

Ana María Tárano ^{1,2} (ana.m.tarano@nasa.gov), Jonathan Gee ^{2,3}, Lorien Wheeler ⁴, Sigrid Close ¹, Donovan Mathias ⁴ 1. Aeronautics & Astronautics, Stanford University, San Jose State University, San Jose, CA, United States. 4. NASA Ames Research Center, Moffett Field, CA, United States. 3. Computer Science and Technology Corp./NASA Ames Research Center, Moffett Field, CA, United States. 3. Computer Science, San Jose State University, San Jose, CA, United States. 4. NASA Ames Research Center, Moffett Field, CA, United States. 3. Computer Science and Technology Corp./NASA Ames Research Center, Moffett Field, CA, United States. 3. Computer Science and Technology Corp./NASA Ames Research Center, Moffett Field, CA, United States. 3. Computer Science, San Jose State University, San Jose State St

0. Abstract

Properly assessing the asteroid threat depends on the knowledge of asteroid pre-entry parameters, such as size, velocity, mass, density, and strength. Although a vast number of possible bodies to study exist, such characterization of asteroid populations is currently limited by substantial costs associated with space rendezvous missions and rare meteorite findings. As asteroids fragment, ablate, and decelerate in the atmosphere, they emit light detectable by ground-based and space-borne instruments. Earth's atmosphere, thus, becomes an accessible laboratory that enables impactor risk assessments by facilitating inference of the pre-entry parameters. These asteroid pre-entry conditions are typically deduced by modeling the entry and breakup physics that best reproduce the observed light or energy deposition curve. However, this process requires extensive manual trial-and-error of uncertain modeling parameters. Automating meteor modeling and inference would improve property distributions used in risk assessments and enable population characterization as more light curves become more readily available through the presence of space assets and ground-based camera networks.

We previously developed a genetic algorithm to automate meteor modeling by using the fragment-cloud model (FCM) to search for the values of the FCM input parameters (e.g., diameter) that generate energy deposition profiles that match the observed one. Now, we apply deep learning to infer asteroid diameter, velocity, and density from observed energy deposition curves. We trained and tested our neural network models with synthetic energy deposition curves modeled using the FCM rubble pile implementation. We present an application of a 1D convolutional neural network and compare its performance to other attempted regressors and machine learning techniques, such as a fully connected neural network and Random Forest regression, to demonstrate its capabilities. We validate our model weights and approach using the Chelyabinsk, Tagish Lake, Benešov, Košice, and Lost City meteors.

1. Motivation: Unlabeled but abundant data sets

A. Background

- Asteroids pose a threat to humanity and the environment.
- Every day, 80 to 100 tons of material falls upon Earth from space in the form of dust and small meteorites.
- Asteroid missions are expensive, and meteorites are rare.
- Studying meteoroids entering the atmosphere is becoming more readily available through the presence of space assets, such as the Geostationary Lightning Mapper, and growing ground-based camera networks.
- Pre-entry parameters, such as diameter, density, angle, velocity, and aerodynamic strength, are critical for asteroid threat assessment.
- The pre-entry parameters of impacting asteroids are not directly measured from energy deposition curves derived from optical sensors. Physics-based models and uncertain mean values are used to infer unknown quantities from energy
- deposition curves when velocity and entry angle are known.

B. Challenges

- Light curve data from asteroids entering the atmosphere is abundant but the asteroid's properties are not commonly directly observed so there is ample but incomplete and unlabeled data. The meteor and asteroid communities rely heavily on modeling to infer properties from the data by
- reproducing the energy signatures that were observed.
- We have previously used a genetic algorithm to reproduce the manual labor of curve matching to solve for model inputs using a semi-analytical fragment-cloud model (FCM).
- We leverage an extended version of FCM to generate labeled data to train regression models in order to infer model inputs from observed cases.

C. Science Objective

Can our synthetically trained regression models be generalized to infer parameters from real fireballs?

2. Methodology: Train using physics-based synthetic data A. Overview of Process Infer asteroid Generate trainin Use supervised learning data properties 000 000 eep neural netwo ragment-cloud mode olution neural netv real curves **Random forest** B. Fragment-Cloud Model (FCM) Inputs and Outputs ···· Range $dm/dt = -0.5\rho_{air}v^3A\sigma$ —FCM structure $dv/dt = \rho_{air} v^2 A C_D / m - gsin\theta$ $d\theta/dt = (v/(R_E+h) - g/v)cos\theta$ $dt = dh/(vsin\theta)$ Initial disruption Fragmentation condition: Rubble debri Structure groups $\rho_{air}v^2 > Strength(S)$ ···· 🐏 🕘 💑 🗲 cloud Fragment strengths increase Vdispersion with decreased size Successive $S_{child} = S_{parent} (m_{parent}/m_{child})^{\alpha}$ fragmentation N fragments and Clouds broaden and slow 1 debris cloud under common bow shock per break 10-2 $v_{disp.} = v_{cloud}(C_{disp}A\rho_{air}/\rho_{debris})$ Energy Deposition (kt/km) Range and distribution of the input parameters generated to create synthetic FCM data sets to train the supervised learning models on. Minimum Maximum Distribution Parameter Uniform Diameter (m)Velocity (km/s)Uniform Uniform Angle $(^{\circ})$ Bulk Density (q/cm^3) 1.1 4.0Uniform 15,000Strength (kPa)1.0Log-uniform

This work was funded by the NASA Planetary Defense Coordination Office. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. TensorFlow and Keras were used to model the neural networks. References tai and Berezhnoy. Icarus. 2016, 278. Borovička et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Asteroids IV. 2015, 257-280. Brown et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Astrophysics. 1998, 334. Borovička et al. Astronomy and Astrophysics. 1998, 334. Borovička et al. Ast ReVelle. Meteoritics & Planetary Science. 2013, 342. Tárano et al. Icarus. 2017, 289. Wheeler et al. Icarus. 2018, 289. Wheeler et al. Icarus. 2017, 289. Wheeler et al. Icarus. Icarus. 2018, 315. Abadi et al., TensorFlow: Large-scale machine learning on heterogeneous systems, (tensorflow.org), 2015. Chollet et al., Keras, https://keras.io, 2015.

Using Deep Learning to Automate Inference of Meteoroid Pre-Entry Properties

- avoiding overfitting.

C. Model 1: Deep Neural Network (DNN) Data Preparation:

Inputs:

- 100 energy deposition points

Outputs:

Data Processing:

- Velocity → Standardization and Normalization • Angle \rightarrow Standardization and Normalization Density \rightarrow Standardization and Normalization
- Diameter \rightarrow Standardization and Normalization

- Epochs: 150
- Loss Function: Mean-squared error (MSE)
- Hidden Layers: 20
- Output Layer: 5 parameters • Activation Functions: Rectified Linear Unit (ReLU) for all except output layer that uses linear
- **Regularization:** None
- Dropout: None
- D. Model 2: Convolutional Neural Network (CNN) Data Preparation:

Inputs:

- Altitude data \rightarrow Log10 and Normalization for all • 100 energy deposition points
- Outputs:
 - Velocity \rightarrow Normalization
- Angle \rightarrow Normalization Density \rightarrow Normalization
- Diameter \rightarrow Normalization
- Strength \rightarrow Log10 and Normalization

Data Processing:

- Epochs: 50
- Loss Function: MSE
- Solver: Adam
- Convolutional Layers: 3 (1D)
- Hidden Layers: 3
 - Augmented feature space: total energy deposited, mean energy deposited, altitude at maximum energy deposition, and maximum energy deposition rate Add 4 additional features
- Output Layer: 1 parameter
- Activation Functions: ReLU
- Regularization: None
- Dropout: None

E. Model 3: Random Forest Regression (RFR) Data Preparation:

- Altitude data \rightarrow different depending on the output • Raw for Angle and Diameter
- Log10 for Velocity, Density, and Strength
- energy deposition, and maximum energy deposition rate
- 104: 100 energy deposition points and 4 additional features

Outputs:

- Velocity
- Angle
- Density
- Diameter • Strength \rightarrow Log10

Data Processing:

- Trees:
- Velocity: 5
- Angle, Density, Diameter, and Strength: 10 Output Layer: 1 parameter

Acknowledgements and References

- Inputs:

mean e

Augmented feature space: total energy deposited, mean energy deposited, altitude at maximum

used. Statistical Comparison of Learning Models Using the Validation Data Set

Velocity						Angle						Density				
Test Case	Actual	Prediction	Error	Percentage	\overline{e} Tes	t Case	Actual F	Prediction	on Error 1	Percentage	Test Case	Actual	Prediction	Error	Percentage	
	(km/s)	(km/s)	(km/s)	Error (%)			(°)	(°)	(°)	Error (%)		(g/cm^{3})	(g/cm^3)	(g/cm^3)	Error $(\%)$	
	De	ep Neural Net	work			Deep Neural Network					Deep Neural Network					
Lost City	14.2 13.7 -0.50 -3.52		Los	t City	38.0	50.9	12.9	33.9	Lost City	3.40	1.54	-1.80	-54.7			
Benesov	21.5	21.5 23.4 1.90 8.84		Ben	esov	81.0	77.1	-3.90	-4.81	Benesov Tagiah Laka	3.20	3.98 1.02	0.38	11.9 17.7		
Tagish Lake	15.8	16.8 1.00 6.33		Tag	ish Lake	17.8	22.4	4.60	25.8	Kosico	$\begin{array}{c} 1.04 \\ 2.50 \end{array}$	1.95 1.54	0.29	17.7		
Kosice	15.0	14.2	-0.80 -5.33		Kos	ice	60.0	41.1	-18.9	-31.5	Chelvabinsk	$\frac{2.50}{2.50}$	1.04 3.48	-0.90	-30.4	
Chelyabinsk	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7.81	Che	lyabinsk	18.3	$\frac{17.9}{17.9}$	-0.40	-2.19	- Cheryabhisk	<u> </u>	lutional Neural	Network	00.2		
Convolutional Neural Network			— <u> </u>	0.1	Convolutio	$\frac{1}{57.0}$	ral Network	5 00	Lost City	3.40	2.01	-1.39	-40.9			
Lost City Bonosou	14.2 21.5	14.2 15.7 $-0.5021.5$ 20.0 -1.50		-5.52	Los	t City	38.0	57.0	19.0	50.0	Benesov	3.20	2.94	-0.26	-8.13	
Tagish Lake	$\frac{21.5}{15.8}$	20.0 16-3	-1.50 -0.90		Ben	esov	81.0	(8.3	-2.70	-3.33	Tagish Lake	1.64	1.48	-0.16	-9.76	
Kosice	15.0	15.0	15.0 0.00		Tag	isn Lake	17.8	$\begin{array}{c} 08.9 \\ 74.5 \end{array}$	$\begin{array}{c} 51.1 \\ 14.5 \end{array}$	287	Kosice	2.50	3.32	0.82	32.8	
Chelvabinsk	10.0 19.2	13.0 13.0 0.00		0.00	ros Cho	lvobingk	00.0	$\begin{array}{c} 74.0 \\ 02.5 \end{array}$	14.0 5 20	24.2	Chelyabinsk	2.50	2.07	-0.43	-17.2	
energaemen	Bandom Forest Regression			Cheryabinsk		Random Forest Regr		oression		Random Forest Reg			gression			
Lost City 14.2 11.9 -2			-2.30	-16.2 <u>Lost (</u>		City	38.0	53.5	15.5	40.8	- Lost City	3.40	3.42	0.02	0.59	
Benesov	21.5 22.4 0.9		0.90	4.19 Boneso		esov	81 0	51.5	-29.5	-36 4	Benesov	3.20	3.47	0.27	8.44	
Tagish Lake	15.8	20.7	4.90	31.0	Tag	ish Lake	17.8	19.7	1.90	-30.4 10.7	Tagish Lake	1.64	1.76	0.12	7.32	
Kosice	15.0	15.1	0.10	0.67	Kos		60.0	27.0	-33.0	-55.0	Kosice	2.50	3.53	1.03	41.2	
Chelyabinsk	19.2	20.8	1.60	8.33	Che	lvabinsk	18.3	21.0 29.1	10.8	59 0	Chelyabinsk	2.50	2.31	-0.19	-7.60	
	<u> </u>									-						
				Dia	ameter					Aerod	ynamic Stren	ngth				
		Test	c Case	Actual Pre	diction	Error	Percentag	ge	Test Case	Actual	Prediction	Error	Percentage			
				(m)	<i>(m)</i>	(<i>m</i>)	Error ($\%$)		(kPa)	(kPa)	(kPa)	Error $(\%)$			
				Deep Ne	ural Net	vork		Deep			o Neural Netwo	rk				
		Lost	City	0.45	1.47	1.02	227		Lost City	0.25	4.22	3.97	1,590			
		Bene	esov	1.35	0.83	-0.52	-38.5		Benesov	20.0	46.1	26.1	131			
		Tagi	sh Lake	4.50	5.56	1.06	23.6		Tagish Lak	e = 0.50	1.91	1.41	282			
		Kosi	ce	1.39 2.4		1.05	75.5		Kosice	2.00	2.97	0.97	48.5			
Chel		yabinsk	19.8	$\frac{17.5}{1}$	-2.30	-11.6		Chelyabins	Chelyabinsk 600		430	71.7				
			Convolutiona	l Neural	Network				Convolut	ional Neural N	etwork					
		Lost	City	0.45	0.65	0.20	44.4		Lost City	0.25	6.64	6.39	2,560			
		Bene	esov	1.35 1.89		0.54	21.0		Benesov	20.0	32.9	12.9	64.5			
		Tagi	sh Lake	4.50	5.01	0.51	11.3		Tagish Lak	e 0.50	4.49	3.99	798			
		Chal	ce	1.39	1.81	0.42	30.2 10.1		Kosice	2.00	2.61	0.61	30.5			
Cheryab		lyadilisk	Bandom Forest Regres			10.1		Chelyabins	K 000 Dandar	079 m Forest Dame	79.0					
		Lost	City	-0.45	1000000000000000000000000000000000000		15.6		Loct City		$\frac{11}{257}$	257	102 000			
		Rond	esov	1.35	1.64	0.07	40.0		Benerov	0.20 20.0	201 QA A	201 74-4	103,000 279			
		Tari	sh Lake	4.50	3.31	_1 19	-26.4		Tarish Lak	20.0 e 0.50	9 <u>2</u> 2	1 83	366			
		Kosi	ce	1.30	1 51	0.12	8 63			2.00	2.55 10-2	$1.00 \\ 17.2$	300 860			
		Chel	vabinsk	19.8	19.3	-0.50	-2.53		Chelvabins	2.00 k 600	634	34.0	5.67			
				2010	2010	0.00				K 000	001	01.0	0.01			
Tahle	as ahr	we dem	onstr	ate the r	ande	oferr	or and	the r	elative e	rror for	each me	thod I	hy outou	t narar	neter	
Table					ange						caon me		by outpu	i parai		
Diameter Density Velocity Angle											rt Horizontal					
					• •	(())))))))))))))))))										
	18.6%			%	6 <u>13.0%</u>			2.73%		19.6%						
			Mean Absol	Mean Absolute Percentage Error		Mean Absolute		Mean	Mean Absolute Percentage Error		Mean Absolute Percentage Error					
	r er ceritage E		ror Percentag			Feicel	Percen	Lage Error								

Velo	ocity				Angle						Density					
Predi	$\overline{\text{ction}}$	Error	Perce	entage	Test	Case	Actual F	Prediction	Error	Percentage	Test Case	Actual	l Prediction	Error	Percentage	
(kn	n/s)	(km/s)	Erro	r (%)			(°)	$(^{\circ})$	$(^{\circ})$	Error $(\%)$		(g/cm^3)) (g/cm^3)	(g/cm^3)	Error $(\%)$	
Neur	al Netwo	rk					Deep 1	Neural Net	work		_	Ľ	Deep Neural Net	work		
13.7 -0.50		-3	.52	Lost City		38.0	50.9	12.9	33.9	- Lost City	3.40	1.54	-1.86	-54.7		
23	8.4	1.90	8.	84	Bene	SOV	81.0	77.1	-3.90	-4.81	Benesov	3.20	3.58	0.38	11.9	
16	6.8	1.00	6.	33	Tagis	sh Lake	17.8	22.4	4.60	25.8	Tagish Lake	1.64	1.93	0.29	17.7	
14	1.2	-0.80	-5	.33	Kosi	ce	60.0	41.1	-18.9	-31.5	Kosice	2.50	1.54	-0.96	-38.4	
20.7 1.50		7.	81	Chelyabinsk		18.3	17.9	-0.40	-2.19	Chelyabinsk	2.50	3.48	0.98	39.2		
onal Neural Network						Convolutio	nal Neural	Network		- Logt City	$\frac{\text{Conv}}{2.40}$	2 01	1 Network	40.0		
13.7 -0.50		-0.50	-3.52		Lost City		38.0	57.0	19.0	50.0	Bonosow	3.40 3.20	2.01	-1.39	-40.9	
20.0 -1		-1.50	-6.	-6.98		esov	81.0	78.3	-2.70	-3.33	Tagish Lake	1.64	2.94	-0.20	-0.13	
16	5.3	0.50	3.	16	Tagis	sh Lake	17.8	68.9	51.1	287	Kosice	$1.04 \\ 2.50$	3.32	-0.10	-9.70	
15.0 0.0		0.00	0.	00	Kosice		60.0	74.5	14.5	24.2	Chelvabinsk	$\frac{2.50}{2.50}$	2.07	-0.43	-17.2	
19.2 0.00		0.00	0.	00	Chelyabinsk		18.3	23.5	5.20	28.4		Ban	dom Forest Reg	ression	11.2	
1 Fore	est Regres	ssion		0.0	Random For			Forest Reg	gression		– Lost City	$\frac{1001}{340}$	$\frac{100111010501105}{342}$	0.02	0.59	
11	1.9	-2.30	-10	b.2 10	Lost	City	38.0	53.5	15.5	40.8	Benesov	3.20	3.47	0.02 0.27	8.44	
22	2.4	0.90	4.	19	Bene	esov	81.0	51.5	-29.5	-36.4	Tagish Lake	1.64	1.76	0.12	7.32	
20). <i>(</i> : 1	4.90	31	1.0 67	Tagis	sh Lake	17.8	19.7	1.90	10.7	Kosice	2.50	3.53	1.03	41.2	
10).1	0.10	0.	07 22	Kosi	ce	60.0	27.0	-33.0	-55.0	Chelvabinsk	2.50	2.31	-0.19	-7.60	
20	0.8	1.00	0.	<u> </u>	Chel	yabinsk	18.3	29.1	10.8	59.0						
		1	A 4 1	$\frac{\text{Diam}}{\text{D}}$	eter	D				Aerodynamic Strength						
	Test C	ase	Actual	Predic	tion	Error	Percentag	ge	Test Case	Actual	Prediction	Error	Percentage			
			(m)	$\frac{(m)}{m}$	$\frac{i}{1}$	(m)	Error ($\%$)		(<i>kPa</i>)	(kPa)	(kPa)	Error (%)			
	T		Dee	ep Neura	I Netw	rork	227			Dee	p Neural Netwo	rk				
	Lost Ci	lty	0.45	1.4	17 12	1.02	227		Lost City	0.25	4.22	3.97	1,590			
	Benesov	V	1.35	0.8	33	-0.52	-38.5		Benesov	20.0	46.1	26.1	131			
	Tagish	Lake	4.50	5.5)6 1 4	1.06	23.6		Tagish Lak	e 0.50	1.91	1.41	282			
	Kosice		1.39	2.4	44 -	1.05	75.5		Kosice	2.00	2.97	0.97	48.5			
	Chelyat	binsk	$\frac{19.8}{0}$	$\frac{17}{1}$.5	-2.30	-11.0		Chelyabins	<u>k 600</u>	1030	430	71.7			
		Convolutional Neural Network						Convolu	tional Neural N							
	Lost Ci	ity	0.45	0.6	05	0.20	44.4		Lost City	0.25	6.64	6.39	2,560			
	Benesov	V	1.35	1.8	<u>89</u>	0.54	21.5		Benesov	20.0	32.9	12.9	64.5			
	Tagish	Lake	4.50	5.0)]	0.51	11.3		Tagish Lak	e 0.50	4.49	3.99	798			
	Kosice		1.39	1.8	51	0.42	30.2		Kosice	2.00	2.61	0.61	30.5			
	Chelyat	oinsk	19.8	21. E	.ð	2.00	10.1		Chelyabins	<u>k 600</u>	<u> </u>	79.0	13.2			
	Random Forest Regression				-		Rando	m Forest Regre	ssion	100.000						
	Lost C1	ty	0.45	0.5)2 74	0.07	15.6		Lost City	0.25	257	257	103,000			
	Benesov Traditi	V Tala	1.35	1.0)4)1	0.29	40.0		Benesov	20.0	94.4	74.4	372			
	Tagish	Lake	4.50	J.J 1 F	51 1	-1.19	-26.4		Tagish Lak	e 0.50	2.33	1.83	366			
	Kosice	L:	1.39	1.0)] 2	0.12	8.03		Kosice	2.00	19.2	17.2	860			
	Chelyat	olnsk	19.8	19.	.0	-0.30	-2.03		Chelyabins	k 600	634	34.0	5.07			
		4				c		11		c			1 1	4		
e c	demo	nstra	ate tr	ne rar	nge	of err	for and	the re	lative e	rror tor	each me	thod	by outpu	it parar	neter.	
					_	:		:			:		-			
Diameter						Density				/elocity	Angle wrt Horizontal					
40 /0				/ 10.00/				0-	700/	40 (0)						
TQ'0			6 13.0%			7 0		3%	19	.6%						
Mean Absolute			Mean Absolute			te	Mear	Absolute	Mean	Mean Absolute						
Percentage Error		•	Percentage Error		ror	Percentage Err		Percentage Error								
						:		÷			÷					

Logarithmic Transformations

Strengths

- target variables needed.
- 100 km apart.

_imitations

Future Work

4. Results: DNN provides best generalization overall

• In order to compare the different methods' ability to predict unseen data, we use the R² score metric, also known as the coefficient of determination. For the scikit-learn package, the best possible score is 1.0 and the score can be negative. A score of 0 indicates that the mean is much better predictor than the model

We present the R² scores for each output parameter for the validation and test sets. The validation R² scores highlight whether the models can predict unseen data that is like the training set. The test R² scores will provide insight as to whether the models are generalizable to real observed data.

DNN-Val CNN-Val RFR-Val

DNN-Test CNN-Test RFR-Test

Statistical Comparison of Learning Models Using the Test Data Set

generated and realistic curves, excluding the density target. If we focus on each individual modeling parameter, then the CNN outperforms the other approaches for inferring velocity. The DNN exceeds the other methods for inferring angle and strength. The RFR is most adept at generalizing solutions for density. Diameter can be inferred consistently by either method.

5. DISCUSSION

Transforming the input feature space enabled better predictions of velocity, angle, and density target variables, while it did not significantly improve predictions for diameter. Transforming strength enabled its inference because it reduced the wide-ranging target variable.

Excluding density, the DNN model should be used as a global approach for getting solutions for all the

We have demonstrated a new capability of being able to deduce entry angle and velocity without requiring the use of explicit dynamic or trajectory information. This ability is highly sought after for observed light curves where <3 stations were able to observe and event or when sensors are less than

Even though our training and validation sets didn't have smaller values of strength than 1 kPa, our DNN inferred small values for Lost City and Tagish Lake. The smallest strength values of the test set are not represented in the training data and performance could be improved by expanding training data set. • High R² scores for the validation set do not always imply generalizability of the model to real data, as seen by the model's performances in for the density parameter.

- 01 | Apply models to 10 potential other curves.
- 02 Use sensor fusion to develop more robust systems.
- **03** Develop methodology for incomplete data.
- 04 | Train models on synthetically generated light curves directly.