

Mentor: Fernando Figueroa, Ph.D. Co-Mentor: Lauren Underwood, Ph.D.

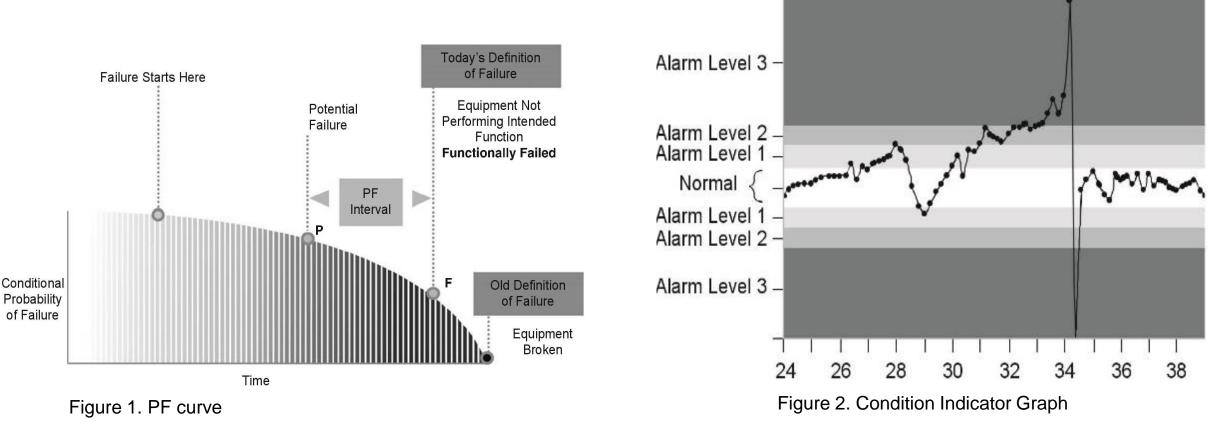
Condition-Based-Maintenance of Electrical Motors for INSIGHT (Intelligent Stennis Gas House Technology) and NPAS (NASA Platform for Autonomous Systems)

SA STENNIS SPACE CEL

December 12, 2019

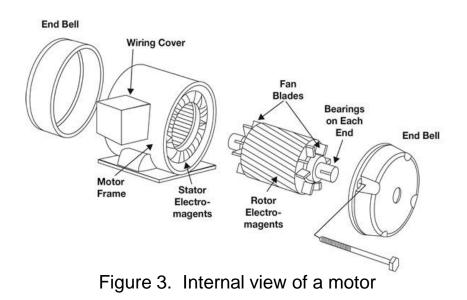
1. Introduction/ Background

Condition-Based Maintenance vs. Periodic Maintenance


- Condition-Based-Maintenance (CBM) implies that maintenance is done only when conditions indicate that it is necessary
- Periodic maintenance (PM) that is done periodically, whether it is necessary or not-
- PM is more costly than CBM, because the period between maintenance activities needs to be conservative.

	Repair St	trategy			
BRS		PMS		CMS	
Breakdown I	Repair Strate	Preventive Mai	intenance Strat	Condition based M	laintenance Strategy
After failu	ıre	Periodic		Periodic	conditior
				based	
		Periodic		Periodic	
After failure		Periodic		Condition ba	
After failu	ıre	Periodic		Conditio	n based
After failu	ıre	After failu	ıre	After failu	ıre
	Breakdown After failu After failu After failu	BRS Breakdown Repair Strate After failure	Breakdown Repair Strate Preventive Ma After failure Periodic After failure Periodic After failure Periodic After failure Periodic After failure Periodic	BRS PMS Breakdown Repair Strate Preventive Maintenance Strate After failure Periodic After failure Periodic After failure Periodic	BRS PMS CMS Breakdown Repair Strate Preventive Maintenance Strate Condition based M After failure Periodic Periodic based Periodic Periodic After failure Periodic Condition After failure Periodic Condition After failure Periodic Condition After failure Periodic Condition

Table 1. Comparative Analysis of BRS, PMS and CMS for Electrical Motor


2. CBM Definitions

- CBM employs sensor readings as indicators to evaluate if maintenance is needed
 - Probability of Failure (PF) is then calculated based on readings that measure values of parameters that point to maintenance needs
 - Condition indicators Are values from failure analysis that are used to define alarm settings according to criteria based on analysis of failure progression

3. Common Motor Failures

- Common failures:
 - Bearings (50%)
 - Stator winding failures (16%)
 - External environment (16%)
 - Unknown (10%)
 - Rotor bar (5%)
 - Shaft & coupling (2%)`
- Examples of bearing failures, include the following:
 - Mechanical failure such as excessive load, overheating,
 - False and true brinelling, normal fatigue failure, reverse loading, contamination, lubricant failure, corrosion, misalignment
 - Loose or tight fits per report from Barden Precision Bearings at Bearing Failure: Causes and Cures

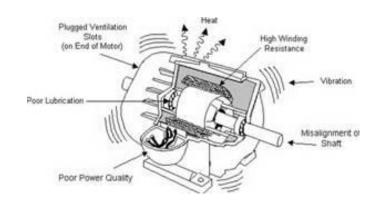


Figure 4. Common Motor Failures

3. Common Motor Failure Indicators

- Three major electrical motor failure indicators include the following:
 - 1. Electrical overload or over-current
 - 2. Low resistance
 - 3. Over-heating
- In order to implement CBM, sensors to measure the above parameters are needed

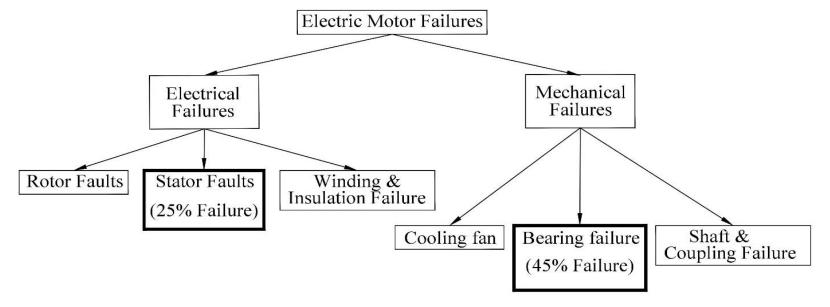
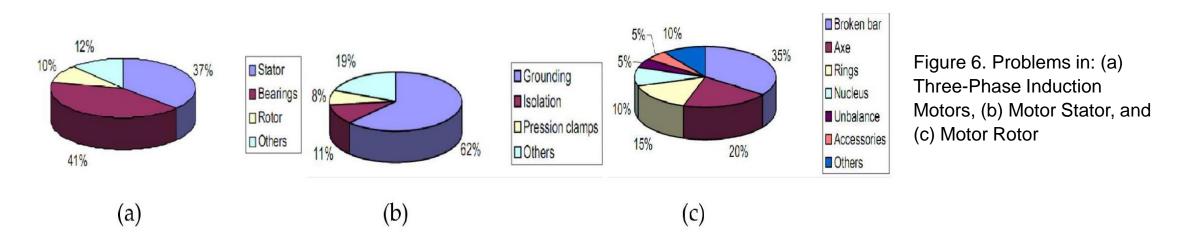
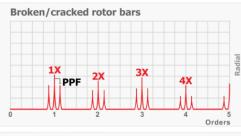
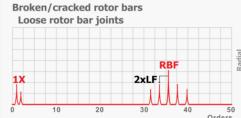
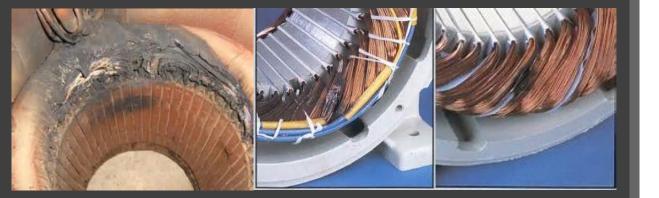
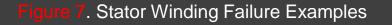



Figure 5. Electric Motor Failures


Motor Failure Can Result from Any of the Following Issues


- Short cycling: repeatedly stopping a motor that is already heated to operating temperature, and then starting it again before it has a chance to cool
- Phase voltage unbalance: can cause electric motor failure due to an excess temperature rise (in a three-phase supply); A a3% voltage unbalance causes an 18% temperature rise in the motor and current increase of six to ten times the voltage unbalance; a motor should not be operated if the phase unbalance is greater than 5%
- Physical and environmental conditions: i.e. restricted ventilation can cause a motor to operate at higher than the desired temperature; improper lubrication can damage bearings and throw grease into windings; moisture, in the form of condensation, can cause rust within a total enclosed motor; vibration can results in motor failures
- Vibration: i.e. in the motor, results in unbalance of the rotating element, rubbing parts, loose parts, oil film instabilities; major cause of motor failure
- High ambient temperatures: can result in de-rating to a lower horsepower-




4. Example Electrical Motor Failures

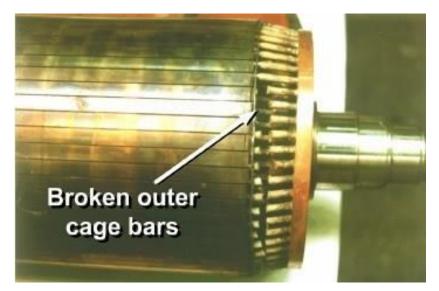


Figure 8. Typical Rotor Problems and Characteristics

5. Description of Sensors Needed for Electrical Motor CBM

Based on Table 2 Technical data, four embedded sensors are proposed:

- (1) Current-Stator and (2) Current-Rotor sensors to detect problems at Stator and Rotor areas
- (3) Thermocouple Sensor for overheating
- (4) Proximity Sensor for monitoring the speed for the Motors

Imbalance	Proximity	Е	Entire	narrowband, line frequency	Proximity Switches	Vibrations in line frequency increase the amplitude of	Area Characteristics	Sensor Type	Mech /Elec	Locations	Remedy to fix	Name Model No.	Description
	Vibration	М	Motor	indications of Instability	608-1	the harmonics of running speed.	Bearing	Proximity Vibration	E M	sleeve or rolling-	narrowband window to	110.	*Vibration & Ultrasound sensors will not be included
Line	Vibration Ultrasound	P P	Stator & Rotor	For monitoring quality of		alternating current to the motor.	1	Ultrasound	Р	element bearings	monitor frequencies		due to focusing on developing electrical CBM system.
Frequency Running speed	Proximity Thermo-	E	Stator & Rotor	power narrowband WINDOW varies per AC/DC	Proximity Switches 608-1 Thermo C.	monitor 60, 120, 180-cycle power	Loose rotor bars	Proximity Current (over- current Protection) Vibration	E E M	Stator & Rotor	common failure. High frequency vibration is well above normal max.	Proximity Switches 608-1	Cylindrical rotor operates at speed between 1500 -3000 rpm Stator eccentricity, stator support weakness or winding shorts
Slip Frequency Electric Motor analysis	couple Proximity Vibration	P E M		narrowband WINDOW	Probe Proximity Switches	is difference bet. Syncro &actual. frequency, modulation, sidebands Refer table 2. Technical specifications for motor		Thermo- couple	Р		frequency. High pass filter like high frequency domain for monitoring.		1x RPM 2x FL 2x RPM Frequency

Table 2. Specification data for the proposed electrical sensors for the motors

TO FIND DIREC		SINGLE PHASE	THREE PHASE
POWER	V x I x EFF	V x I x EFF x PF	1.732 x V x I x EFF x PF
HORSE	<u>V x I x EFF</u>	<u>V x I x EFF x PF</u>	<u>1.732 x V x I x EFF x PF</u>
POWER	746	746	746
CURRENT	P	P	P
	V x EFF	V x EFF x PF	1.732 x V x EFF x PF
EFFICIENCY	<u>746 x HP</u>	<u>746 x HP</u>	<u>746 x HP</u>
	V x I	V x I x PF	1.732 x V x I x PF
POWER		Input Watts	Input Watts
FACTOR		V x I	1.732 x V x I
SHAFT SPEED			<u> 120 x F </u> no. of poles

Table 3. Motor Formula

Applying the formulas in Table 3

 I (Current) = 111.9 x 1000 x 746/746) / (460x1.73x.95) = 148.87 Amps when the load from pump is 115.1 KW, Voltage is 460 V, power factor is 95% from the table 4.

6. Gas House Motor Data Analysis

	pump	motor
Model	61150-1	Siemens
power (HP)	150/154.3	150
power (KW)	111.9/115.1	111.9
volts (V)	460	460
Frequency (Hz)	60	60
Phase	3	3
mech eff (%)	90	95
SF	1.15	1.15
speed (rpm)		1800/1785
Insulation class		F
design		В
kVA code		G
amps		170
ambient (°C)		40°C
Temp		class B
Weight (lbs)		1720
Frame		B445T
Hrs/day	8	8

Table 4. Nitrogen Reciprocating Pump & Motor Data (nameplate/spec) at HPGH, source: NASA SSC Gashouse, November, 2019

7. Implementation Details: (1) Stator-Current Sensor

- <u>(1) Stator-Current sensor (SCS)</u>: enables detecting abnormal behavior due to various stresses in stator area.
- Table 5 shows the analysis for CBM

Location	Electrical Failure	Governed Formula/	Diagnostics/	Sensor	CBM Warning
	(Cause)	Rule/Graph	(Result)	Туре	System Per
			Range of Failure		range of failure
Stator	Turn-to-turn fault	v(t)= Vpeaks sin(wt)	abnormal current	Current	Normal Range:
(winding)	Coil-to-coil fault	p(t)=v^2(t)/R	cycle and temperature,	(Stator)	-145 <a<+145 (Green)</a<+145
	Phase-to-phase fault	Ptime aver.=	Lead to burn		Alarm Level 1:
	from combination of	V^2rms/R			-146 <a<+165 (Yellow)</a<+165
	various stresses,	v(t)=Vpeak sin(wt)			Alarm Level 2:
	electrical, mechanical	i(t)=v(t)/R =			-166 <a<+185 (Orange)</a<+185
	environmental,	Vpeak/R sin(wt)			Alarm Level 3: (Red)
	and thermal	P(t) = v(t)i(t) =			A>-186 or
		(Vpeak)^2/R sin^2(wt)			A<+186

Table 5. Parameter of the Stator-Current sensor (SCS)

7. Implementation Details: (1) Stator Current Sensor

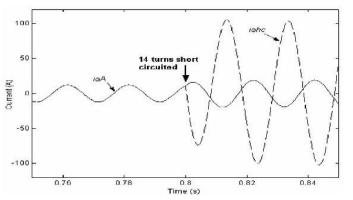


Figure 9. Phase current(isA) and current in short circuited turns

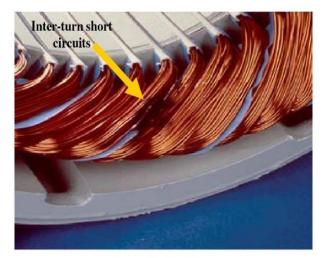
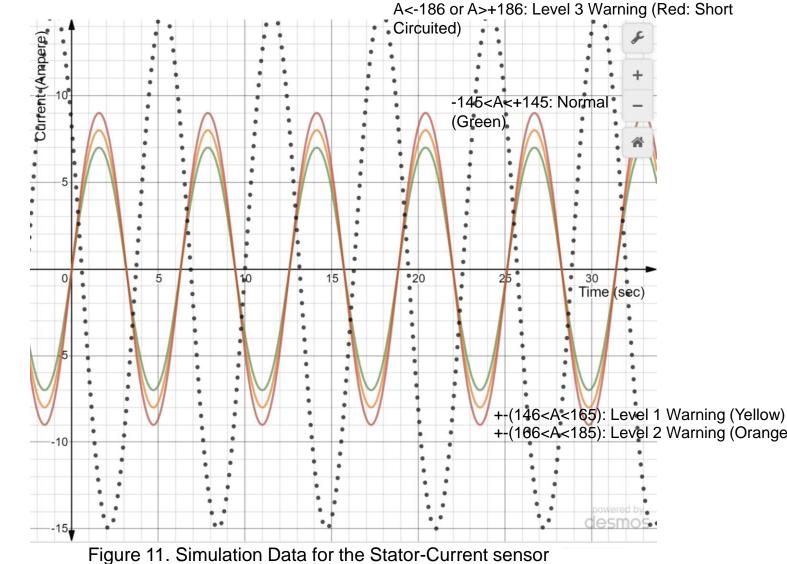



Figure 10. Consequences of inter-turn short-circuit

generated by https://www.desmos.com/calculator/t41w64inzb

7. Implementation Details: (2) Rotor-Vibration Sensor

- (2) Rotor-Vibration sensor (RVS): Used for detecting abnormal behavior due to various causes in the rotor area.
- Table 6 shows the analysis for CBM

Location	Electrical Failure	Governed Formula/	Diagnostics/	Sensor	CBM Warning
	(Cause)	Rule/Graph	(Result)	Туре	System Per
		for 3 Phase AC Motor	Range of Failure		range of failure
Rotor-	Cracked or Broken	Fp=pole pass frequency	excessive	Rotor	Normal Range
Stator	Rotor Bars	FL=line frequency	vibration & noise	Current	-54 < A (Green)
(winding)	Eccentricity	PPF =	heat & smoke		Alarm Level 1
	(uneven airgap	motor slop x no.of poles	motor failure		-54 > A > -50 (Yellow)
	bet. Rotor and Stator)	The difference	A difference over 54dB		Alarm Level 2
	Contamination	in amplitude	indicates a healthy rotor		-49 > A > -46 (Orange)
	(gunk in the airgap)	between the FL and FP	while less than 45 dB		Alarm Level 3
		is an indication of	indicates a degraded		-45 > A (red)
		rotor health.			

 Table 6.
 Parameter of the Rotor-Vibration sensor (RVS)

7. Implementation Details: (2) Rotation Vibration Sensor

- Vibration frequency analysis depicts two broken rotor bars with high sidebands (see, Fig. 12); difference in amplitude between the FL (line frequency) and the FP (pole pass frequency) is an indication of motor health.
- Fig.13 shows the simulation for RVS

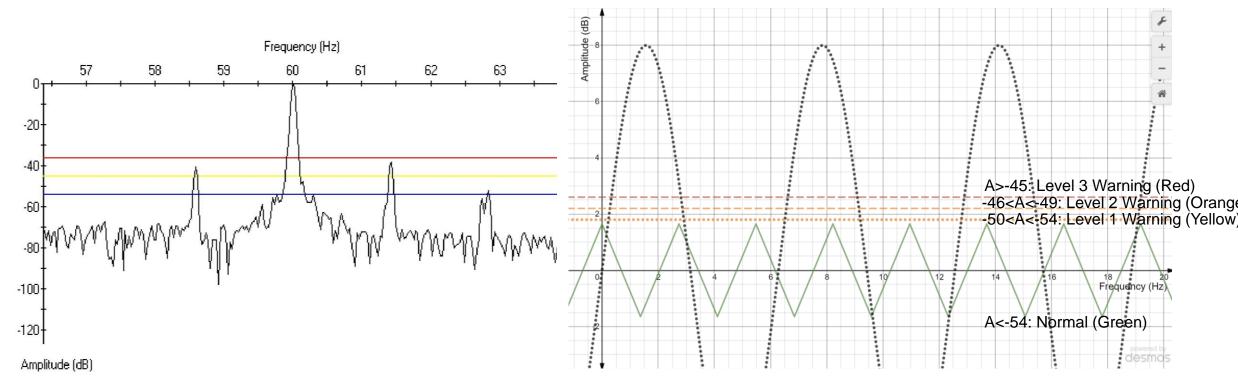


Figure 12. Spectrum of a Motor with Damaged Rotor source: Pete *Bechard. ADVANCED SPECTRAL ANALYSIS.* http://masters.donntu.org/2008/eltf/naftulin/library/letter5.htm. Figure 13. Simulation for the Rotor-Vibration sensor generated by <u>https://www.desmos.com/calculator/bwegqcu0vt</u>

7. Implementation Details: (3) Thermo Sensor

- (3) Thermo sensor (TS): used for detecting exceeding thermal limits in the stator-rotor area.
- Table 7 shows the analysis for CBM-

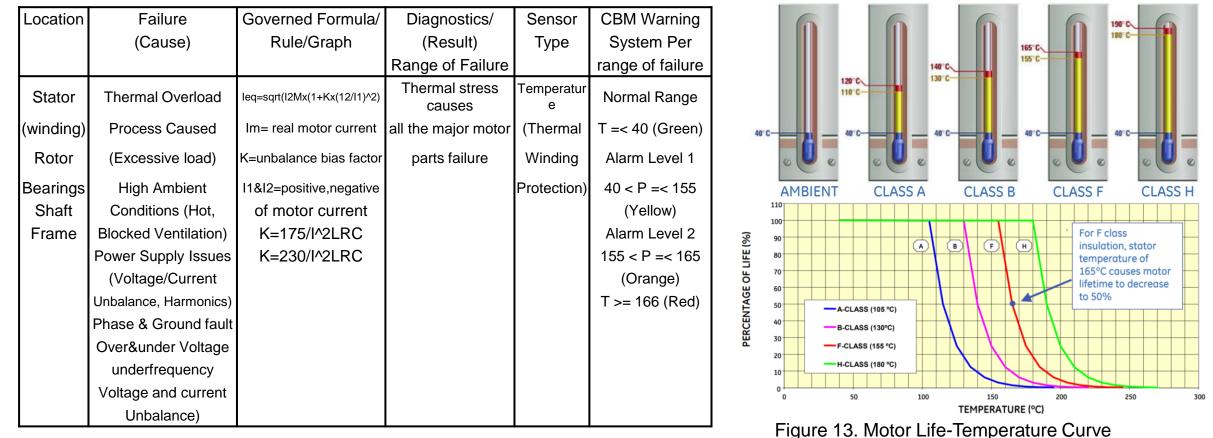


Table 7. Parameter of the Thermo sensor (TS)

Source: SPEED CONTROL OF PMBLDC DRIVE WITH GATE CONTROL METHOD... https://www.researchgate.net/publication/50366358_SPEED_CONT ROL_OF_PMBLDC_DRIVE_WITH_GATE_CONTROL_METHOD_USING_CON VENTIONAL_AND_FUZZY_CONTROLLER.

7. Implementation Details: (3) Thermo Sensor

- (3) Thermo sensor (TS): is used for detecting abnormal behavior due to various stresses in stator area.
- Table 7 shows the analysis for CBM-

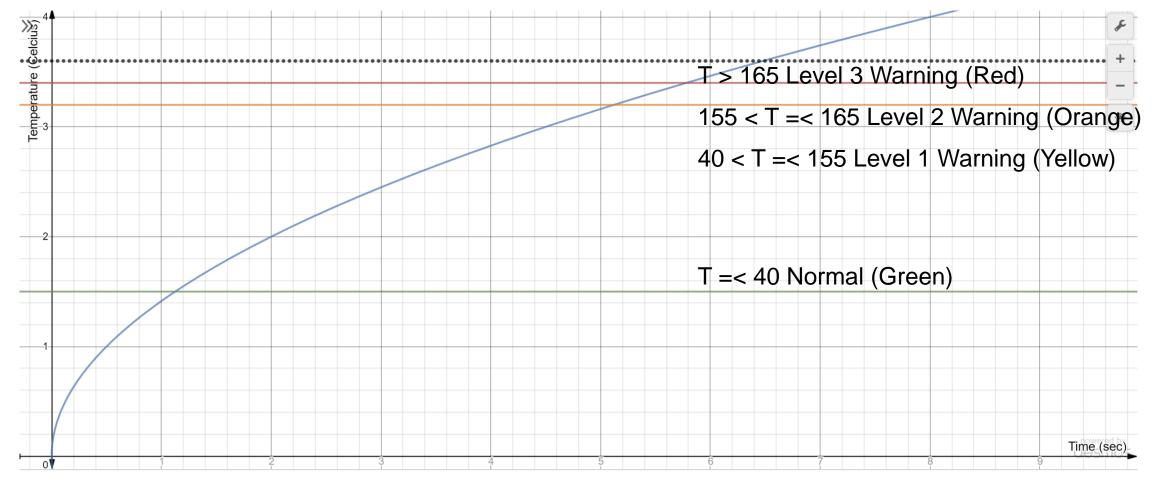
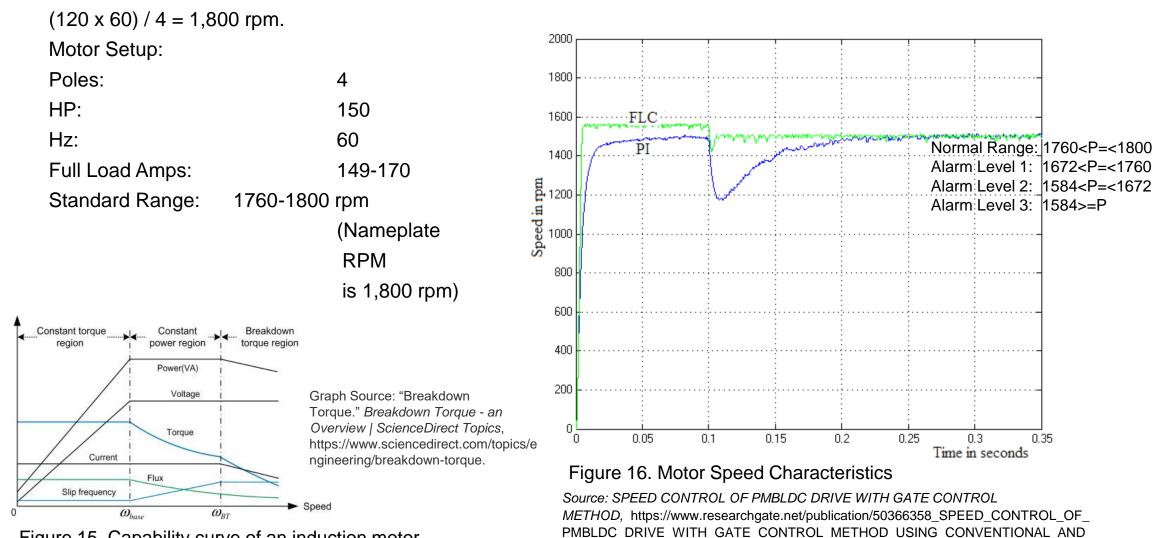


Figure 14. Parameter of the Thermo sensor

7. Implementation Details: (4) Proximity Sensor

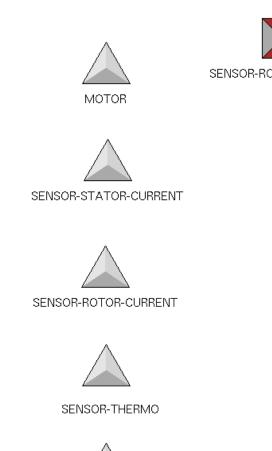

- <u>(4) Proximity Sensor (PS)</u>: is used for detecting abnormal behavior due to various stresses in motor area
- Table 8 shows the analysis for CBM

Location	Electrical Failure	Governed Formula/	Diagnostics/	Sensor	CBM Warning
	(Cause)	Rule/Graph	(Result)	Туре	System Per
			Range of Failure		range of failure
Stator	High resistance causes	M>=(3xSn) for non-	When the mvoltage	Proximity	Normal Range
(winding)	increased losses and reduced	embeddable sensors	remains same,		1760 < P =< 1800
Rotor	efficiency during normal	M= NxdxpixT+(3xSn)/	an increase in the		Alarm Level 1
Bearings	operation.	60,000	load (torque)		1672 < P =< 1760
Shaft	Reasons for slower than	D= Diameter of proximity sensor	on the motor results		Alarm Level 2
Frame	rated motor speed	M=Tooth/gap width (mm)	in a decrease in speed.		1584 <p 1672<="" =<="" td=""></p>
	Reduced cooling capacity	d=Diameter of disc (mm)			Alarm Level 3
	Reduced power efficiency	H= Tooth depth:			1584 >= P
	Heat stress	Axial mounting H>=D			
		Radial mounting 2xSn			
		N= Max. rotational speed or object			
		T= Minimum sensor switching period			
		(1/max.sensor switching frequency)			
		in millisecons [ms]			
		B= thickness of disc			
		Sn/2= Recom. mounting distance			

Table 8. Parameter of the Proximity sensor

7. Implementation Details: (4) Proximity Sensor

(4) Proximity Sensor (PS): used for detecting abnormal changes of speed. We can use the formula for the Speed in (rpm) = (120) x Frequency) / No. of Poles. The maximum speed for the PS for 4-pole AC motor is 1,800 rpm.



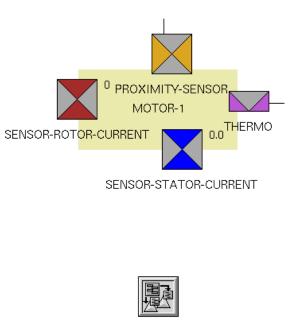

FUZZY CONTROLLER

Figure 15. Capability curve of an induction motor

8. G2/NPAS Coding

 Simulation layout for the sensors for the Electrical Systems of small motor-1

MOTOR-CBM-DEFINITIONS

animate sensor-stator-current-master

SENSOR-STATOR-CURRENT::ANIMATE-ICON

ANIMATE-ICON

SENSOR-ROTOR-CURRENT::ANIMATE-ICON

SENSOR-THERMO::ANIMATE-ICON



SENSOR-PROXIMITY::ANIMATE-ICON

SENSOR-PROXIMITY

Figure 17. SCS, RVS, TS and PS sensors to the Small Motor-1

8. G2/NPAS Coding for Simulation

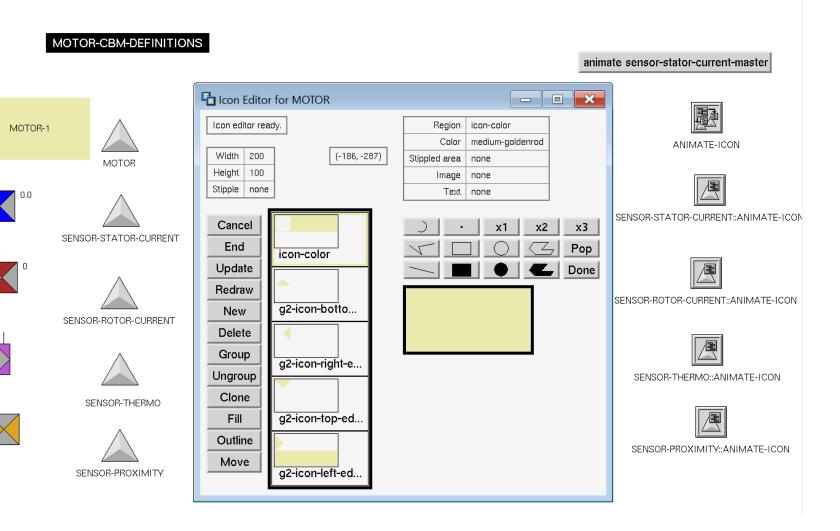


Figure 18. Motor-1 System Layout for the Simulation

8. G2/NPAS Coding: (1) Stator Current Analysis

Notes	ОК							
Authors	kwoo1 (12 Nov 2019-8:40 p.m.)							
Change log	0 entries		MOTOR-CBM-DEFINITION	s				
Item configuration	none	-		10				
Class name	sensor-stator-current						anima	te sensor-stator-current-master
Direct superior classes	object							
Class specific attributes	address is a symbol, initially is g2; sensor-stator-current is a symbol, initially is s; number-of-sensor-stator-current is an integer, initially is 0; sensor-stator-current-data is a float, initially is 0.0; limit is a float, initially is 185.0	MOTOR-1	MOTOR	Con Edito	r for SENSOR-STATOR-CU ady(297, 278)	JRRENT Color Region icon-color Color black Stippled area none	×	ANIMATE-ICON
Instance configuration	none			Height 50		Image none		
Change	none	0.0	Δ.	Stipple none	!	Text none		
Instantiate	yes					· · · · · · · · · · · · · · · · · · ·		المسطى SENSOR-STATOR-CURRENT::ANIMATE-ICON
Include in menus	yes	SSC		Cancel) · x1 x2	x3	SENSORSTRIOR-CONNENTANIMATE-ICON
Class inheritance path	sensor-stator-current, object, item	550	SENSOR-STATOR-CURRENT	End				
Inherited attributes	none				icon-color		Pop	
Initializable system attributes	attribute-displays, stubs		\wedge	Update Redraw			Done	
	attribute-displays: sensor-stator-current-data at standard position	SRC	SENSOR-ROTOR-CURRENT	New	g2-icon-botto			SENSOR-ROTOR-CURRENT::ANIMATE-ICON
Icon description	<pre>width 50; height 50; g2-icon-left-edge = gray, g2-icon-top-edge = blue, g2-icon-right-edge = gray, g2-icon- bottom-edge = blue, icon-color = black; g2-icon-left-edge: filled polygon (0, 0) (25, 25) (0, 50); outline (0, 0) (0, 25) (50, 25) (50, 0); g2-icon-top-edge: filled polygon (25, 25) (0, 0) (50, 50); g2-icon-right-edge: filled polygon (0, 50, (25, 25) (50, 50); g2-icon-bottom-edge: filled polygon (0, 50) (25, 25) (50, 50); icon-color: outline (0, 0) (0, 50) (50, 50) (50, 0); lines (0, 50) (50, 0); lines (0, 0) (50, 50)</pre>	ST SP	SENSOR-THERMO	Delete Group Ungroup Clone Fill Outline Move	g2-icon-right-e g2-icon-top-ed g2-icon-left-ed			SENSOR-THERMO::ANIMATE-ICON

Figure 19. Proposed Stator-Current sensor System

8. G2/NPAS Coding: (2) Rotor Current Analysis

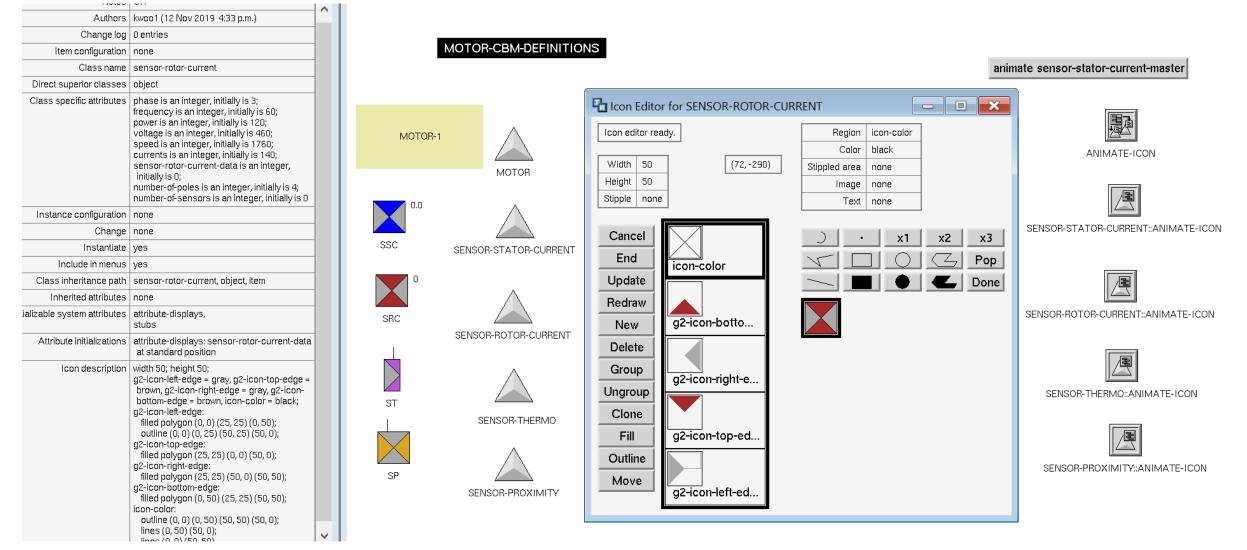
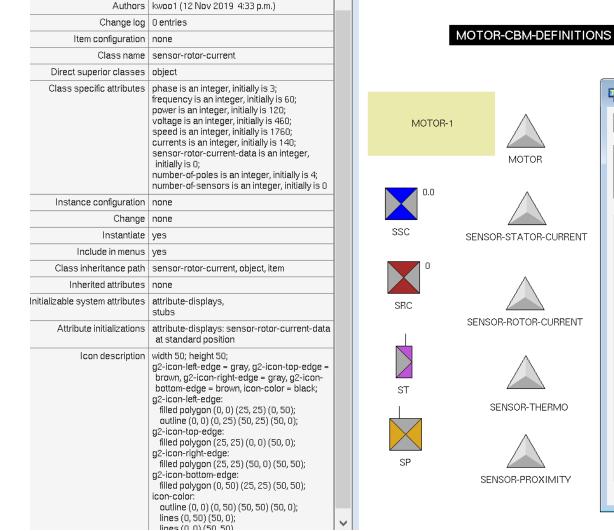



Figure 20. Proposed Rotor-Current sensor System

8. G2/NPAS Coding: (3) Thermo Sensor

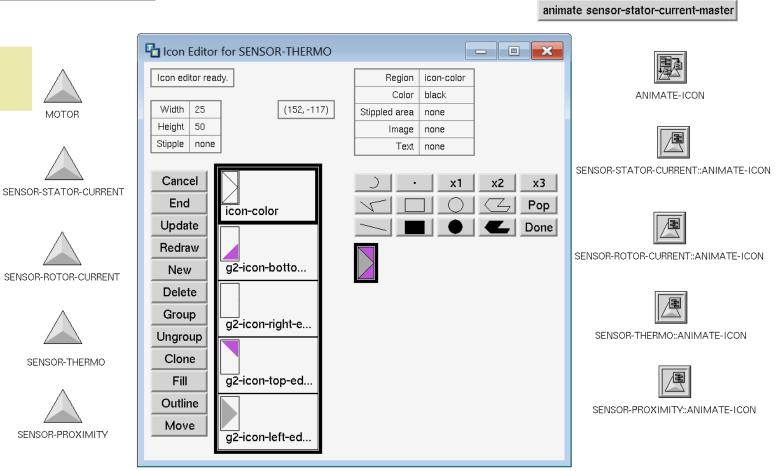


Figure 21. Proposed Thermo sensor System

8. G2/NPAS Coding: (4) Proximity Sensor Analysis

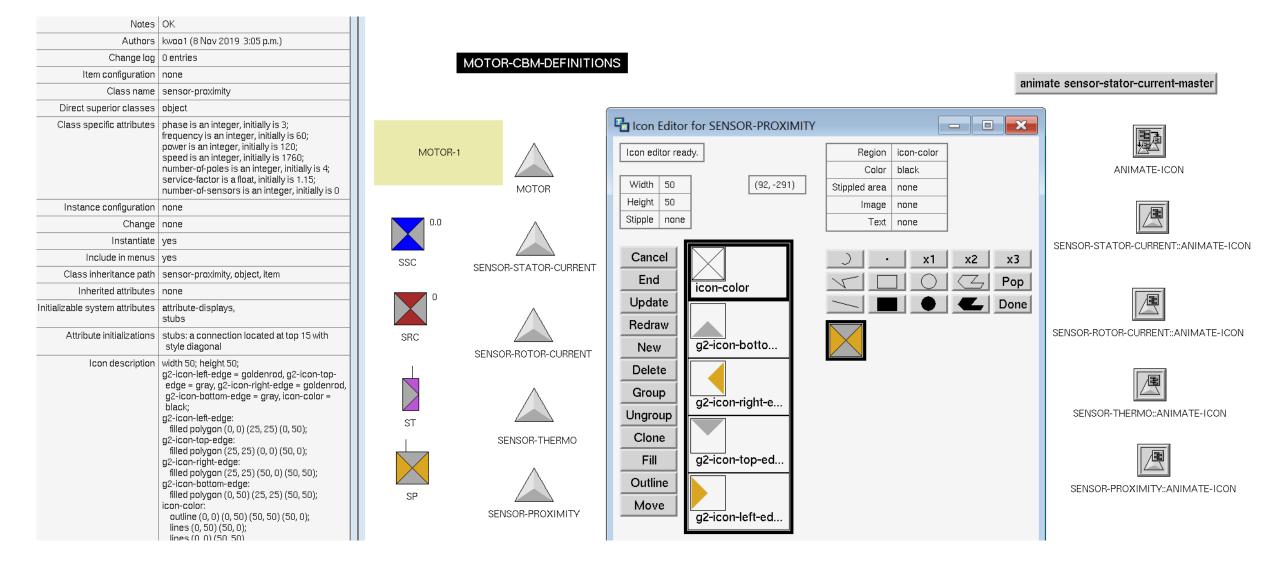


Figure 22. Proposed Proximity sensor System

8. G2/NPAS Coding: Simulation of the Nominal Stator Current

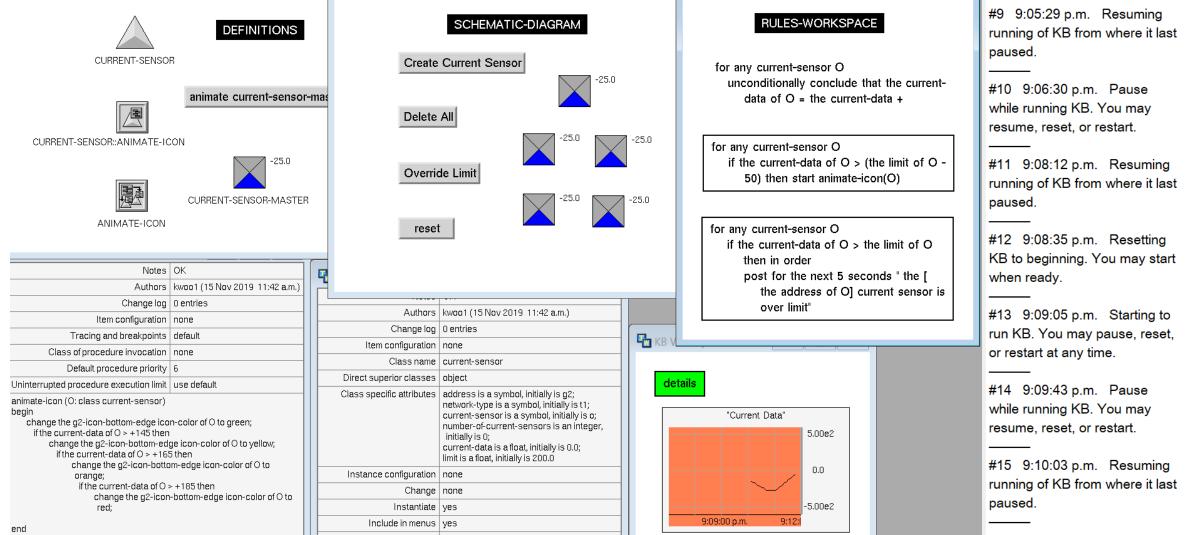


Figure 23. Simulation of the Stator-Current sensor in Normal Stage at Motor-1

8. G2/NPAS Coding: Simulation of the Stator Current at Alarm-1

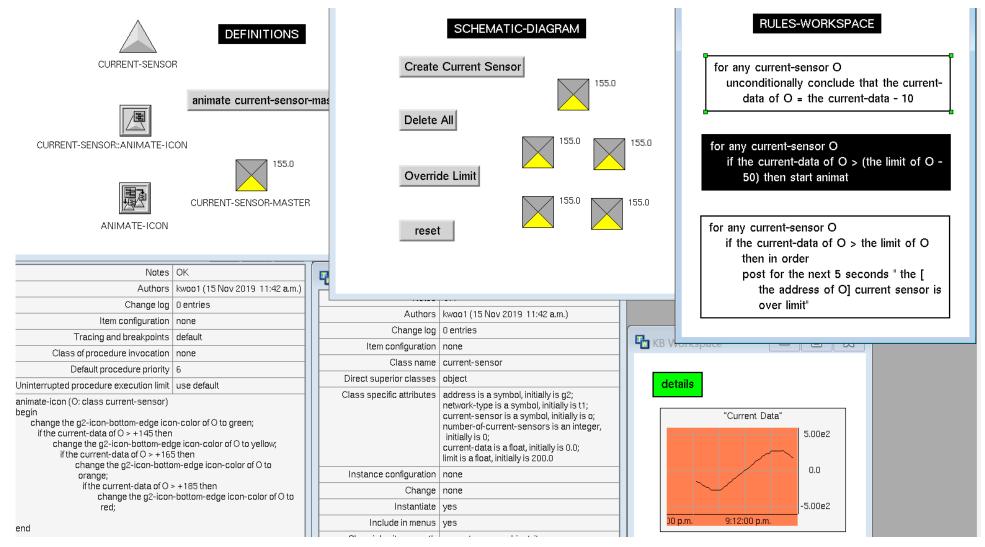


Figure 24. Simulation of the Stator-Current sensor in Alarm Level-1 Stage at Motor-1

8. G2/NPAS Coding: Simulation of the Stator Current at Alarm-2

CURRENT-SENSOR animate current-sensor-	Create Current Sensor 175.0 Delete All	RULES-WORKSPACE	#9 9:05:29 p.m. Resuming running of KB from where it last paused. #10 9:06:30 p.m. Pause while running KB. You may resume, reset, or restart.	
CURRENT-SENSOR::ANIMATE-ICON 175.0 CURRENT-SENSOR-MASTER	Override Limit	175.0 for any current-sensor O if the current-data of O > (the limit of O - 50) then start animate-icon(O)	#11 9:08:12 p.m. Resuming running of KB from where it last paused.	
ANIMATE-ICON Notes OK Authors kwoo1 (15 Nov 2019 11:42 a.m.)	reset	for any current-sensor O if the current-data of O > the limit of O then in order post for the next 5 seconds " the [the address of O] current sensor is	#12 9:08:35 p.m. Resetting KB to beginning. You may start when ready.	
Change log 0 entries Item configuration none Tracing and breakpoints default	Authors kwoo1 (15 Nov 2019 11:42 a.m.) Change log 0 entries	over limit"	#13 9:09:05 p.m. Starting to run KB. You may pause, reset,	
Class of procedure invocation none Default procedure priority 6	Item configuration none Class name current-sensor		or restart at any time.	
Uninterrupted procedure execution limit use default	Direct superior classes object	details		
animate-icon (O: class current-sensor) begin change the g2-icon-bottom-edge icon-color of O to green; if the current-data of O > +145 then change the g2-icon-bottom-edge icon-color of O to yellow; if the current-data of O > +165 then change the g2-icon-bottom-edge icon-color of O to	Class specific attributes address is a symbol, initially is g2; network-type is a symbol, initially is t1; current-sensor is a symbol, initially is o; number-of-current-sensors is an integer, initially is 0; current-data is a float, initially is 0.0; limit is a float, initially is 200.0	"Current Data" 5.00e2	#14 9:09:43 p.m. Pause while running KB. You may resume, reset, or restart. #15 9:10:03 p.m. Resuming	
orange; if the current-data of O > +185 then	Instance configuration none	0.0	running of KB from where it last	
change the g2-icon-bottom-edge icon-color of O to	Change none	-5.00e2	paused.	
red;	Include in menus ves	9:09:00 p.m. 9:12:00 p.m.		
end				

Figure 25. Simulation of the Stator-Current sensor in Alarm Level-2 Stage at Motor-1

8. G2/NPAS Coding: Simulation of the Stator Current at Alarm-3

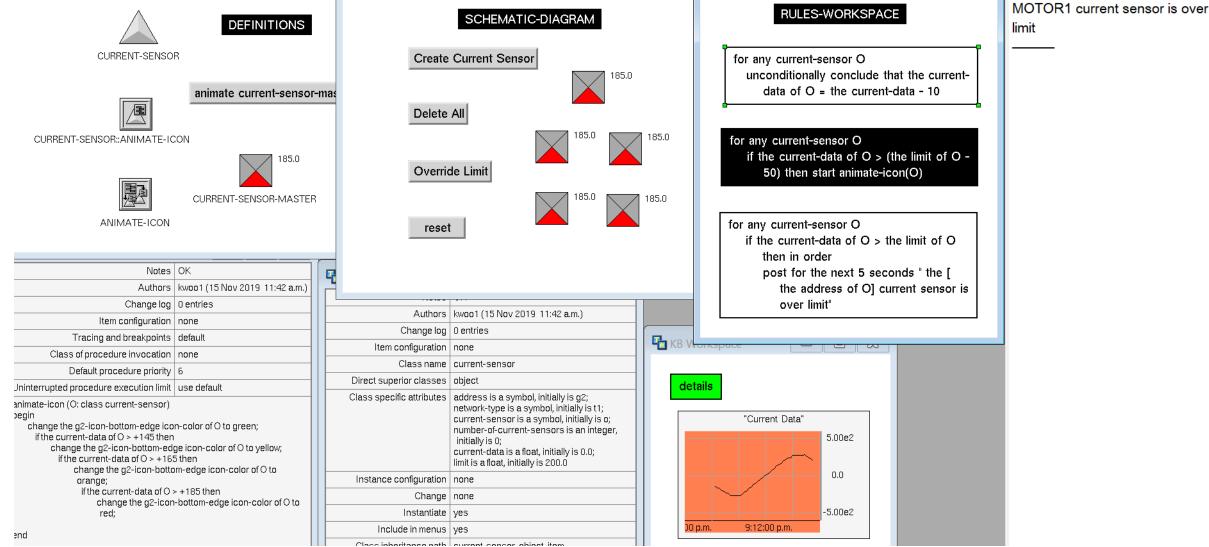


Figure 26. Simulation of the Stator-Current sensor in Alarm Level-3 Stage at Motor-1

8. G2/NPAS Coding: Simulation of the Stator Current Back at Nominal State

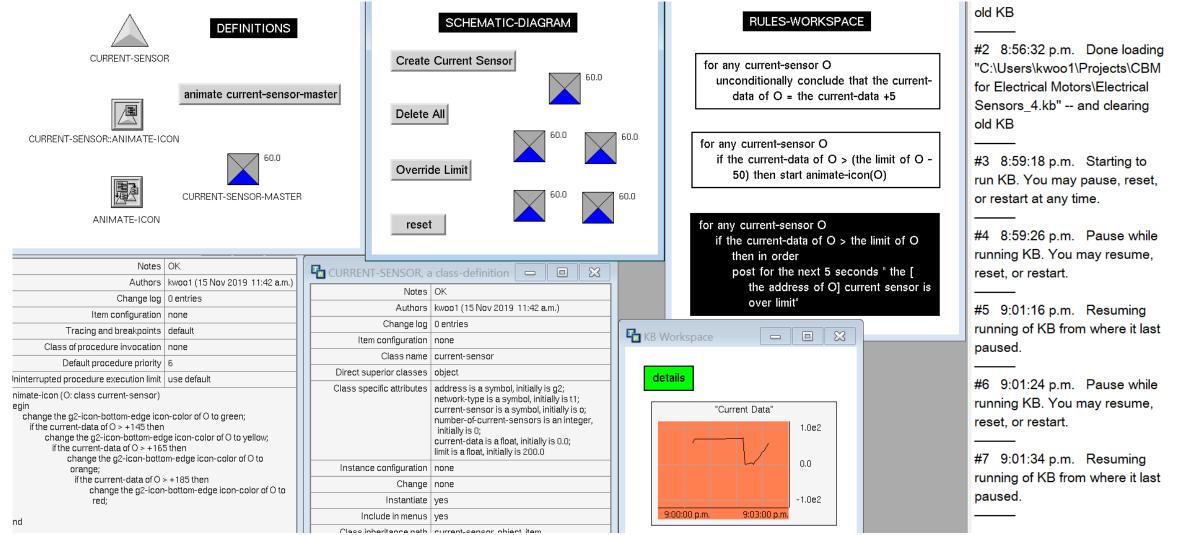


Figure 27. Simulation of the Stator-Current sensor back to Normal Stage at Motor-1

9. Conclusion

- This internship study looked at assessing visual-indicators, sensing needs for condition assessment, as well as an approach for implementation of CBM of electrical motors
- This work also provided the training to initiate preliminary coding in G2/NPAS, and the foundation for future guidance for further research and development of CBM implementation in INSIGHT with G2/NPAS

10. Acknowledgement

- I cannot express enough thanks to my mentor Dr. Fernando Figueroa and co-mentor Dr. Lauren Underwood for their continued support and encouragement-
- I offer my sincere appreciation for the learning opportunities provided by NASA Stennis Space Center Office of STEM Engagement.
- Also, I thank my fellow interns, Autonomous Systems Laboratory Engineers, Nasa Stennis friends and families for their unconditional warm hospitality.