Characterization and Failure Analysis of 650 V Enhancement-mode GaN HEMT for Cryogenically-Cooled Power Electronics

Ren Ren, Student Member, IEEE, Handong Gui, Student Member, IEEE, Zheyu Zhang, Senior Member, IEEE, Ruirui Chen, Student Member, IEEE, Jiahao Niu, Student Member, IEEE, Fred Wang, Fellow, IEEE, Leon M. Tolbert, Fellow, IEEE, Daniel Costinett, Senior Member, IEEE, Benjamin J. Blalock, Senior Member, IEEE, and Benjamin B. Choi

Abstract - In order to evaluate the feasibility of newly developed GaN devices in a cryogenically-cooled converter, this paper characterizes a 650 V enhancement-mode Gallium-Nitride high-electron-mobility transistor (GaN HEMT) at cryogenic temperatures. The characterization includes both static and dynamic behaviors. The results show that this GaN HEMT is an excellent device candidate to be applied in cryogenic-cooled applications. For example, transconductance at cryogenic temperature (93 K) is 2.5 times higher than one at room temperature (298 K), and accordingly, peak di/dt during turn-on transients at cryogenic temperature is around 2 times of that at room temperature. Moreover, the on-resistance of the channel at cryogenic temperature is only one-fifth of that at room corresponding temperature. The explanations performance trends at cryogenic temperatures are also given from the view of semiconductor physics. In addition, several device failures were observed during the dynamic characterization of GaN HEMTs at cryogenic temperatures. The ultra-fast switching speed induced high di/dt and dv/dt at cryogenic temperatures amplifies the negative effects of parasitics inside the switching loop. Based on failure waveforms, two failure modes were classified, and detailed failure mechanisms caused by ultra-fast switching speed are given in this paper.

Index Terms - GaN HEMTs; Cryogenically-cooled power electronics; Static and dynamic characterization; Failure analysis; Ultra-fast switching speed

Manuscript received June 29, 2019; revised September 13, 2019; accepted October 13, 2019.

- R. Ren, H. Gui, R. Chen, J. Niu, F. Wang, L. M. Tolbert, D. Costinett, and B. J. Blalock are with the Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37996 USA (e-mail: rren3@vols.utk.edu; hgui@vols.utk.edu; rchen14@vols.utk.edu; jniu3@vols.utk.edu; fred.wang@utk.edu; tolbert@utk.edu; daniel.costinett@utk.edu; bblalock@tennessee.edu;).
- F. Wang and L. M. Tolbert are also with Oak Ridge National Laboratory, Oak Ridge, TN, USA.
- Z. Zhang is with the Zucker Family Graduate Education Center, Clemson University Restoration Institute, North Charleston, SC 29405 USA (e-mail: zheyuz@clemson.edu).
- B. B. Choi is with the NASA Glenn Research Center, Cleveland, OH 44135 USA (e-mail: benjamin.b.choi@nasa.gov).

I. INTRODUCTION

In certain special applications, e.g., superconducting system, the power electronics system can utilize the available coolant like liquid nitrogen to cool the converter at cryogenic temperatures, which may have a potential for efficiency and power density improvement. In this case, it is necessary to conduct investigation, characterization, and verification of components applied in power electronics systems at cryogenic temperatures. One of the key components in power electronics is power semiconductor devices.

In previous literature, the main candidates for power devices in motor drive systems at cryogenic temperatures were Si MOSFETs, SiC MOSFETs, and Si IGBTs. Based on papers [1-2], cryogenically, the SiC MOSFET suffers an obvious increase in on-resistance of the channel, a slight decrease in breakdown voltage, and much slower switching times than that at room temperature. However, in recent literature [3-4], 1200 V new generation SiC MOSFET (C3M0075120K) from CREE shows a different switching loss trend with temperatures. With the temperature decreasing to 93 K, the switching loss decreases around 18.8% compared with the loss at room temperature. In comparison, the Si MOSFET shows a good trend in on-resistance of the channel and switching performance at cryogenic temperatures [5], but the breakdown voltage of a Si MOSFET is only 60%-80% of that at room temperature [6].

GaN device is another wide bandgap power device with appealing features at room temperature. Papers [12-13] investigated the effects of temperature on cryogenic characteristics of GaN HEMTs from the point of solid-state physics. Several physics characteristics of AlGaN/GaN materials were measured from 16 K to 300 K, and the strong improvement of dc and radio frequency (RF) characteristics were observed at cryogenic temperatures, indicating the high electron mobility of two-dimensional electron gas (2DEG) and very low on-resistance. Recently, paper [7] conducted a characterization of an EPC 200 V GaN HEMT device, and it exhibits a decreasing trend of on-resistance at cryogenic temperatures. The conduction resistance of GaN HEMT at 70 K from EPC becomes around one-fifth of that at room temperature. The breakdown mechanism of the GaN HEMT is different from that of the Si MOSFET and is more complicated because of its lateral structure [8-10]. The breakdown voltage of the GaN HEMT is mainly determined by the vertical leakage current of the substrate, and therefore, it does not change under different junction temperatures. Nonetheless, the performance of higher

voltage GaN devices at 650 V, which are more suitable for high power applications, are not reported for cryogenically-cooled power electronics.

This paper selects a 650 V enhancement GaN HEMT GS66516T from GaN Systems for characterization. The test setup for cryogenic temperature testing, and static and dynamic characterization results are presented. The V-I alignment method is given for data processing of the dynamic characterization since the GaN HEMT has a much faster switching speed at cryogenic temperature. Furthermore, the failure issues observed during the dynamic characterization are analyzed, and two failure modes are also classified and their related failure mechanisms are given.

This paper is structured as follows. Section II introduces the testing setup for both static and dynamic characterization at cryogenic temperatures. Also, the key points affecting the measuring accuracy in static characterization are stressed. Static characterization results are discussed in Section III, and the relevant semiconductor physics explanations are given. Section IV shows and discusses the dynamic characterization results, and the VI alignment, which is a key procedure of data processing, is given in detail. Section V provides failure mode analysis for the dynamic characterization with ultra-fast switching speed. At last, the conclusions for this work are drawn in Section VI.

This paper is revised and expanded from its original form [11]. Compared with paper [11], this paper added more details for the testing setup of static characterizations at cryogenic temperatures, and gate-source waveforms comparison with different testing wire constructions are given to illustrate its impacts on measuring accuracy. Also, I-V curves of GaN HEMTs at different temperatures are supplemented for static characterization results. For the dynamic characterization, this paper adds the illustration on how to adjust the deskew of testing voltage and current waveforms at ultra-fast switching speed to achieve the accurate switching loss calculation.

II. TEST SETUP FOR CRYOGENIC TEMPERATURE CHARACTERIZATION

The main methodology for the characterization of power devices at cryogenic temperatures is based on paper [5]. The test setup of static characterization is displayed in Fig. 1. The

chamber combined with liquid nitrogen (LN2) dewar is utilized to control the junction temperature of the device under test (DUT). DUT is not directly immersed into the liquid nitrogen in this paper, and it was put inside a cryogenic chamber, and the temperature can be controlled from 298 K (room temperature) to 93 K (cryogenic temperature) with a liquid nitrogen dewar. However, if even lower testing temperature is required, DUT can be directly immersed into liquid nitrogen, reported in reference [4], which is 77 K. For static characterization, a curve tracer B1505A from Keysight is used to measure the output and transfer characteristics. The diagram of the detailed testing configuration is illustrated in Fig. 2(b).

Fig. 3(a) shows the test setup of dynamic characterization. For dynamic characterization, double pulse test (DPT) circuit is used for measuring switching loss data. The DPT circuit is placed inside of cryogenic chamber as Fig. 3(b) shows. The gate drive, capacitor and resistor are selected and tested for functioning properly at cryogenic temperatures for normal operation, but the load inductor and auxiliary power supply are located outside of the cryogenic chamber since they may not work properly at cryogenic temperatures. The diagram of the testing configuration for dynamic characterization is given in Fig. 4.

One important remark in the static characterization setup is the coupling of testing wires. The curve tracer only provides Kelvin measurement for drain and source terminals while gate-

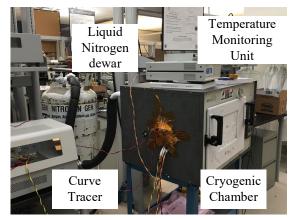


Fig. 1. Testbed setup of static characterization at cryogenic temperatures.

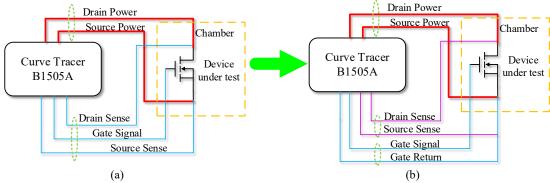
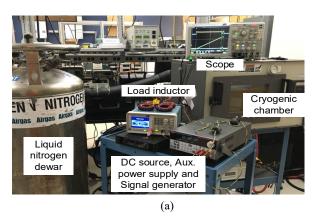



Fig. 2. Illustration of testing wires construction for static characterization: (a) original wires construction, (b) improved wires construction with the extra gate signal return wire.

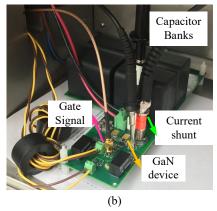


Fig. 3. Testbed setup of dynamic characterization at cryogenic temperatures: (a) whole testbed, (b) double pulse testing circuits inside of the cryogenic chamber.

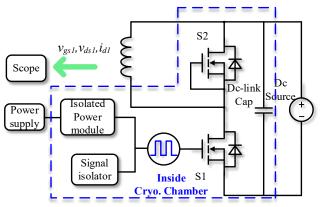
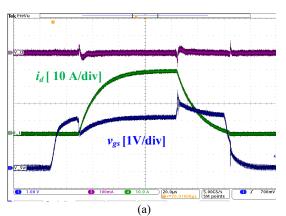


Fig. 4. Testing configuration for dynamic characterization.


source voltage only is measured in the curve tracer side rather than the device side. Hence, wire construction with 5 wires, in Fig. 2(a), is commonly applied for static characterization, and source sense and gate signal return share one cable. It does not cause any issue when the device is placed inside of the curve tracer tank, and the cable length is short. Nonetheless, once the long cable has to be used to interconnect between the curve tracer and DUT in the chamber in this case and testing wire of the drain sense and gate terminal are twisted together, the real gate-source terminal will induce a voltage spike during the dv/dt transient because of coupling effects between drain and gate

wires. This can easily damage the gate-source structure of the GaN device even though a good waveform quality in the curve tracer side is displayed. In order to keep the device operation safe and for higher accuracy under a certain gate voltage, two source wires should be used for testing like Fig. 2(b). One is twisted with drain sense wire and the other one is twisted with gate signal wire. It is similar to PCB layout and keeps the power loop and gate loop separate. In addition, even if the gate structure is not damaged by the voltage spike, the measured transconductance will also have non-negligible variation which can be up to 17% lower compared to the wire construction in Fig. 2(b).

Fig. 5(a) shows the real gate-source waveform of the GaN device if the testing wire of the drain and gate are twisted together like Fig. 2(a). V_{gs} obviously has the voltage variation caused by the coupling during the dv/dt transient. When the testing configuration was changed to Fig. 2(b), V_{gs} waveform is given in Fig. 5(b). Compared with V_{gs} in Fig. 5(a), V_{gs} voltage variation has been much reduced without the coupling during the dv/dt transient.

III. STATIC CHARACTERIZATION RESULTS

Fig. 6 shows the transfer characteristics of the GaN HEMT at different temperatures. It can be seen from Fig. 6 that the slope

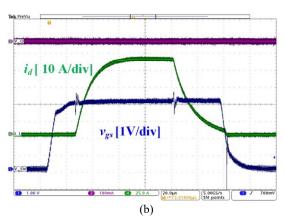


Fig. 5. The experimental gate-source waveform of 650 V GaN HEMT under static characterization: (a) with the testing configuration in Fig. 2(b) with the testing configuration in Fig. 2(b)

of the transfer curve increases when temperature decreases. The slope of this curve, i.e., the transconductance of the GaN HEMT shown in Fig. 7, ascends with the decrease of junction temperature. In addition, the transconductance at 93 K is 2.5 times higher than that at room temperature (296 K). This feature allows the GaN HEMT to have a much faster switching speed under cryogenic temperatures. In fact, Endoh [12] pointed out the obvious increase of the electron velocity caused by an improvement in two-dimensional electron gas (2DEG) mobility beneath the gate leads to the improved transfer characteristics at cryogenic temperatures.

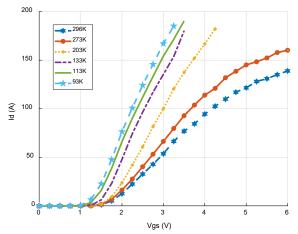


Fig. 6. Transfer characteristics of 650 V GaN HEMT at different temperatures.

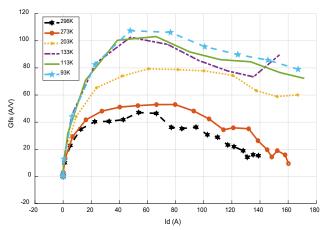


Fig.7. Transconductance of 650 V GaN HEMT as a function of current at different temperatures.

According to Fig. 8, the conduction resistance of the device gradually decreases when the junction temperature declines. However, the speed of reduction of conduction resistance is rapid at the beginning of temperature drop, but it becomes slow around 133 K. Overall, the conduction resistance at 97 K is 5.4 m Ω , which is only around one-fifth of that at room temperature (24.8 m Ω). The reason for this trend is the increased carrier density in the two-dimensional electron gas (2DEG) at cryogenic temperatures [13]. Unlike SiC MOSFET, there is no carrier freezeout phenomenon presented in [6].

Based on reference [13], the higher transconductance and the lower conduction resistance at cryogenic temperatures can be attributed to the excellent combination of electron mobility and a high 2DEG carrier density below 200 K. And, low interface roughness, optimized quaternary alloy barrier thickness and high drift velocity are the reasons to get such good 2DEG properties at cryogenic temperatures, while the optical and acoustical phonon scattering are the ruling factors to determine the carrier mobility above 200 K.

As shown in Fig. 9, different from Si and SiC devices, the threshold voltage of this GaN HEMT has a positive temperature coefficient. This feature can benefit current sharing capability among paralleled devices. For example, the device with a higher loss will result in a higher junction temperature to lead to a higher threshold voltage. As a result, the higher threshold voltage's slowing down the turn-on switching speed and increasing the turn-on delay time helps paralleled devices balance the loss.

Fig. 10 shows the output characteristics at different temperatures. The saturation current at the same gate voltage increases with the decreasing of temperature. Also, the slope of drain current in ohmic-region obviously increases with the decreasing of temperature, indicating a much smaller on-resistance of GaN HEMTs' channel.

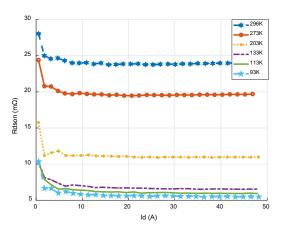


Fig. 8. On-resistance of the channel at different temperatures.

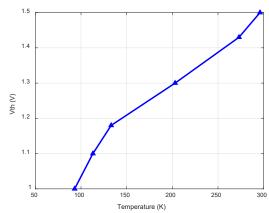


Fig. 9. Threshold voltage of the $650~{\rm V}$ GaN HEMT as a function of temperature.

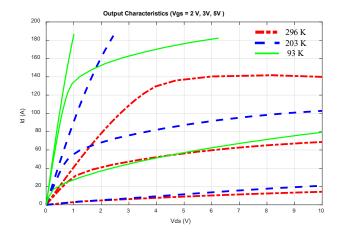


Fig. 10. Output characteristics of the 650 V GaN HEMT at different temperatures (when $v_{gs} = 2 \text{ V}, 3 \text{ V}, 5 \text{ V}$).

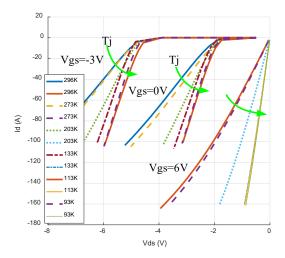


Fig. 11. Reverse conduction characteristics of the 650 V GaN HEMT at different temperatures.

Fig. 11 shows the reverse conduction characteristics for the GaN HEMT. Even though the GaN HEMT does not have a real body diode considering the physical structure of the device, it still has a diode-like behavior (DLB) during the reverse conduction. From Fig. 11, under different temperatures, the forward voltage of the DLB is nearly the same while the equivalent series resistance becomes lower as junction temperature decreases. For the bridge configuration, this feature will help to reduce freewheeling loss during the dead time at cryogenic temperatures.

As can be seen from Fig. 12, different from Si-based device, the breakdown voltage is nearly constant under different junction temperatures, and having no degradation for breakdown voltage can help the device block rated voltage rating at cryogenic temperatures. Ref. [8] identified that GaN-to-Si substrate vertical leakage current, independent of temperature, limits the maximum breakdown of the AlGaN/GaN HEMTs on Si.

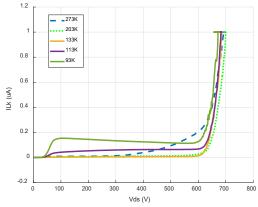


Fig. 12. Breakdown voltage the $650~\mathrm{V}$ GaN HEMT as a function of temperature.

IV. DYNAMIC CHARACTERIZATION RESULTS

At cryogenic temperatures, the switching speed of the GaN HEMT becomes much faster than that at room temperature. As discussed before, the transconductance at 133K is 2.5 times as large as that at room temperature. As Fig. 13 shows, the comparison of measured results of di/dt at room temperature and cryogenic temperature are displayed. The di/dt at 133 K is 21 A/ns, which is two times higher than that at 279 K. In addition, dv/dt during switching at 133 K is 83.3 V/ns, which is also around twice larger than one at room temperature.

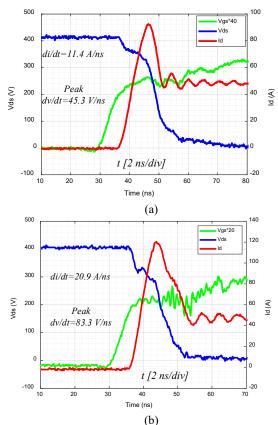


Fig. 13. Di/dt and dv/dt comparison under 400 V and 50 A: (a) at room temperature, (b) at cryogenic temperature.

Such a high switching speed causes two issues. The first one is how to conduct V-I alignment or deskew adjustment between measured v_{ds} and i_d , which is the key procedure to realize accurate switching loss data evaluation. According to paper [14], even if timing misalignment is as small as 2 ns, it causes 50 % error compared with the correct one. To relieve this issue, a V-I alignment method for switching waveforms is applied based on paper [15]. The basic idea is to utilize the initial transient voltage dip of v_{ds} for V-I alignment during the current rise up (di/dt period). Before the device's arriving in the ohmic region from the saturation region shown in Fig. 14, the drain-source voltage can be expressed as:

$$v_{ds} = V_{dc} - i_d R_{shunt} - L_{loop} \frac{di_d}{dt}$$
 (1)

where V_{dc} is dc-link voltage, R_{shunt} is the resistance of the coaxial shunt, L_{loop} is the power loop inductance, and i_d is the measured drain current. Power loop inductance L_{loop} can be obtained based on the resonant frequency of drain-source voltage during turn-off since the resonant frequency is determined by the L_{loop} and C_{oss} (@400 V). As Fig. 15 shows, the resonant period of voltage oscillation during turn-on is 8.2 ns. Considering the C_{oss} (@400 V) of selected GaN HEMT is 130 pF, the L_{loop} is calculated as 13.1 nH in total (also including the parasitic inductance of coaxial shunt).

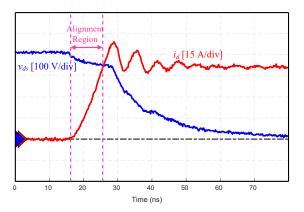


Fig. 14. Zoom-in testing waveform for V-I alignment illustration.

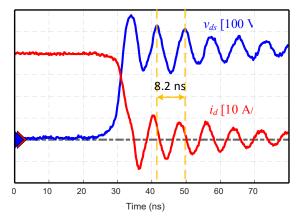


Fig. 15. Zoom-in turn-off waveform for extraction of L_{loop} .

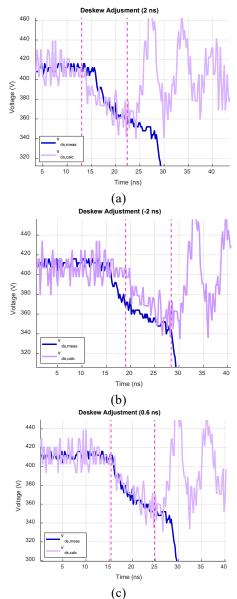


Fig. 16. V-I alignment with different deskews between v_{ds} and i_d .

With the calculated L_{loop} and time-domain i_{ds} , the calculated v_{ds} waveform based on (1) can be obtained to compare with the measured v_{ds} waveform. The observation of overlaps between the calculated waveform and the measured waveform is used to adjust the deskew and to correct misalignment timing. The deskew here is defined as the time difference between i_d and v_{ds} waveforms, and Fig. 16 illustrates how to use this method to adjust V-I alignment. From Fig. 16(a), it is obvious that the calculated v_{ds} is offset to the right compared with measured one with 2 ns deskew. Vice versa, like Fig. 16(b), the calculated v_{ds} is obviously offset to left compared with the measured one with -2 ns deskew. The offset can be corrected by shifting i_{ds} , and Fig. 16(c) shows the final corrected deskew adjustment 0.6 ns, which the calculated and measured v_{ds} waveforms properly match.

Table I further gives the loss calculation comparisons between three deskews to illustrate the importance of V-I timing alignment in measurement for ultra-fast switching speed

Table I. Switching loss comparisons at different V-I timing alignment

Deskew (ns)	Eon (µJ)	Eoff (μJ)
2	253.9	36
-2	285.7	15.2
0.6	212.9	66.7

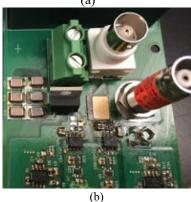


Fig. 17. DPT circuits configuration: (a) upper device is a GaN device, (b) upper device is a SiC diode.

applications. Without correct V-I alignment, the switching loss data error can be up to 16% compared with the correct one.

The second issue is ultra-fast switching speed induced device failure because of high sensitivity to parasitics. The detailed failure modes will be analyzed in the next section. Since several failures were observed under dual GaN HEMTs bridge configuration, the testing configuration changed from Fig. 17(a) to Fig. 17(b) by substituting GaN HEMT with the SiC diode C3D16065A from CREE whose voltage rating is also 650 V. SiC diode-based bridge can avoid the shoot-through problem and device failure problem. The following loss data are also from this SiC-diode-based bridge setup.

Fig. 18 shows the loss comparison under different junction temperatures. The parameters employed by the gate drive in the test are: turn-on resistance is 20Ω , turn-off resistance is 2Ω , and the gate drive IC is Si8271 from Silicon Labs. Since the gate driver IC cannot work properly below the temperature of 133 K, the loss data are only given until 133 K. Fig. 18(a) shows that

the turn-on loss descends with the decease of junction temperature. When the test condition is under 400 V bus voltage and 40 A load current, the turn-on loss is 177.5 μJ at 133 K, while it is 277.7 μJ at 298 K. The turn-on loss is reduced by 36% at 133 K compared with that at room temperature. For the turn-off loss, due to the lower threshold voltage, turn-off loss increases slightly at 133 K compared with that at room temperature. In the end, the total switching loss, dominated by the turn-on loss at 133 K, can be reduced by 29.8% compared with that at room temperature.

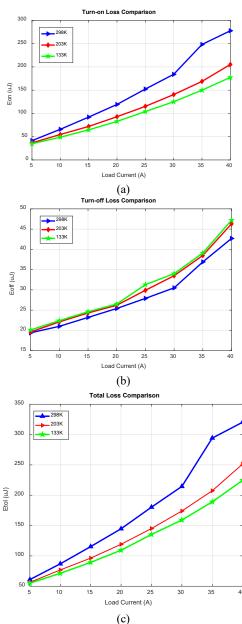


Fig. 18. Loss comparison under different junction temperatures: (a) turn-on loss, (b) turn-off loss, (c) total switching loss.

V. FAILURE ANALYSIS WITH ULTRA-FAST SWITCHING SPEED

As Section IV stated, several GaN HEMT failures were observed during dynamic characterization with dual active switches bridge configuration due to high dv/dt and di/dt. High dv/dt and di/dt induced different false turn-on mechanisms were reported in paper [16-17]. For high dv/dt induced failure, the main reason is that the high dv/dt produces displacement current flowing through the Miller capacitance and gate resistance, which makes gate voltage exceed the threshold voltage and causes shoot-through [16]. In addition, based on paper [17], due to high di/dt, even though the device package has very small common source inductance (CSI) L_{ss} , it may still false trigger the device, but this high di/dt induced false trigger only happened in the turn-off transition of the active switch. However, under the testing at cryogenic temperatures, ultra-high di/dt can also cause amplified gate voltage oscillation and breakdown the gate structure with over-stressed gate voltage even in the turn-on transition of the active switch. In this section, two typical failing waveforms are given at cryogenic temperatures with the high side GaN HEMT configuration to illustrate the failure mechanisms.

It is obvious that a shoot-through current, much larger than the inductor current, occurred during the turn-on transient. Fig. 19(b) shows the detailed zoom-in waveform during the turn-on transient. As it can be seen, the peak dv/dt arrived at 86.7 V/ns. From Fig. 19(c), it displays the equivalent circuits of DPT circuits during dv/dt transients. The high dv/dt will induce a displacement current by Miller capacitance going through the internal gate resistance of the upper switch. The GaN device (GS66516T) used in the paper has a 1.5-ohm internal gate resistance. Once the induced voltage v_{gs} in Fig. 19(c) by dv/dt exceeds the threshold voltage of the gate, the upper device would falsely turn-on causing a short time shoot-through.

From Fig. 20 (a), ultra-high di/dt at cryogenic temperatures caused an over-voltage issue for the gate structure of the GaN HEMT leading to a device damage issue. The main difference compared with Fig. 19 (a) is v_{gs} waveform, and it has an obvious voltage spike during turn-on while v_{gs} has no overshoot during turn-on in Fig. 19 (a). The GaN device (GS66516T) used in this paper does not have a Kelvin source connection because of the top cooling design. Assuming L_{ss} is only 0.5 nH for this GaN HEMT, the di/dt induced voltage across L_{ss} is still as high as 11 V.

This induced voltage of common source inductance can impact the gate loop to cause overshoot of the gate voltage or cause gate loop oscillation as shown in Fig. 20(b). Fig. 20(b) shows the peak v_{gs} during the di/dt transition arrived at 15.6 V, having exceeded the maximum breakdown gate voltage of the GaN HEMT. This may overstress the gate structure of the GaN HEMT, and ultimately lead to device damage. In the experiments, once the junction temperature was decreased to 133K, it would easily damage the upper device after several double-pulse tests.

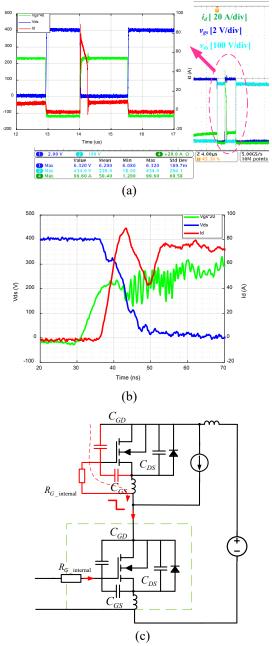


Fig. 19. Illustration of high dv/dt induced false turn-on: (a) DPT waveform under cryogenic temperature with shoot through under a short transient, (b) zoom-in DPT waveform, (c) circuits illustration for the induced false turn-on.

Photos of failed devices are given in Fig. 21. There are no obvious marks of damage both at the top or bottom side of damaged devices, and with measurement, all gate to source are shorted.

The trend of the switching speed with temperature variations is mainly determined by semiconductor material itself, so all GaN HEMTs will possibly achieve a much faster switching speed at cryogenic temperatures due to 3-5 times higher transconductance compared with that at room temperature. The uncertain factor is the package of GaN HEMTs from different

manufacturers could be different. If the parasitic common source inductances (CSI) of packages from other companies are similar to GS666516T's package shown in Fig. 21, the same failure mechanisms can happen, and same failure analysis can also be applied. On the contrary, if a more advanced package of GaN HEMTs is developed, this failure mechanism could be avoided. However, it could be very difficult to develop such a good package since even a small 0.5 nH CSI can induce an overstressed gate voltage (~11 V) with 22 A/ns di/dt.

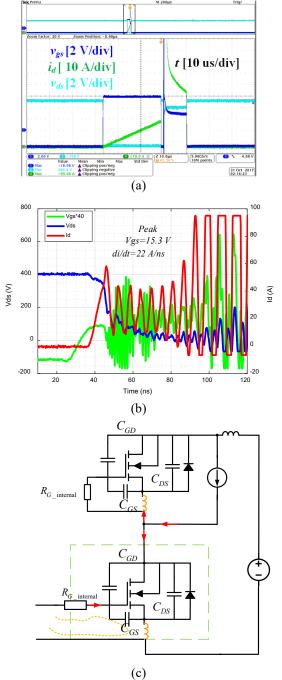
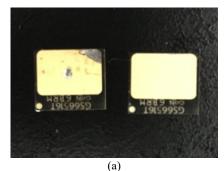



Fig. 20. Illustration of high di/dt caused gate damage: (a) DPT waveform under cryogenic temperature with overvoltage of gate-source voltage, (b) zoom-in DPT waveform, (c) circuits illustration for the induced v_{gs} over-voltage issue.

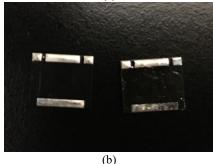
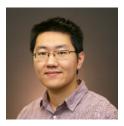


Fig. 21. Photos of failed devices: (a) topside, (b) bottom side.

Those ultra-fast switching speed induced failures indicate that only having an ideal switch is not enough. When the switching speed becomes faster and faster, the high sensitivity of parasitics will render gate drive design, packaging, and PCB layout more challenging and difficult. For the package design, a kelvin connection of source terminal should be used for this application and shared common trace or wire bond between the gate loop and power loop inside the package should be also avoided to achieve a CSI as low as possible. For the gate drive design, a clear separation of layouts between the power loop and gate loop should be paid attention to. Also, some advanced gate technologies like active miller clamp and dv/dt, di/dt active control can be applied to avoid device failures. All those aspects require careful investigations in future work.

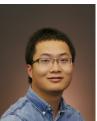
VI. CONCLUSION

This paper presents a characterization of 650 V enhancement GaN HEMT at cryogenic temperatures, including the static and dynamic characteristics. One setup issue in static characterization is the overshoot of gate-source voltage caused by coupling effects between the gate and drain testing wires. The method to eliminate this issue is to separate the gate and power loop, which is realized by not twisting the gate and drain measurement wires. Based on the characterization results, the 650 V enhancement GaN HEMT is a promising candidate in cryogenically cooled power electronics converters. At cryogenic temperatures, the switching loss can be reduced by about 30%, and conduction loss is also decreased with only 25% onresistance compared with that at room temperatures. However, due to extremely fast switching speed at cryogenic temperatures, the high dv/dt induced self-turn-on and high di/dt induced gate voltage overshoot of the upper device can be observed, and related failure mechanisms are analyzed. Displacement current induced by high dv/dt going through miller capacitance can falsely turn on the device, while the overvoltage, across the gatesource, caused by the voltage drop of common source inductance with high di/dt, can damage the gate structure and the device. Hence, considerations in gate drive and packaging design for cryogenic temperatures should be conducted further to adapt to ultra-fast switching speed.


ACKNOWLEDGMENT

The authors would like to thank The Boeing Company and NASA for their support of this research work. This work made use of the Engineering Research Center Shared Facilities supported by the Engineering Research Center Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

REFERENCES


- T. Chailloux, C. Calvez, N. Thierry-Jebali, D. Planson, and D. Toumier, "SiC Power devices operation from cryogenic to high temperature: investigation of various 1.2 kV SiC power devices," *Materials Science Forum*, 2014: 1122-1125.
- [2] S. Chen, C. Cai, T. Wang, Q. Guo, and K. Sheng, "Cryogenic and high temperature performance of 4HSiC," *IEEE Applied Power Electronics Conference and Exposition*, Long Beach, CA, USA: 2013, pp. 207-210.
- [3] Zheyu Zhang, Handong Gui, Ren Ren et al., "Characterization of wide bandgap semiconductor devices for cryogenically-cooled power electronics in aircraft applications," AIAA Propulsion & Energy Forum, 2018.
- [4] H. Gui et al., "Characterization of 1.2 kV SiC Power MOSFETs at Cryogenic Temperatures," *IEEE Energy Conversion Congress and Exposition (ECCE)*, Portland, OR, 2018, pp. 7010-7015.
- [5] K. Rajashekara and B. Akin, "A review of cryogenic power electronics—status and applications," 2013 International Electric Machines & Drives Conference, Chicago, IL, 2013, pp. 899-904.
- [6] Z. Zhang, C. Timms, J. Tang, R. Chen, J. Sangid, F. Wang, L. M. Tolbert, B. J. Blalock, and D. J. Costinett, "Characterization of high voltage highspeed switching power semiconductors for high frequency cryogenicallycooled application," in *Proc. IEEE Appl. Power Electron. Conf.*, 2017, pp. 1964-1969.
- [7] J. Colmenares, T. Foulkes, C. Barth, T. Modeert, and R. C. Pilawa Podgurski, "Experimental characterization of enhancement mode gallium-nitride power field-effect transistors at cryogenic temperatures," in *Proc. IEEE WiPDA*, 2016, pp. 129-134.
- [8] G. Meneghesso, M. Meneghini, and E. Zanoni, "Breakdown mechanisms in AlGaN/GaN HEMTs: an overview," *Jpn. J. Appl. Phys.*, vol. 53, no. 10, p. 100211, 2014.
- [9] B. Lu, E. L. Piner, and T. Palacios, "Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate," in *Proc. Device Research Conf.*, 2010, pp. 193-194.
- [10] C. Zhou, Q. Jiang, S. Huang, and K. J. Chen, "Vertical leakage/breakdown mechanisms in AlGaN/GaN-on-Si devices," *IEEE Electron Device Lett.*, vol. 33, no. 8, pp. 1132-1134, 2012.
- [11] R. Ren et al., "Characterization of 650 V Enhancement-mode GaN HEMT at Cryogenic Temperatures," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018, pp. 891-897.
- [12] Endoh, A., Watanabe, I., Yamashita1, Y., Mimura, T., Matsui, T, "Effect of temperature on cryogenic characteristics of AlGaN/GaN MIS-HEMTS," Phys. Status Solidi C 2009, 6, S964—S967
- [13] Dogmus, Ezgi, et al. "InAlGaN/GaN HEMTs at cryogenic temperatures," *Electronics* 5.2 (2016): 31.
- [14] Z. Zhang, B. Guo, F. F. Wang, E. A. Jones, L. M. Tolbert and B. J. Blalock, "Methodology for Wide Band-Gap Device Dynamic Characterization," in *IEEE Transactions on Power Electronics*, vol. 32, no. 12, pp. 9307-9318, Dec. 2017.

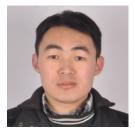
- [15] Edward Andrew Jones, Master's thesis, "Review and characterization of gallium nitride power devices," 2016, The University of Tennessee.
- [16] W. Zhang, Z. Zhang, F. Wang, D. Costinett, L. Tolbert and B. Blalock, "Common source inductance introduced self-turn-on in MOSFET turnoff transient," *IEEE Applied Power Electronics Conference and Exposition (APEC)*, Tampa, FL, 2017, pp. 837-842.
- [17] E. A. Jones, F. Wang, D. Costinett, Z. Zhang and B. Guo, "Cross conduction analysis for enhancement-mode 650-V GaN HFETs in a phase-leg topology," *IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA)*, Blacksburg, VA, 2015, pp. 98-103.

Ren Ren (S'14) received the B.S. degree in electrical engineering from Nanjing University of Aeronautics Astronautics, Nanjing, China, in 2012. Since 2012, he has been working toward the Ph.D. degree in electrical engineering in the Jiangsu Key Laboratory of New Energy Generation

and Power Conversion, Nanjing University of Aeronautics and Astronautics, Nanjing, China. Since 2017, he has been working toward the Ph.D. degree in electrical engineering in Center for Ultrawide-area Resilient Electric Energy Transmission Networks, University of Tennessee, Knoxville, TN, USA. His research interests include high frequency converters design using wide bandgap devices, design optimization and automation in power electronics, soft-switching resonant converter, and high frequency digital control in power electronics.

Handong Gui (S'14) received the B.S. and M.S. degrees in electrical engineering from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2013 and 2016, respectively. He is currently working toward the Ph.D. degree at the University of Tennessee, Knoxville, TN, USA.

His research interests include wide bandgap devices and applications, multi-level converters, and electrified transportations.


Zheyu Zhang (S'12, M'15, SM'19) received the B.S. and M.S. degrees from Huazhong University of Science and Technology, Wuhan, China, and the Ph.D. degree from The University of Tennessee, Knoxville, TN, in 2008, 2011, and 2015, respectively, all in electrical engineering.

Dr. Zhang is the Warren H. Owen – Duke Energy Assistant Professor of

Engineering at Clemson University. He was a Research Assistant Professor in the Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville from 2015 to 2018. Afterward, he joined General Electric Research as the Lead Power Electronics Engineer at Niskayuna, NY, USA from 2018 to 2019. He has published over 90 papers in journals and conference proceedings, filed over 10 patent

applications with one licensed, authored one book and one book chapter, and presented four IEEE tutorial seminars. His research interests include wide band-gap based power electronics, modularity and scalability technology, medium voltage power electronics, advanced manufacturing and cooling technology (e.g. cryogenic cooling) applied in power electronics, and highly efficient, ultra-dense, cost-effective power conversion systems for electric propulsion, electrified transportation, renewables, energy storage, and grid applications.

Dr. Zhang is currently an Associate Editor for IEEE Transactions on Power Electronics and IEEE Transactions on Industry Applications. He was the recipient of two prize paper awards from the IEEE Industry Applications Society and IEEE Power Electronics Society. He is a senior member of IEEE.

Ruirui Chen (S'15) received the B.S. degree from Huazhong University of Science and Technology, Wuhan, China, and the M.S. degree from Zhejiang University, Hangzhou, China, in 2010 and 2013, respectively. From 2013 to 2015, he was an electrical engineer at FSP-Powerland

Technology Inc., Nanjing, China. He is currently working toward the Ph.D. degree at the University of Tennessee, Knoxville, TN, USA.

His research interests include high power density converters for aircraft applications, multilevel converters, pulse width modulation techniques, converter paralleling control, and conducted EMI.

applications.

Jiahao Niu (S'16) received his B.S. degree in electrical engineering from Tsinghua University, Beijing, China in 2016. He is currently working toward the Ph.D. degree at The University of Tennessee, Knoxville, TN, USA.

His current research interests include design and control of high power ac drives, modular multilevel converters, wide bandgap semiconductors and their

Fei (Fred) Wang (S'85-M'91-SM'99-F'10) received the B.S. degree from Xi'an Jiaotong University, Xi'an, China, and the M.S. and Ph.D. degrees from the University of Southern California, Los Angeles, in 1982, 1985, and 1990, respectively, all in electrical engineering.

Dr. Wang was a Research Scientist in the Electric Power Lab, University of Southern California, from 1990 to 1992. He joined the GE Power Systems Engineering Department, Schenectady, NY, as an Application Engineer in 1992. From 1994 to 2000, he was a Senior Product Development Engineer with GE Industrial Systems, Salem, VA.

During 2000 to 2001, he was the Manager of Electronic & Photonic Systems Technology Lab, GE Global Research Center, Schenectady, NY and Shanghai, China. In 2001, he joined the Center for Power Electronics Systems (CPES) at Virginia Tech, Blacksburg, VA as a Research Associate Professor and became an Associate Professor in 2004. From 2003 to 2009, he also served as the CPES Technical Director. Since 2009, he has been with The University of Tennessee and Oak Ridge National Lab, Knoxville, TN as a Professor and the Condra Chair of Excellence in Power Electronics. He is a founding member and the Technical Director of the multi-university NSF/DOE Engineering Research Center for Ultra-wide-area Resilient Electric Energy Transmission Networks (CURENT) led by The University of Tennessee. His research interests include power electronics and power systems. Dr. Wang is a fellow of the U.S. National Academy of Inventors.

Leon M. Tolbert (S'88-M'91-SM'98-F'13) received the Bachelor's, M.S., and Ph.D. degrees in electrical engineering from the Georgia Institute of Technology, Atlanta, in 1989, 1991, and 1999, respectively.

He worked at Oak Ridge National Laboratory, Oak Ridge, TN, from 1991 until 1999. He was appointed as an assistant professor with the Department of Electrical and Computer Engineering,

The University of Tennessee, Knoxville, in 1999. He is currently the Min H. Kao Professor in the Min H. Kao Department of Electrical Engineering and Computer Science, The University of Tennessee. He is a founding member for the National Science Foundation/Department of Energy Research Center, CURENT (Center for Ultra-wide-area Resilient Electric Energy Transmission Networks). He is also a part-time Senior Research Engineer with the Power Electronics and Electric Machinery Research Center, Oak Ridge National Laboratory.

Dr. Tolbert is a Fellow of the IEEE and a Registered Professional Engineer in the state of Tennessee. He was the recipient of the 2001 IEEE Industry Applications Society Outstanding Young Member Award, and six prize paper awards from the IEEE Industry Applications Society and IEEE Power Electronics Society. He was an Associate Editor of the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2007 to 2013. He was elected to serve as a Member-At-Large to the IEEE Power Electronics Society Advisory Committee for 2010-2012, Chair of the PELS Membership Committee from 2011-2012, and a member of the PELS Nominations Committee from 2012-2014. He was the Paper Review Chair for the Industry Power Converter Committee of the IEEE Industry Applications Society from 2014 to 2017.

Daniel Costinett (S'10-M'13-SM'18) received the Ph.D. degree in electrical engineering from the University of Colorado Boulder in 2013.

He is currently an Associate Professor in the Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville (UTK). Prior to joining UTK, he was an instructor at Utah State University, in

2012. His research interests include resonant and soft switching power converter design, high efficiency wired and wireless power supplies, on-chip power conversion, medical devices, and electric vehicles.

Dr. Costinett is currently a Co-Director of Education and Diversity for the National Science Foundation/Department of Energy Research Center for Ultra-wide-area Resilient Electric Energy Transmission Networks (CURENT). He is also a Joint Faculty with the Power Electronics and Electric Machinery Research Group, Oak Ridge National Laboratory. Dr. Costinett was a recipient of the National Science Foundation CAREER Award in 2017. He currently serves as Associate Editor of IEEE Journal of Emerging and Selected Topics in Power Electronics, and IEEE Transactions on Power Electronics.

Benjamin J. Blalock (S'86-M'97-SM'06) is the Blalock-Kennedy-Pierce Professor of Analog Electronics in the Department of Electrical Engineering and Computer Science at The University of Tennessee where he directs the Integrated Circuits and Systems Laboratory (ICASL). He received his B.S. degree in electrical engineering from the University of Tennessee, Knoxville, in 1991 and the

M.S. and Ph.D. degrees, also in electrical engineering, from the Georgia Institute of Technology, Atlanta, in 1993 and 1996 respectively. His research focus at UT includes analog/mixed-signal integrated circuit design for extreme environments (both wide temperature and radiation) across multiple semiconductor technologies, ultra-low power analog signal processing, multichannel monolithic instrumentation systems, mixed-signal/mixed-voltage circuit design for systems-on-a-chip, and gate drive integrated circuits for wide bandgap (SiC and GaN) power electronics. Dr. Blalock has co-authored over 200 refereed papers. Dr. Blalock is a senior member of the IEEE.

Benjamin B. Choi received the B.S., M.S., and Ph.D. degrees from the Department of Mechanical Engineering from University of Illinois in 1984, 1986 and 1990, respectively. Since joining NASA GRC in 1990, Dr. Choi has been working on structural dynamics system modeling, analysis and control, especially in vibration control using magnetic

bearing system and artificial intelligence technology for nearly 12 years. Since then, he started looking at the development of a bearingless motor technology for the electric propulsion system for future aircraft and NASA missions. Dr. Choi was also extended his research view into suppressing blade resonance using piezoelectric materials or shape memory alloy. During the last ten years, he has been involved in the propulsion electric grid simulator for future turboelectric distributed propulsion aircraft.