatively small size of the flap, the small radii on the flap 

edges, the various angles of the flap relative to the flow, and the high in-plane thermal conductivity of HEEET and 

titanium.  However, the analysis tools being used, TPSSizer and FIAT, perform 1D thermal optimization at discrete 
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point locations. This makes it difficult to determine ahead of time which location on the flap will result in the thickest 

optimized TPS.  To get around this limitation, several points on the surface were used as sizing points throughout the 

analysis, as shown in Fig. 14. Fig. 14 shows the pressure distribution over the flap and the eight sizing points chosen 

for this analysis. A total of 64 analysis points, eight points per flap, were run through the aerothermal dynamic analysis 

and the point with the largest integrated heat load was used to size the final flap TPS.  

 
Fig. 14: Flap Heating Points 

B. Flap Bump Factor and Aeroheating 

The bump factors were calculated for each flap at each deflection angle using the ratio of the Cart3D to the 

CBAERO pressure data. Flap #3’s deflection angle, Cart3D pressure, CBAERO pressure, and bump factor applied 

film coefficient are shown in Fig. 15.  

 
Fig. 15: Flap #3’s Bump Factors, Deflection Angle, and Pressures 

As Fig. 15 shows, when the Cart3D pressure (purple) is higher than the CBAERO pressure (green), the resulting bump 

factor is greater than one. The flat line sections are produced when the bump factor is bounded to be greater than or 

= Heating point  
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equal to 1.0. Applying the bump factor to the film coefficient resulted in an increase to the overall heating. The 

resulting effect can be seen in the wall temperature responses for the baseline and bumped cases shown in Fig. 16.  

 
Fig. 16: Flap #3 Baseline and Bumped Wall Temperature 

Additionally, the effect of the bump factor on the TPS material stack-up are illustrated in Fig. 17 which shows the 

TPS thicknesses for the baseline and bumped cases for the flap with the highest integrated heat load. 

 
Fig. 17: Flap TPS Material Stack-up Comparison 
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It is worth noting that, while HEEET is ideal for high heating environments, the PBV’s lifting trajectory subjects the 

vehicle to a high heating environment for a prolonged period of time, resulting in large amounts of predicted recession. 

The convective heat rate versus time for flap #3 during this trajectory is shown in Fig. 18. 

 
Fig. 18: Flap #3 Heat Rate vs. Time 

C. Flap Results 

The final flap analysis resulted in a required HEEET thickness of 41.7 mm (1.64 inches), as shown in the left stack-

up in Fig. 17. The HEEET material had 10.3 mm of predicted recession and a weight per unit area of 36.6 
𝑘𝑔

𝑚2 (7.5 
𝑙𝑏

𝑓𝑡2), 

resulting in a total flap system mass of 6.5 𝑘𝑔 (14.3 𝑙𝑏). 

VI.  TPS Conclusions 

The Pterodactyl’s TPS analysis extended existing CBAERO, FIAT, and TPSSizer capabilities in order to account 

for flap deflection angles and sideslip angles. By including these parameters in the TPS analysis, more accurate 

predictions could be performed for complicated vehicles and trajectories. As interest in more complicated non-capsule 

entry vehicles continues to grow, the need for an TPS analysis approach that can account for more interesting entry 

solutions is invaluable. The analysis described in this paper discusses how the method this method was performed for 

the PBV’s flap G&C method and nose cap while accounting for both sideslip angle and flap deflection angle variations 

seen during the trajectory. The Pterodactyl nose cap TPS analysis resulted in a C-PICA nose cap with a thickness of 

27.0 mm and a mass of 1.22 kg. The Pterodactyl’s flap control system’s TPS was determined to be 41.7 mm thick 

HEEET with a total flap system mass of 6.5 kg.  

VII.  Pterodactyl Future TPS Work 

The accuracy of the 1D analysis for sizing the TPS material for more complicated geometries, such as the flaps, is 

an area of concern. In future analysis for the Pterodactyl project, incorporating a 3D analysis at the end of the current 

1D analysis to check and correct for complicated 3D geometry issues is recommended. While the current pressure 

ratio method to compute a bump factor allows for the addition of higher-fidelity CFD data to the sizing analysis, the 

anchoring could be further improved by bumping each parameter used at each discretized point on the mesh separately 

instead of bumping just the maximum film coefficient for each tagged region of the mesh. Lastly, looking into other 

potential TPS material options capable of satisfying the structural and aerothermal dynamic constraints generated by 

Pterodactyl mission is recommended.  
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