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0. Abstract

Properly assessing the asteroid threat depends on the knowledge of asteroid pre-entry parameters, such as .
size, velocity, mass, density, and strength. Although a vast number of possible bodies to study exist, such
characterization of asteroid populations is currently limited by substantial costs associated with space
rendezvous missions and rare meteorite findings. As asteroids fragment, ablate, and decelerate in the .
atmosphere, they emit light detectable by ground-based and space-borne instruments. Earth’s atmosphere,
thus, becomes an accessible laboratory that enables impactor risk assessments by facilitating inference of
the pre-entry parameters. These asteroid pre-entry conditions are typically deduced by modeling the entry
and breakup physics that best reproduce the observed light or energy deposition curve. However, this
process requires extensive manual trial-and-error of uncertain modeling parameters. Automating meteor
modeling and inference would improve property distributions used in risk assessments and enable
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3. Methodology: Top 3 regression models 4. Results: DNN provides best generalization overall

 In order to compare the different methods’ ability to predict unseen data, we use the R? score metric, also
known as the coefficient of determination. For the scikit-learn package, the best possible score is 1.0 and
the score can be negative. A score of 0 indicates that the mean is much better predictor than the model
used.

We present the R? scores for each output parameter for the validation and test sets. The validation R?
scores highlight whether the models can predict unseen data that is like the training set. The test R?
scores will provide insight as to whether the models are generalizable to real observed data.

Although we attempted the use of different regression models, such as gradient boost and support
vector regression, and attempted many designs, not all models were able to train. Here we present the 3
most successful frameworks to enable training and similarly valued validation metrics.

Our general strategy in deriving the presented topologies involved in optimizing for the maximization of
the R? score of the predictions made to the validation data set, minimizing the loss of the real cases, and .
avoiding overfitting.

Statistical Comparison of Learning Models Using the Validation Data Set Statistical Comparison of Learning Models Using the Test Data Set

C. Model 1: Deep Neural Network (DNN)
Data Preparation:
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2. Methodology: Train using physics-based synthetic data * Hiaden Layers: 3 | | |
* Augmented feature space: total energy deposited, mean energy deposited, altitude at
_ maximum energy deposition, and maximum energy deposition rate
A. Overview of Process - Add 4 additional features
* Qutput Layer: 1 parameter
« Activation Functions: RelLU
* Regularization: None

* Dropout: None

« Tables above demonstrate the range of error and the relative error for each method by output parameter.
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5. Discussion

///// E. Model 3: Random Forest Regression (RFR)
Data Preparation:
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