Monthly Difference in the Boreal Winter El Nino Precipitation Response Over North America:
Insights into Why January Is More Difficult to Predict than February
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Introduction Is the GPH/SLP anomaly over the west NA a response to the tropical ENSO What significantly drives the Jan. climatology over the North Pacific/America?
The boreal winter precipitation during El Nifio are not constant but vary during the course of the season heating? Answer by stationary wave model (SWM) Exp. Focus on the observed.stationary wave propagat.ing to the Pacific. Examine the response of the SWM to the
(left). 1-month lead forecast shows the highest (lowest) correlation in February (January) based on the observed January heating anomalies (January minus the DJFM mean)
North American Multi-Model Ensemble (right). The SWM is the dry dynamical core of an AGCM and forced by an estimate of the P 7O 1. Diabatic source in three tropical regions (Indian Ocean: 60°-120°E, 15°S-15°N, W. Pacific: 120°-180°E,
Observed precipitation (GPCP) anomalies over North Pattern correlations (Chen et al. 2017, J. Climate) SlElonitle heatlng/.coo!lng. _ _ F 1? 5-1.5 N, and E Pacific: 180 E.—120 W, 15°S-15 .N) . o
America (EI Nifio composite) (observation vs. NMME seasonal prediction models The heating/cooling is estimated either from MERRA-2, M2AMIP or FCST runs. e % ) 2. Diabatic source in the extratropical region near Tibet (70°-°100E, 25°-40°N).
GPCP Precip anomaly (EI Nino composite) domain: 170°-60°W, 10°~70°N) ' The atmospheric basic state in the SWM is the 3-D climatological mean taken it M, The basic state employed in the SWM is the DJFM mean computed from MERRA-2.
m_") S 3 > from either MERRA-2, the M2AMIP, or the FCST runs. For simplicity we focus on "x\ B,
_— - it L the results from the M2AMIP for the SWM response to the model-estimated oL et T Y We expect this Exp. can give us a clue as to the model deficiencies responsible for the January biases.
< o § o am s R heat anomalies (FCTS results are very similar to the results from the M2AMIP). "
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Why does the model imperfectly represent the precip. over the west NA? S e 4 -3 2 -1 1 2 3 4 & s N (d) difference field: Weakening of the NA west
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1. The Jan. predictions of precipitation over North America during El Nino are significantly less skillful.
2. The model produces circulation anomalies that lie off the coast during both January and February (only true
for February in the obs.).

b) M2AMIP, eddyH & SLP, Jan

MERRA-2
Jan: Large (+) anomaly along the NA west coast with (-)

2 5 10 20 40 80 anomaly to the west. 3. The model problem with the westward shift in the Jan. El Nifo response over the NE Pacific is the result of

M2AMIP s,
leesifen 6f  dhe  Freclelk 90N> Map . conuany. . f‘\’_ e R L Lel:;): ngaker Ll e Lany slien T i west ceest gt biases in the Jan. climatological state and stationary waves, rather than errors in the Jan. tropical Pacific heating
T o ' ' . Pacific. :
f) FCST, eddyH & SLP, Feb produced (-) anomalies is off anomalies.
- - the west coast in both 4. Relatively poor simulation of the observed Jan. climatology, characterized by a strengthened North Pacific jet
months.  similar to the M2AMIP . and enhanced ridge over western NA, can be traced back to biases in the Jan. heating over the Tibet region.
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