Reliability Issues with PME and BME Ceramic Capacitors
Alexander Teverovsky
ASRC, NASA/GSFC code 562, Greenbelt, MD, USA, Alexander.a.teverovsky@nasa.gov

INTRODUCTION
Two major reliability problems with low-voltage, class II dielectric MLCCs: (i) degradation of IR associated with migration of oxygen vacancies (V_O^{++}), and (ii) failures related to cracking caused either by soldering or by post-soldering stresses. The first one prevails for commercial base metal electrode (BME) capacitors, whereas the latter to precious metal electrode (PME) capacitors that until recently were the only types of capacitors used for hi-rel and in particular space applications. This work gives a review of degradation processes specific to PME and BME multilayer ceramic capacitors.

RELIABILITY ACCELERATION FACTORS
Distributions of degradation rates at different V and T were approximated with Weibull functions, and results of HALT were analyzed using a general Weibull Log-Linear model:

$$ L = A \times \exp \left(\frac{E_v}{kT} \right)^n \times V^n $$

An example of degradation of leakage currents in BME MLCCs at different T. The probability of failures of BME capacitors at operating conditions is negligibly small in most cases. The major reason of failures is the presence of defects in the parts.

MECHANICAL CHARACTERISTICS
A fracture occurs when the sum of external and internal mechanical stresses exceeds the tensile strength of the part. To reduce the probability of cracking, the level of stress should be reduced, and the strength of the parts increased by selecting the most mechanically robust capacitors. Comparison of MOR values for BME and PME capacitors showed no substantial difference. There is a trend of decreasing strength with increasing size of the parts for both PME and BME capacitors. For this reason, the smaller case size capacitors are less prone to assembly related cracking. Considering that the same value BME capacitors have smaller size, replacement of PME with BME capacitors is beneficial for cracking reduction.

CAPACITORS WITH CRACKS IN HUMID ENVIRONMENTS
In humid environments the probability of failures for PME capacitors with cracks is greater than for BME capacitors. Failed BME capacitors had much greater IR than PME capacitors. The difference in resistance to humidity testing is due to the specifics of electro-chemical behavior of Ni and Ag/Pd electrodes and properties of formed products (conductive Ag-based deposits for PME and isolative Ni/C/O compositions for BME capacitors).

Although the products of Ni migration have high resistivity, anodic dissolution of Sn, Pb or Cu from terminations might provide materials to form conductive deposits or dendrites in cracks located close to terminations.

CAPACITORS WITH CRACKS IN DRY ENVIRONMENTS
BME with cracks: currents are increasing after a certain induction period, gradually raise up 100X -1000X, and then are stabilizing and even decreasing with time of testing. PME: currents are sharply increasing indicating a short circuit failure. Behavior of BME MLCCs can be explained assuming accelerated transport of oxygen vacancies along the cracks.

THERMAL RUNAWAY
Modeling showed that in the range of typical HALT conditions (T from 125C to 200C and voltages up to 10XVR), voltage increases the probability of catastrophic failures to a greater degree compared to temperature. Small size defects that would never cause failures at normal operating conditions can result in short circuit failures during testing at increased voltages, thus resulting in wrong acceleration factors and false reliability predictions.

FAILURES IN CAPACITORS WITH DEFECTS
Times to failure can be calculated based on VBR:

$$ TTF = TFF \times \left(\frac{VBR}{V} \right)^n $$

If voltage acceleration constant, n, is known distributions of times-to-failure can be calculated based on distributions of breakdown voltages.

REVEALING DEFECTS
Defects can be revealed by analysis of distributions of breakdown voltages: the intercept indicates the proportion of defective parts, and the spread of low-voltage tail – their significance.

STRUCTURAL ANOMALIES IN MLCCs
Two types of anomalous structures were observed during SEM examinations of fractured capacitors after exposure to humid environments: thin platelets on the surface of PME and filaments on the surface of BME capacitors.