

Microstructural and Mechanical Characterization of a *Dispersion Strengthened* Medium Entropy Alloy Produced Using Selective Laser Melting

TM Smith¹, AC Thompson², TP Gabb¹, RB Rogers¹, MJ Kulis¹, KM Tacina¹

¹NASA Glenn Research Center, Cleveland Oh 44135 USA ²Vantage Partners, 3000 Aerospace Pkwy, Brook Park, OH 44142, USA

Support provided by NASA's Aeronautics Research Mission Directorate (ARMD) Transformational Tools and Technologies (TTT) Project Office

Background – NASA Application

Problem: Conventional materials and processing techniques limit the design of combustor domes used in jet turbine engines.

Proposed Solution: Develop a high ductility, high temperature material for an additively-manufactured (AM) combustor fuel nozzle and dome for supersonic aircraft (>1093°C (2000°F) operating temperature).

- Lead to several improvements to the turbine combustor design ultimately reducing NOx pollution and lowering weight.
- May enable lean-front-end smallcore combustors.

Metallic Additive Manufacturing

	Selective Laser Melting (SLM)	Electron Beam Melting (EBM)	Direct Energy Deposition (DED)
Process			
Energy Source	Laser	E-Beam	Laser or E-Beam
Powder Bed	Yes	Yes	No
Power (W or kV)	50-1000 W	30-60kV	100-2000 W
Max Build Size (mm)	500 x 280 x 320	500 x 280 x 320	2000 x 1500 x 750
Material	Metallic Powder	Metallic Powder	Metallic Powder or Wire
Dimensional Accuracy	<0.04 mm	0.04-0.2 mm	0.5 mm (powder) 1.0 mm (wire)

- 3D printing or additive manufacturing (AM) has shown promise in realizing a new design space for aerospace applications.
- Each AM technique has a set of pros and cons associated with them.
- Instead of producing well known cast and wrought alloys with AM. We should look at AM as a new opportunity to produce materials that are currently difficult to create.
- For this study, SLM is used due to it's superior dimensional accuracy.

High Temperature AM Compatible Materials

High Temperature Materials:

- Refractory metals
- Carbon-Carbon composites
- CMC's
- Ni-base superalloys
- Dispersion strengthened (DS) alloys

Inspired by Andy Jones. ODS alloy Development.

(DS) alloys offer higher temperature capabilities compared to Ni-base superalloys. However, it has been a challenge to produce DS alloys through conventional manufacturing methods.

Can AM improve DS alloy manufacturability?

Methods

- Micron-scale (10-45um) NiCoCr powder was acquired from Praxair.
- Nano-scale (100-200nm) Yttria powder was acquired from American Elements.
- SLM Machine: EOS M100
- Powder Mixing: Resodyn LabRAM II
- Aim of study
 - Leverage SLM to produce dispersion strengthened multi-principal element alloys.
 - Determine optimal SLM laser parameters for both baseline (V-MEA) and dispersion strengthened (DS-MEA) builds.
 - Produce 99.9% dense vertical test specimen for microstructural and mechanical analysis using both V-MEA DS-MEA NiCoCr.
 - Explore heat treatment effects on mechanical performance
 - Produce a high temperature capable 3D printed combustor dome.

Novel Powder Coating Technique

New high energy mixing technique successfully coats NiCoCr powder with 1 wt.% Yttria.

Novel Powder Coating Technique

- The resonant mixing technique did not deform the NiCoCr powders.
- Both uncoated and coated powders qualitatively passed the Hall flow test.

Leveraging SLM to Produce Dispersion Strengthened Alloys

SLM successfully disperses the nano-scale Yttria particles throughout the AM build

DS-MEA Microstructure

Nano-scale Y₂O₃ particles are randomly dispersed throughout microstructure.

SLM Laser Parameters V-MEA

SLM Laser Parameters V-MEA

MEA Microstructures - Porosity

99.9% dense parts were successfully built for both the V-MEA and DS-MEA powder lots.

EDS – DS-MEA Microstructure

- Large (>20um) Y_2O_3 particles are not present in AM builds
- NiCoCr matrix remained a random solid solution during SLM process.

No intermetallic phases present after anneal or HIP steps.

Microstructure Analysis

- Yttria particles have pinned the grain boundaries in the MEA-ODS builds
- The HIP cycle successfully removed residual stresses in both the V-MEA and DS-MEA builds

Mechanical Tests V-MEA

Mechanical Tests DS-MEA

DS-MEA specimen much less sensitive to extreme environments.

Yield Strength Curve Comparison

DS-MEA specimen exhibited 50% improvement in yield strength over V-MEA after HIP.

www.nasa.gov 18

1093°C Mechanical Properties

Alloy	Yield Strength	Ultimate Strength	Elongation	Reduction of Area
	(MPa)	(MPa)	(%)	(%)
V-MEA As-Built	52	68	6.5	7
V-MEA HIP	46	68	8	8.5
DS-MEA As- Built	71	96	20	22
DS-MEA HIP	66	90	19	27

DS-MEA alloys possessed significantly improved high temperature properties over the baseline V-MEA samples.

This includes a >40% increase in strength and a 3x improvement in ductility

Tensile Strength vs Density Comparison

Scatter plot confirms the successful production of a DS alloy using AM

Future Work

- Explore the NiCoCr chemistry for improved strength and creep properties.
- Optimize the dispersion strengthening parameters (As-built grain structure, oxide volume fraction, heat treatments, etc.)
- Model the dynamic melt pool in SLM for ceramic coated metallic particles.
- Test the AM combustor dome

Conclusions

- SLM can be leverage to economically produce dispersion strengthened alloys that until now had been cost prohibitive.
- Multi-principle elements alloys show promise as AM compatible materials
- The incorporation of oxides into the MEA produced a more thermally stable microstructure.
- The DS alloy exhibited improved mechanical properties over the baseline alloy.
- We believe this new manufacturing technique combined with MPEAs opens up a new alloy design space for future high temperature alloys

Acknowledgments

- ASG
- Dave Ellis
- Henry de Groh
- Quynhgiao Nguyen
- Joy Buehler

- Bob Carter
- Pete Bonacuse
- David Scannapieco
- Cheryl Bowman

National Aeronautics and Space Administration

Extra Slides

NiCoCr

NiCoCr-Ti

