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SHAPE VALIDATION AND RF PERFORMANCE OF INFLATABLE ANTENNAS 

BRYAN WELCH 

ABSTRACT 

Inflatable aperture antennas are an emerging technology that is being investigated 

for potential use in science and exploration missions.  In particular, for missions to Mars 

and beyond, large deployable aperture antennas can provide the antenna gain required for 

high data rate communications, where the necessary antenna diameter exceeds the 

available volume of typical launch vehicle platforms.  As inflatable aperture antennas 

have not been proven fully qualified for space missions, the author’s Master’s Thesis 

assessed the Ruze equation in characterizing this antenna technology.  Inflatable aperture 

antennas do not follow a parabolic shape, and so the Ruze equation is not applicable due 

to the macroscopic shape errors of this technology.  Therefore, geometric evaluations of 

the surface profile cannot simply correlate antenna gain degradation with the root-mean-

square shape error with a parabolic surface.  

Consequently, the focus of this work was to derive an accurate mathematical 

model of an inflatable aperture antenna in order to characterize its Radio Frequency (RF) 

performance.  Calculus of Variations methodologies were used to derive the surface 

profile shape of the inflatable aperture antenna.  Physical Optics techniques were used to 

generate the antenna pattern profile.  Validation testing of the predicted inflatable antenna 

shape model was performed through use of Laser Radar metrology measurements on an 

inflatable test article.  Assessments of the RF performance of the inflatable aperture 

antenna, compared with nominally shaped solid paraboloidal antennas, were obtained 

through simulations of both technologies using a common diameter, depth, and arc 
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length.  Assessments of the RF performance of the inflatable aperture antenna was also 

performed against itself for changes in distance of the antenna feed location in the axial 

direction.  Whereas the Ruze equation is limited to assessing gain reduction, this effort 

will also assess beam spreading and first side lobe angle and magnitude.  The ability to 

characterize the RF response of this antenna will provide for an improved understanding 

of this technology.  The accurate representation of the shape of this type of antenna 

technology will help to identify the most appropriate ways in which this technology could 

be utilized in planning future communication architectures for NASA missions to Mars 

and beyond. 

  



vii 

TABLE OF CONTENTS 

Page 

ABSTRACT ......................................................................................................................v 

LIST OF TABLES ............................................................................................................x 

LIST OF FIGURES ........................................................................................................ xi 

CHAPTER 

I. INTRODUCTION ................................................................................................1 

1.1 Background on Antenna Surface Theory ......................................2 

1.2 Application of Antenna Surface Theory to Inflatable Aperture 

 Antenna  ........................................................................................5 

1.3 History of Inflatable Aperture Antenna Technologies ..................8 

1.4 Dissertation Motivation and Contributions .................................16 

1.5 Dissertation Outline ....................................................................18 

II. INFLATABLE APERTURE ANTENNA SURFACE SHAPE PROFILE 

DERIVATION  ...................................................................................................20 

2.1 Background and Derivation of Mylar Balloon Surface Shape 

 Model   ........................................................................................23 

2.2 Derivation of Inflatable Aperture Antenna Surface Profile Shape 

 Model   ........................................................................................30 

2.3 Inflatable Antenna Edge Slope Derivation .................................33 

2.4 Inflatable Aperture Antenna Surface Profile Derivation ............45 

2.5 Inflatable Aperture Antenna Surface Profile Validation ............50 

2.6 Summary .....................................................................................72 



viii 

III. INFLATABLE APERTURE ANTENNA RF PERFORMANCE MODEL 

DERIVATION ....................................................................................................74 

3.1 Background of Physical Optics Model .......................................75 

3.2 Derivation of RF Geometrical and Electrical Parameters...........79 

3.3 Derivation of Antenna Source Geometry and Currents  .............82 

3.4 Derivation of Antenna Surface Geometry ..................................86 

3.5 Derivation of Antenna Aperture Incident Equivalent Currents ..99 

3.6 Derivation of Antenna Aperture Radiation Patterns .................102 

3.7 Modification of Physical Optics Modeling for Inflatable Aperture 

 Antenna  ....................................................................................103 

3.8 Summary ...................................................................................110 

IV. RF PERFORMANCE MODEL COMPARISON OF INFLATABLE APERTURE 

ANTENNA WITH SOLID PARABOLIC APERTURE ANTENNA  ............112 

4.1 Performance Assessment of Solid Parabolic Reflector Antenna 

 Physical Optics Modeling .........................................................113 

4.2 Metrics of RF Performance Comparisons.................................116 

4.3 Methodologies of RF Performance Model Comparisons .........119 

4.4 RF Performance Assessment of Inflatable Aperture Antenna ..122 

4.5 RF Performance Comparison Using Common Diameter .........149 

4.6 RF Performance Comparison Using Common Depth ..............159 

4.7 RF Performance Comparison Using Common Arc Length  .....169 

4.8 Summary ...................................................................................179 

V. CONCLUSIONS...............................................................................................181 



ix 

  5.1 Contributions.............................................................................181 

  5.2 Future Work  .............................................................................183 

BIBLIOGRAPHY .........................................................................................................184 

  



x 

LIST OF TABLES 

Table              Page 

I. RF & Ruze Equation Performance Comparisons .................................................8 

II. Correlation Model Performance of Inflation Ratio versus Edge Slope Angle ...41 

III. Correlation of Off-Vertex Depth Performance ...................................................51 

IV. Root-Mean-Square of Off-Vertex Depth Performance .......................................51 

 

 

  



xi 

LIST OF FIGURES 

Figure              Page 

1. Ideal & Non-Ideal Paraboloidal Antenna Surface Reflections .............................3 

2. 0.3 Meter Antenna in GRC Planar Near-Field Antenna Test Facility ..................6 

3. Raw Photogrammetry Data, Ideal Paraboloid Edge View Profile ........................7 

4. Inflatable Antenna Experiment .............................................................................9 

5. 0.3 Meter Offset Inflatable Antenna ...................................................................10 

6. 4 x 6 Meter Offset Inflatable Antenna ................................................................11 

7. 3 Meter Inflatable Reflector Antenna with Canopy ............................................12 

8. 3 Meter Reflector Antenna Displacement Contour Map ....................................13 

9. 3 Meter Inflatable Reflector Antenna Cross-Section Error ................................14 

10. Surface Profile Shapes:  Inflatable Antenna and Inflated Mylar Balloon ..........21 

11. Surface Profile Slopes:  Inflatable Antenna and Inflated Mylar Balloon ...........22 

12. Parameterized Mylar Balloon Profile .................................................................30 

13. Inflation Ratio Test Structure ..............................................................................34 

14. Pre-Mounted Inflatable Test Article ...................................................................35 

15. Post-Mounted Inflatable Test Article..................................................................36 

16. Test Article at Diameter of 34.375 Inches ..........................................................37 

17. Test Article at Diameter of 32.0 Inches ..............................................................38 

18. Test Article at Diameter of 29.75 Inches ............................................................38 

19. Test Article at Diameter of 26.75 Inches ............................................................39 

20. Edge and Surface Data with Linear Fits .............................................................40 

21. Square Root Curve Fit Model with Edge Slope Angle Measurements ..............42 



xii 

22. Sine Curve Fit Model with Edge Slope Angle Measurements ...........................42 

23. Arc-Tangent Root Curve Fit Model with Edge Slope Angle Measurements .....43 

24. Cubic Root Curve Fit Model with Edge Slope Angle Measurements ................43 

25. Polynomial Root Curve Fit Model with Edge Slope Angle Measurements .......44 

26. Surface Shape Validation Data Comparison at Inflation Ratio of 0.01610 ........52 

27. Surface Shape Validation Data Comparison at Inflation Ratio of 0.02172 ........52 

28. Surface Shape Validation Data Comparison at Inflation Ratio of 0.05269 ........53 

29. Surface Shape Validation Data Comparison at Inflation Ratio of 0.07892 ........53 

30. Surface Shape Validation Data Comparison at Inflation Ratio of 0.10117 ........54 

31. Surface Shape Validation Data Comparison at Inflation Ratio of 0.13056 ........54 

32. Surface Shape Validation Data Comparison at Inflation Ratio of 0.16104 ........55 

33. Surface Shape Validation Data Comparison at Inflation Ratio of 0.18619 ........55 

34. Surface Shape Validation Data Comparison at Inflation Ratio of 0.21346 ........56 

35. Surface Shape Validation Data Comparison at Inflation Ratio of 0.23770 ........56 

36. Surface Shape Validation Data Comparison at Inflation Ratio of 0.26773 ........57 

37. Surface Shape Validation Data Comparison at Inflation Ratio of 0.30339 ........57 

38. Surface Shape Validation Data Comparison at Inflation Ratio of 0.33085 ........58 

39. Surface Shape Validation Data Comparison at Inflation Ratio of 0.36306 ........58 

40. Surface Shape Validation Data Comparison at Inflation Ratio of 0.39141 ........59 

41. Surface Shape Validation Data Comparison at Inflation Ratio of 0.42359 ........59 

42. Surface Shape Validation Data Comparison at Inflation Ratio of 0.44881 ........60 

43. Surface Shape Validation Data Comparison at Inflation Ratio of 0.47824 ........60 

44. Surface Shape Validation Data Comparison at Inflation Ratio of 0.51188 ........61 



xiii 

45. Surface Shape Validation Data Comparison at Inflation Ratio of 0.56186 ........61 

46. Surface Shape Validation Data Comparison at Inflation Ratio of 0.59101 ........62 

47. Surface Shape Validation Data Comparison at Inflation Ratio of 0.61984 ........62 

48. Surface Shape Validation Data Comparison at Inflation Ratio of 0.64521 ........63 

49. Surface Shape Validation Data Comparison at Inflation Ratio of 0.67341 ........63 

50. Surface Shape Validation Data Comparison at Inflation Ratio of 0.69722 ........64 

51. Surface Shape Validation Data Comparison at Inflation Ratio of 0.72235 ........64 

52. Surface Shape Validation Data Comparison at Inflation Ratio of 0.74501 ........65 

53. Surface Shape Validation Data Comparison at Inflation Ratio of 0.78822 ........65 

54. Surface Shape Validation Data Comparison at Inflation Ratio of 0.81090 ........66 

55. Surface Shape Validation Data Comparison at Inflation Ratio of 0.82766 ........66 

56. Surface Shape Validation Data Comparison at Inflation Ratio of 0.85193 ........67 

57. Surface Shape Validation Data Comparison at Inflation Ratio of 0.88366 ........67 

58. Depth to Diameter Shape Validation Data Comparison .....................................68 

59. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.09.................69 

60. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.19.................69 

61. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.29.................70 

62. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.39.................70 

63. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.49.................70 

64. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.59.................71 

65. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.69.................71 

66. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.79.................71 

67. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.89.................72 



xiv 

68. Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.99.................72 

69. Physical Optics Calculation Workflow ...............................................................79 

70. Potential X- & Y-Axis Reflector Grid Points .....................................................87 

71. Sampled X- & Y-Axis Reflector Grid Points .....................................................88 

72. Sampled Reflector Grid Points ...........................................................................89 

73. Sampled Reflector Grid Point Theta Angles ......................................................90 

74. Sampled Reflector Grid Point Phi Angles ..........................................................90 

75. Sampled Reflector Grid Points with Normal Vectors .........................................92 

76. Sampled Reflector Grid Point Surface Area .......................................................98 

77. Parabolic Reflector Far-Field Patterns Against Sample Spacing .....................114 

78. Main-Lobe Parabolic Reflector Far-Field Patterns Against Sample Spacing ..115 

79. Side-Lobe Parabolic Reflector Far-Field Patterns Against Sample Spacing ....115 

80. Metrics for RF Performance Model Comparisons ............................................118 

81. RF Performance Model Comparisons:  Constant Diameter .............................120 

82. RF Performance Model Comparisons:  Constant Depth ...................................120 

83. RF Performance Model Comparisons:  Constant Arc Length ..........................121 

84. Utilized Focal Length to Diameter Curve as a Function of Inflation Ratio ......123 

85. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.05 ..........124 

86. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.15 ..........124 

87. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.25 ..........125 

88. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.35 ..........125 

89. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.45 ..........125 

90. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.55 ..........126 



xv 

91. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.65 ..........126 

92. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.75 ..........126 

93. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.85 ..........127 

94. Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.95 ..........127 

95. Inflatable Aperture Antenna Performance:  Diameter = 20 Wavelengths ........129 

96. Inflatable Aperture Antenna Performance:  Diameter = 30 Wavelengths ........130 

97. Inflatable Aperture Antenna Performance:  Diameter = 40 Wavelengths ........131 

98. Inflatable Aperture Antenna Performance:  Diameter = 50 Wavelengths ........132 

99. Inflatable Aperture Antenna Performance:  Diameter = 60 Wavelengths ........133 

100. Inflatable Aperture Antenna Performance:  Diameter = 70 Wavelengths ........134 

101. Inflatable Aperture Antenna Performance:  Diameter = 80 Wavelengths ........135 

102. Inflatable Aperture Antenna Performance:  Diameter = 90 Wavelengths ........136 

103. Inflatable Aperture Antenna Performance:  Diameter = 100 Wavelengths ......137 

104. Focal Length Variation Comparisons:  Diameter = 20 Wavelengths ...............139 

105. Focal Length Variation Comparisons:  Diameter = 30 Wavelengths ...............140 

106. Focal Length Variation Comparisons:  Diameter = 40 Wavelengths ...............141 

107. Focal Length Variation Comparisons:  Diameter = 50 Wavelengths ...............142 

108. Focal Length Variation Comparisons:  Diameter = 60 Wavelengths ...............143 

109. Focal Length Variation Comparisons:  Diameter = 70 Wavelengths ...............144 

110. Focal Length Variation Comparisons:  Diameter = 80 Wavelengths ...............145 

111. Focal Length Variation Comparisons:  Diameter = 90 Wavelengths ...............146 

112. Focal Length Variation Comparisons:  Diameter = 100 Wavelengths .............147 

113. Specific Focal Length Variation Comparison at 30 Wavelengths ....................149 



xvi 

114. Common Diameter Comparisons:  Diameter = 20 Wavelengths .....................150 

115. Common Diameter Comparisons:  Diameter = 30 Wavelengths .....................151 

116. Common Diameter Comparisons:  Diameter = 40 Wavelengths .....................152 

117. Common Diameter Comparisons:  Diameter = 50 Wavelengths .....................153 

118. Common Diameter Comparisons:  Diameter = 60 Wavelengths .....................154 

119. Common Diameter Comparisons:  Diameter = 70 Wavelengths .....................155 

120. Common Diameter Comparisons:  Diameter = 80 Wavelengths .....................156 

121. Common Diameter Comparisons:  Diameter = 90 Wavelengths .....................157 

122. Common Diameter Comparisons:  Diameter = 100 Wavelengths ...................158 

123. Common Depth Comparisons:  Diameter = 20 Wavelengths ...........................160 

124. Common Depth Comparisons:  Diameter = 30 Wavelengths ...........................161 

125. Common Depth Comparisons:  Diameter = 40 Wavelengths ...........................162 

126. Common Depth Comparisons:  Diameter = 50 Wavelengths ...........................163 

127. Common Depth Comparisons:  Diameter = 60 Wavelengths ...........................164 

128. Common Depth Comparisons:  Diameter = 70 Wavelengths ...........................165 

129. Common Depth Comparisons:  Diameter = 80 Wavelengths ...........................166 

130. Common Depth Comparisons:  Diameter = 90 Wavelengths ...........................167 

131. Common Depth Comparisons:  Diameter = 100 Wavelengths .........................168 

132. Common Arc Length Comparisons:  Diameter = 20 Wavelengths ..................170 

133. Common Arc Length Comparisons:  Diameter = 30 Wavelengths ..................171 

134. Common Arc Length Comparisons:  Diameter = 40 Wavelengths ..................172 

135. Common Arc Length Comparisons:  Diameter = 50 Wavelengths ..................173 

136. Common Arc Length Comparisons:  Diameter = 60 Wavelengths ..................174 



xvii 

137. Common Arc Length Comparisons:  Diameter = 70 Wavelengths ..................175 

138. Common Arc Length Comparisons:  Diameter = 80 Wavelengths ..................176 

139. Common Arc Length Comparisons:  Diameter = 90 Wavelengths ..................177 

140. Common Arc Length Comparisons:  Diameter = 100 Wavelengths ................178 

 

 

 

 



1 

 

 

 

 

 

 

CHAPTER I 

INTRODUCTION 

 

 

Inflatable aperture antennas are an emerging technology that National 

Aeronautics and Space Administration (NASA) is investigating for potential uses in 

science and exploration missions.  In particular for missions to Mars and beyond, large 

aperture antennas are of interest as they can provide the antenna gain required for high 

data rate communications.  In the Deep Space realm, the free space path loss becomes so 

large that the antenna diameter required to support the desired data rates exceeds the 

available volume of typical launch vehicle platforms required to launch the spacecraft to 

these locations [33, 39].  Inflatable aperture antennas also have advantages over solid 

parabolic reflector antennas in terms of reduced aerial density and stowage volume.  In 

comparison, inflatable aperture antennas also have advantages over mesh-deployable 

reflector antennas in terms of ease of construction and the lack of a tuning process 

associated with all mesh joints.  Inflatable aperture antennas can be manufactured on a 

pre-shaped mandrel through casting and curing polymer material and vapor depositing 

reflective silver flake coating [28], as opposed to wiring mesh reflector surfaces.  
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Inflatable aperture antennas also cannot suffer from the same type of deployment issues 

that precluded the use of the Galileo Spacecraft High Gain Antenna, which was a 

deployable mesh reflector in which three of eighteen stowed ribs did not deploy, due to 

additional stowage time due to the launch delay of the Galileo spacecraft due to the 

Challenger accident [18].  As inflatable aperture antennas have not been proven fully 

qualified for space missions, their performance must be characterized properly so that the 

behavior of the antennas is understood in advance. 

 

1.1 Background on Antenna Surface Theory 

 

Commonly, the surface errors that exist on an antenna are thought of as phase 

errors.  However, when there are surface errors, there can be a change in the direction 

that the reflected ray will travel, which can also change the phase of the ray when the ray 

reaches the aperture plane.  Snell’s Law states that the incident and reflection angles from 

the surface normal will be equal [2, 9, 10, 31, 32].  Surface errors will cause a change in 

the direction that the surface normal vector will be pointing, and therefore change the 

direction that the reflected ray will travel.  In perfect solid paraboloid antennas, the 

surface normal can be easily determined from the equation of the paraboloid and 

geometric optics states that rays originating from the feed of an antenna travel to the 

antenna surface and are reflected traveling parallel to the axial direction of the antenna 

[7].  All of the rays are thought of as being parallel when dealing with an ideal 

paraboloidal surface.  Once these rays reach the aperture plane, they would have all 

traveled the same distance and the aperture would be a plane of constant phase [4, 9, 10].   
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However, when the antenna no longer maintains the ideal paraboloidal shape, the 

surface normal vector direction will vary from the ideal surface normal vector.  If the 

errors in the antenna surface are such that the incident angle on the antenna surface is 

decreased from the ideal incident angle, the reflecting rays will be propagated in a 

direction that is non-parallel to the axial direction, and will have a smaller radial distance 

from the feed in the aperture plane.  Similarly, if the errors in the antenna surface are 

such that the incident angle on the antenna surface is increased from the ideal incident 

angle, the reflection rays will have a larger radial distance from the feed in the aperture 

plane, and will also induce a change in the distance that the reflected ray must propagate. 

Phase errors are also introduced because of this reflection angle error [5, 6, 11, 31, 32].  

An example of an ideal and non-ideal paraboloidal antenna surface reflection rays are 

illustrated in Figure 1.     

 

FIGURE 1:  Ideal & Non-Ideal Paraboloidal Antenna Surface Reflections 



4 

In Figure 1, the dashed line shows the ray that originates from the feed, at the 

focal point location, travels to the antenna surface.  The antenna surface is shown as the 

solid line, with the dotted line denotes the normal vector at the point of reflection on the 

antenna surface.  Finally, the dashed-dotted line illustrates the ray reflecting off of the 

antenna surface and traveling parallel to the axial direction, defined as the x-axis of the 

plot.  For the ideal surface, the reflected ray is parallel to the axial direction; for the non-

ideal surface, the reflected ray is no longer parallel to the axial direction. 

The Ruze equation attempts to characterize surface profile induced phase errors to 

determine the degradation of the directivity of the antenna based on the root-mean-square 

(RMS) surface error and the antenna operating frequency [34, 35].  The Ruze equation 

gain degradation formula is given by (1.1). 

𝐿𝑅 = e
−(

4𝜋𝜖

𝜆𝐴
)
2

          (1.1)  

In (1.1), the terms used are defined as follows: 

 𝐿𝑅 is the loss in directivity due to surface errors 

 𝜖 is the RMS surface error of the antenna 

 𝜆𝐴 is the wavelength of operation of the antenna 

The Ruze equation makes assumptions about the nature of the surface errors.  

These limitations are based on assumptions that were made during the derivation 

regarding the statistical estimates of the phase errors that are present for the antenna.  

Five distinct assumptions are noted by Ruze [34, 35]. 

1. The surface errors on the antenna are random in nature. 
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2. The surface errors are uniformly distributed over the aperture. 

3. The surface errors are distributed in fixed, circular correlation regions. 

4. The aperture of the antenna (Diameter D) is much larger compared to the 

diameter correlation region (c), cD 2  

5. The surface errors have a Gaussian spatial phase correlation. 

 

1.2 Application of Antenna Surface Theory to Inflatable Aperture Antenna 

 

In the author’s Master’s Thesis [37], it was proven through laboratory testing that 

the Ruze equation, which relates Root Mean Square (RMS) surface error to a predicted 

gain degradation [34], is not applicable to inflatable antennas, as the error profile does not 

correlate to the requirements for use of the Ruze equation.  Laboratory testing included 

Laser Radar metrology of an inflatable antenna surface under various pressurization 

levels, while concurrently performing Radio Frequency (RF) metrology in a Near-Field 

antenna facility.  Antenna pattern response was obtained and gain degradation was 

obtained, and compared with predicted gain degradation using the RMS surface error.  

For all pressurization levels tested, the Ruze equation overstated gain degradation.  The 

reason for the Ruze equation not being applicable to this antenna type is due to the 

surface profile error spatial distribution and profile type. 

Inflatable aperture antennas have more than random surface errors present on the 

antenna surface.  These errors create a non-paraboloidal shape at the edges of the 

inflatable antenna surface and a spherical aberration near the vertex [4, 19, 20].  This 
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causes many errors to be created near the edge of the antenna.  Other errors that can exist 

on an inflatable antenna include those caused from improper inflation of the antenna.  

The inflatable antenna could be over-inflated and cause a change in the ideal focal point 

of the paraboloid, or the inflatable antenna could be under-inflated and wrinkles could 

form on the antenna surface, creating additional surface errors.  All of these factors 

contribute to the inflatable aperture antenna not being able to utilize the Ruze equation 

methodology to estimate gain degradation. 

The 0.3m inflatable offset antenna, tested at 8.4 GHz, in the author’s Master’s 

Thesis [37] is shown in Figure 2.     

 

FIGURE 2:  0.3 Meter Antenna in GRC Planar Near-Field Antenna Test Facility 
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Using the ideal inflation pressurization, the raw photogrammetry data on the 0.3m 

inflatable offset antenna are shown in the top half of Figure 3, while that data are rotated 

and plotted against the ideal parabolic shape in the bottom half of Figure 3. 

 

FIGURE 3:  Raw Photogrammetry Data, Ideal Paraboloid Edge-View Profile 

Table I provides the summary data of the measured gain, gain degradation from 

ideal paraboloid, as well as surface profile RMS error and Ruze-Equation-derived Gain 

Degradation at the various pressurization levels tested.  The final column references the 

Difference in the Radio Frequency (RF) Derived gain degradation and the Ruze-derived 
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gain degradation, with a positive value meaning the Ruze-derived degradation 

overestimates the gain degradation [37]. 

TABLE I:  RF & Ruze Equation Performance Comparisons 

Pressurization 

Differential 

(inch H2O) 

RF Gain 

(dBi) 

RF-Derived 

Gain 

Degradation 

(dB) 

RMS 

Surface 

Error 

(inch) 

Ruze-

Derived Gain 

Degradation 

(dB) 

Difference 

(dB) 

0.00 14.42 −12.33 1.20 −402.02 389.69 

0.03 23.14 −3.61 0.34 −32.21 28.60 

0.04 24.37 −2.38 0.26 −19.05 16.67 

0.05 24.52 −2.23 0.23 −15.12 12.89 

0.06 24.47 −2.28 0.19 −9.86 7.58 

0.07 24.45 −2.30 0.26 −19.47 17.17 

 

The results of the testing summarized above are that the Ruze equation 

overestimates gain degradation for inflatable aperture antennas.  The error profile of the 

inflatable antenna does not match the limitations specified by Ruze, and as such, the Ruze 

equation should not be used in conjunction with this particular antenna type. 

 

1.3 History of Inflatable Aperture Antenna Technologies 

 

This section will detail various efforts over the last 33 years relating to the 

development of inflatable aperture antennas and the understanding of their performance 

characteristics and capabilities.  There are five referenced activities, ranging from a space 

experiment, to ground testing, to analytical derivations.   
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Inflatable Antenna Experiment 

 There has been only one inflatable aperture antenna flown in space to date.  The 

antenna was the 14-meter offset-parabolic inflatable reflector antenna, dubbed the 

Inflatable Antenna Experiment (IAE), and was launched aboard the Space Shuttle 

Endeavor in 1996.  The IAE was an effort managed by NASA Jet Propulsion Laboratory 

(JPL) and the antenna was constructed by L’Garde, Inc.  The objectives of the experiment 

were to validate the deployment of the antenna, measure the reflector surface precision, 

which was expected to be on the order of 1mm RMS, and demonstrate that the structure 

could be build at low cost and be stowed in a small-size container [13, 14].  Figure 4 

shows an image of the IAE as viewed from the Space Shuttle Endeavor [39].   

 

FIGURE 4:  Inflatable Antenna Experiment 

The experiment lasted 90 minutes, during which the antenna support structure was 

successfully deployed to the proper shape.  However, the lens shaped reflector failed to 
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inflate due to an unexpected leak in the nitrogen gas inflation system [14].  This failure 

meant that there were no in-flight measurements regarding the surface accuracy of the 

inflatable aperture antenna [39]. 

 

NASA Small Business Innovative Research Efforts 

 Several inflatable aperture antennas have been under investigation at NASA GRC 

since 2004 as part of the NASA Small Business Innovative Research (SBIR) program.  

NASA GRC has overseen efforts with SRS Technologies, which has manufactured 

several inflatable aperture antennas, including a 0.3 meter offset inflatable antenna [15, 

29, 30, 33, 39] and a 4 x 6 meter offset inflatable antenna [39].  The 0.3 meter offset 

inflatable antenna, which is shown in Figure 5, was tested at 8.4 GHz.  The performance 

of the antenna was comparable to a similar size conventional rigid reflector antenna and 

also performed well compared to the theoretical predictions [15, 29, 30, 33, 39]. 

 

FIGURE 5:  0.3 Meter Offset Inflatable Antenna 
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 A 4 x 6 meter offset inflatable antenna was also manufactured by SRS 

Technologies.  This antenna is inflated in the aperture, as well as in a torus surrounding 

the diameter of the aperture antenna, with the purpose of the torus to provide structural 

support of the inflatable antenna.  The 4 x 6 meter offset inflatable antenna, shown in 

Figure 6 inside the NASA GRC Near-Field test facility, was tested and characterized at 

8.4 GHz and 32 GHz [39].   

 

FIGURE 6:  4 x 6 Meter Offset Inflatable Antenna 

Measured gains were 49.4 dBi with a 71% efficiency at 8.4 GHz and 51.6 dBi 

with an 8% efficiency at 32 GHz [28, 39].  An RMS surface error was measured for this 

antenna and was computed to be 3.5 mm.  According to the Ruze equation, this amount 

of surface error would lead to much greater gain degradation at the Ka-band frequency of 

32 GHz (i.e. 99 dB).  Phase plots of the near field data show macroscopic surface errors, 
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which contribute to the gain degradation, but also show that some of the surface errors 

are dependent on each other. 

 

Harbin Institute of Technology Photogrammetry Analysis 

A non-NASA effort to characterize the surface accuracy of inflatable aperture 

antennas has been performed by the Key Laboratory of Science and Technology for 

National Defense, at the Harbin Institute of Technology, in Harbin, China.  In this effort, 

the surface RMS was calculated by performing a photogrammetry analysis on a 3m 

parabolic reflector and canopy system, shown below in Figure 7 [36].  For the testing, 

1170 round retro-reflective targets of 3mm diameter are attached on the reflective 

surface.  The photogrammetry effort utilized the Geodetic Services V-STARS system. 

 

FIGURE 7:  3 Meter Inflatable Reflector Antenna with Canopy 
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 The analysis looked to understand how the surface RMS changed on the antenna 

surface as a function of inflation pressurization, a similar technique to this author’s 

Master’s Thesis efforts [37], but without determining the Ruze equation predicted gain 

degradation.  One interesting graphic that was obtained was using an internal 

pressurization of 20Pa, where the contour map of displacement of the antenna surface, 

compared to the ideal parabolic surface, showing large-scale macroscopic surface profile 

errors.  This is shown below in Figure 8, while Figure 9 illustrates a cross-sectional 

displacement error plot [36]. 

 

FIGURE 8:  3 Meter Inflatable Reflector Antenna Displacement Contour Map 
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FIGURE 9:  3 Meter Inflatable Reflector Antenna Cross-Section Error 

 

Soil Moisture Radiation Mission RF Modeling 

 The NASA Soil Moisture Radiation Mission proposed to use an inflatable offset 

reflector antenna as a novel radiometer system to collect global data of the Earth surface.  

The antenna was to use L-Band and S-Band and the proposed mission would need a 

reflector antenna with a diameter of 25m, which forces the use of a deployable antenna 

due to launch vehicle constraints.  An effort was performed to characterize the RF 

performance of the inflatable parabolic reflector antenna design, such to be able to 

simulate accurate RF performance for the proposed science mission [17]. 

 This effort utilized the Physical Optics (PO) RF prediction methodology while 

modeling the offset reflector antenna surface as being modified by an elevation 

distortion, as torus surface distortions have a strong functional dependency in elevation 
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due to azimuthal rotational symmetry [17].  Equation (1.2) is the radial distortion 

dependency model used in the effort. 

∆𝑟(𝜃) = ℎ cos (2𝜋𝑁
𝜃

𝛼
)     [mm]        (1.2)  

In (1.2), the terms used are defined as follows: 

 ∆𝑟(𝜃) is the radial distortion as a function of the elevation angle [mm] 

 𝜃 is the elevation angle 

 ℎ is the center-to-peak height [mm] 

 𝑁 is the periodicity of the distortion 

 𝛼 is the parabolic offset reflector tilt angle 

 Radiation parameters calculated by the PO model include directivity, cross 

polarization, beam tilt, beamwidth, and beam efficiency.  Calculations were performed at 

both L-Band and S-Band, for undistorted surfaces, and distorted surface models with 

periodicity of 0.75 and 1.0, both with center to peak heights of 10mm.  The RF 

characteristics are tabulated for these cases, but generalizations for functionals of 

periodicity are not calculated.  First side-lobe peak increases were not of interest here.   

 

Deployable Aperture Elastic Antenna Surface Accuracy Analysis 

 A Dissertation effort at The George Washington University was performed to 

calculate the equilibrium configuration of an inflatable elastic membrane, supported by 

elastic tendons subjected to constant hydrostatic pressure, with the concern being that the 

design may not maintain the ideal parabolic shape within tolerance due to elastic 
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deformation of the surface, particularly near the rim [8].  The equilibrium system 

modeled total system energy and determined an optimized solution of minimum energy.  

Analysis to determine the shape behavior of the elastic inflatable aperture antenna 

included factors such as internal pressure, film strain energy, tendon strain energy, and 

gravitational energy.  Two principle findings of the effort was that 1) the support tendon 

system tends to flatten the parabolic reflector near the edge, and 2) large membranes can 

exhibit improved surface accuracy if the cutting pattern of the flat components were 

altered [8].  RF performance predictions utilized the PO methodology to determine 

antenna gain, and first side-lobe levels for a fixed-rim and tendon supported antenna 

models, with RF performance provided for specific test cases without generalizations of 

performance provided. 

 

1.4 Dissertation Motivation and Contributions 

 

Therefore, the focus of this work is to first derive a mathematical model of the 

inflatable antenna surface.  This mathematical model of the inflatable antenna will be 

determined using the Calculus of Variations methodology, which looks to determine the 

maximum volume surface model, which is applicable for the basic inflation process of 

the inflatable aperture antenna.  The mathematical model of the inflatable aperture 

antenna will be validated by performing surface mapping of an inflatable test article 

using Laser Radar metrology.   

This inflatable antenna mathematical model will be used in conjunction with the 

PO approach to determine the antenna gain and pattern profile of the inflatable aperture 
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antenna.  The RF performance predicted by the PO model will be compared with 

simulated radiation patterns of solid paraboloidal antennas of the same diameter, depth, 

or curved arc length using focal length over diameter ratios minimizing RMS error of the 

inflatable aperture antenna shape to an ideal paraboloidal shape.  Finally, performance 

variations of the inflatable aperture antenna will be performed over a trade space of focal 

length over diameter ratio errors up to 10% of the nominal best-fit focal length over 

diameter ratio magnitude. 

Finally, with the mathematical model and RF performance derived and verified 

for the inflatable aperture antenna, an RF performance degradation analysis will be 

performed.  Included in this RF performance degradation analysis will be calculations for 

gain degradation at boresight (similar to what the Ruze equation predicts for solid 

parabolic antennas), as well as calculations for spreading of the main beam width, in 

terms of the 3dB beamwidth and first null beamwidth, as well as first side-lobe peak 

degradation and location.  Here, side-lobe peak degradation refers to the magnitude of the 

difference in gain between the boresight peak response and the first side-lobe peak 

response.  Similarly, side-lobe peak location refers to the shifting in angular space for 

where the side-lobe peak degradation is located.   

The novel concepts derived in this effort are the mathematical derivation of the 

surface model of the inflatable aperture antenna, as well as the RF pattern variations 

expected for this type of communication antenna.  The Ruze equation does not calculate 

beam spreading effects due to random Gaussian surface profile noise, nor does it 

determine the reduction in the side-lobe peak to boresight peak difference.  This work 

builds on the author’s work in his Master’s Thesis [37] and culminates in answering the 
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questions posed in conclusion of that effort.  This work will enable a better understanding 

of this type of antenna technology, which will then be used to identify the most 

appropriate ways in which this technology could be utilized in supporting future 

communication architectures for NASA missions to Mars and beyond [33, 39].   

 

1.5 Dissertation Outline 

 

Chapter Two will focus on the background relationship of the inflatable aperture 

antenna to the Mylar balloon, along with the background derivation of the shape of the 

Mylar balloon using the Calculus of Variations technique.  That technique will then be 

extended to support the shape derivation of the inflatable aperture antenna.  Validation 

testing data will be presented of the inflatable aperture antenna surface profile model 

against Laser Radar metrology based test data of an inflatable test article. 

Chapter Three will focus on the background theory of the physical optics 

modeling of the solid parabolic reflector antenna.  That technique will then be extended 

to support inflatable aperture antenna by modifying the surface profile, surface normal 

vector, and surface area calculations consistent with the physical optics modeling 

approach. 

Chapter Four will focus on the RF performance metrics and RF performance 

comparison methodologies used to compare the RF performance of the inflatable aperture 

antenna against the solid parabolic reflector antenna.  Simulated RF performance results 

of the inflatable aperture antenna will be presented.  Additionally, RF performance 

comparisons against the solid parabolic reflector antenna will be presented using either a 
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common diameter, depth, or arc length.  A discussion of the noted observations from 

these results will be provided. 

Chapter Five will present the summarized conclusions observed in the 

Dissertation effort.  Additionally, several possible future work activities will be briefly 

discussed that extend the efforts developed in this Dissertation to continue to advance this 

antenna technology field. 
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CHAPTER II 

INFLATABLE APERTURE ANTENNA SURFACE SHAPE PROFILE DERIVATION 

  

 

The inflatable aperture antenna is a structure that is made out of a Mylar-like 

material, such as polyimide [30], that does not stretch, similar to the properties of the 

Mylar balloon.  Just as for the Mylar balloon, the inflatable aperture antenna is 

constructed from two circular sheets that are connected at the boundary and inflated with 

a gas.  However, unlike the Mylar balloon, whose inflated radius is found upon 

maximizing the volume of the balloon, the inflatable antenna is held in place via an 

external structure, such as an inflatable torus or a tendon network [17, 29], which 

determines the diameter of the inflatable aperture antenna.  Ideally, the inflatable antenna 

will have the shape of a paraboloid, due to the optimal reflective properties associated 

with this geometric structure, with the diameter set via the needs of the communication 

link [39].  Figure 10 illustrates differences in the surface profiles between the fully 

inflated Mylar balloon and the fully inflated inflatable aperture antenna, where the 

surface profile removes the axially symmetric geometry from the three dimensional shape 
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into a two dimensional curve.  This chapter was also published as a journal article to 

fulfill Dissertation requirements [38]. 

 

 

FIGURE 10:  Surface Profile Shapes:  Inflatable Antenna and Inflated Mylar Balloon 

The important observations of the fully inflated Mylar balloon surface profile are the 

following: 

 Arc length of fully inflated profile is equal to the uninflated radius 

 Depth reaches a maximum upon full inflation of Mylar balloon 

 Radius reaches a minimum upon full inflation of Mylar balloon 

 Derivative of slope of surface profile is increasingly negative as the radial 

direction magnitude increases, from a value of zero to negative infinity 

In regards to the inflatable aperture antenna, here are the important observations: 
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 Arc length of fully inflated profile is equal to the uninflated radius 

 Depth is less than that of fully inflated structure 

 Radius is larger than that of fully inflated structure 

 Derivative of slope of surface profile is increasingly negative as the radial 

direction magnitude increases, from a value of zero to a negative non-infinite 

value 

Figure 11 illustrates the importance of slope at the depth location, as well as the radius 

location. 

 

FIGURE 11:  Surface Profile Slopes:  Inflatable Antenna and Inflated Mylar Balloon 

The remaining content of this chapter provides the background and reference of 

the Mylar balloon surface shape model in Section 2.1, from which the author’s personal 

contributions towards the development of the shape model of the Inflatable Antenna are 

provided in Section 2.2.  Section 2.3 continues the shape model development by 
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discussing the author’s methodology for how the edge slope was derived.  Section 2.4 

completes the shape model derivation with the utilized edge slope model, while Section 

2.5 provides validation assessments of that shape model against measured 

photogrammetry data.  Finally, Section 2.6 summarizes the author’s contributions 

towards the shape model, provided in Sections 2.2 through 2.5 against the reference 

contributions from Section 2.1. 

 

2.1 Background and Derivation of Mylar Balloon Surface Shape Model 

 

The surface model of the inflated Mylar balloon has been investigated and 

developed using the Maple software development package [24, 26].  Here, a closed-form 

solution has been found for the shape profile which utilizes elliptic integrals as a 

parameterization of the surface model, as opposed to the use of the gamma function [27].  

This closed-form solution was obtained through the approach of calculus of variations, 

which is a field of mathematics that involves functionals of integrals of unknown 

functions and their derivatives.  Calculus of variations allows one to solve for a 

maximum or minimum of a functional, where the unknown function that provides this 

optimization is called an extremal function.  Equation (2.1) provides a generic example of 

this concept [16, 26]. 

𝐽 =  ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))𝑑𝑡
𝑡1
𝑡0

        (2.1)  

In (2.1), the terms used are defined as follows: 

 𝐽 is the functional 
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 𝑡0 is the lower integration limit of variable 𝑡 

 𝑡1 is the upper integration limit of variable 𝑡 

 𝑓( ) is the unknown extremal function 

 𝑡 is the integration variable 

 𝑥(𝑡) is the variable function with respect to variable 𝑡 

 𝑥′(𝑡) is the derivative of the variable function with respect to variable 𝑡 

The process of finding the function 𝑥( ) that optimizes 𝐽 involves solving the Euler-

Lagrange equation for the function 𝑥(𝑡).  The Euler-Lagrange equation for a single 

variable function 𝑥(𝑡) is given below in (2.2). 

𝜕𝑓

𝜕𝑥
−

𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑥′
) = 0          (2.2)  

 One class of problem that is typically solved using the Calculus of variations 

methodology is the fixed-endpoint problem, such that in (2.1) for functional 𝐽, 𝑥(𝑡0), and 

𝑥(𝑡1) are defined.  However, it is also possible that one of the endpoints is not defined, in 

which case the problem is called an endpoint-curve problem.  The endpoint-curve 

problem is solved using a transversality condition.  The analytical solution to the shape 

definition of the Mylar balloon is obtained through the use of a transversality condition.  

Equation (2.3) provides the relationship of the slope of the functional curve with the 

uninflated and inflated radii of the Mylar balloon [21, 22, 23, 24, 26]. 

∫ √1 + 𝑧′(𝑥)2𝑑𝑥 = 𝑎
𝑟𝐵
0

         (2.3)  

In (2.3), the terms used are defined as follows: 
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 𝑟𝐵 is the inflated radius of the Mylar balloon 

 𝑧′(𝑥) is the slope of the Mylar balloon functional curve 

 𝑎 is the uninflated radius of the Mylar balloon 

 𝑥 is the Mylar balloon radial direction axis variable 

(2.3) provides the constraint of the shape of the balloon, which is used in 

conjunction with a Lagrange multiplier in solving the Euler-Lagrange Equation.  The 

curve is reflected over the x-axis, and the overall curve is rotated around the x-y plane 

using a typical circle-to-sphere rotation methodology.  It is also useful here to note two 

properties of the slope of the curve 𝑧(𝑥), given in (2.4) and (2.5).  These properties hold 

at the intersection of the curve with the z-axis and with the x-axis [26]. 

𝑧′(𝑥 = 0) = 0          (2.4)  

lim
𝑥→𝑟𝐵

−
𝑧′ = −∞          (2.5)  

The functional that is maximized using the methodology described in (2.1), is the volume 

of the balloon, given by the Shell method below in (2.6) [26]. 

𝑉 = 4𝜋 ∫ 𝑥𝑧(𝑥)𝑑𝑥
𝑟𝐵
0

         (2.6)  

In (2.6), the additional terms used are defined as follows: 

 𝑉 is the volume of the Mylar balloon 

 𝑧(𝑥) is the depth of the Mylar balloon with respect to radial direction axis 

variable 𝑥 
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Therefore, the process of solving the Euler-Lagrange equation begins with the use of the 

volume functional, which is maximized in (2.7).  The volume functional is utilized in the 

Euler-Lagrange (2.2), in (2.8).   

𝑓(𝑥, 𝑧, 𝑧′) = 4𝜋𝑥𝑧(𝑥) + 𝜆√1 + 𝑧′(𝑥)2       (2.7)  

𝜕

𝜕𝑧
(4𝜋𝑥𝑧(𝑥) + 𝜆√1 + 𝑧′(𝑥)2) −

𝑑

𝑑𝑥
(
𝜕

𝜕𝑧′
[4𝜋𝑥𝑧(𝑥) + 𝜆√1 + 𝑧′(𝑥)2]) = 0   (2.8)  

In (2.7), the additional term used is defined as follows: 

 𝜆 is the Lagrange multiplier 

The four partial derivative elements of (2.8) are provided as (2.9) through (2.12), with 

aggregation of those elements being (2.13).   

𝜕

𝜕𝑧
(4𝜋𝑥𝑧(𝑥)) = 4𝜋𝑥         (2.9)  

𝜕

𝜕𝑧
(𝜆√1 + 𝑧′(𝑥)2) = 0         (2.10)  

𝜕

𝜕𝑧′
(4𝜋𝑥𝑧(𝑥)) = 0         (2.11)  

𝜕

𝜕𝑧′
(𝜆√1 + 𝑧′(𝑥)2) =

𝜆𝑧′(𝑥)

√1+𝑧′(𝑥)2
        (2.12)  

4𝜋𝑥 −
𝑑

𝑑𝑥

𝜆𝑧′(𝑥)

√1+𝑧′(𝑥)2
= 0         (2.13)  

(2.14) rearranges (2.13) to enable an integration to be performed, and (2.15) shows the 

result of that integration. 

𝜆𝑧′(𝑥)

√1+𝑧′(𝑥)2
= ∫4𝜋𝑥𝑑𝑥         (2.14)  

𝜆𝑧′(𝑥)

√1+𝑧′(𝑥)2
= 2𝜋𝑥2 + 𝐶         (2.15)  

In (2.15), the additional term used is defined as follows: 
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 𝐶 is the integration constant 

Implementing the constraint given in (2.4) with (2.15) provides the following solution of 

the integration constant in (2.16) and (2.17). 

𝜆𝑧′(𝑥=0)

√1+𝑧′(𝑥=0)2
= 2𝜋(𝑥 = 0)2 + 𝐶 ⇒ 𝐶 = 0       (2.16)  

𝑧′(𝑥)

√1+𝑧′(𝑥)2
=

2𝜋

𝜆
𝑥2          (2.17)  

Next, a variable substitution using the Lagrange multiplier is formed in (2.18) and then is 

substituted into (2.17) as (2.19).  Equation (2.20) contains the solution of (2.19) for 𝑧′(𝑥).  

𝜆

2𝜋
= −𝑚2          (2.18)  

In (2.18), the additional term used is defined as follows: 

 𝑚 is the substitution variable 

𝑧′(𝑥)

√1+𝑧′(𝑥)2
= −

𝑥2

𝑚2          (2.19)  

𝑧′(𝑥) = √1 + 𝑧′(𝑥)2 (−
𝑥2

𝑚2)          

𝑧′(𝑥)2 = (1 + 𝑧′(𝑥)2) (−
𝑥2

𝑚2)
2

         

𝑧′(𝑥)2 = (−
𝑥2

𝑚2)
2

+ 𝑧′(𝑥)2 (−
𝑥2

𝑚2)
2

         

𝑧′(𝑥)2 (1 − (−
𝑥2

𝑚2)
2

) = (−
𝑥2

𝑚2)
2

         

𝑧′(𝑥)2 =
(−

𝑥2

𝑚2)
2

(1−(−
𝑥2

𝑚2)
2

)

           

𝑧′(𝑥) = ±
−
𝑥2

𝑚2

√1−(−
𝑥2

𝑚2)
2
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𝑧′(𝑥) = ±
−𝑥2

√𝑚4(1−
𝑥4

𝑚4)

           

𝑧′(𝑥) =
−𝑥2

√𝑚4−𝑥4
          (2.20)  

Next, the constraint provided in (2.5) is used to determine the substitution variable in 

(2.20), provided as (2.21), where the solution for that substitution variable provided in 

(2.22) and the fully inflated Mylar balloon curve slope defined in (2.23). 

𝑧′(𝑥 = 𝑟𝐵) =
−(𝑥=𝑟𝐵)

2

√𝑚4−(𝑥=𝑟𝐵)
4
= −∞        (2.21)  

𝑧′(𝑟𝐵) =
−(𝑟𝐵)

2

√𝑚4−(𝑟𝐵)
4
= −∞ ⇒ 𝑚 = 𝑟𝐵       (2.22)  

𝑧′(𝑥) =
−𝑥2

√𝑟𝐵
4−𝑥4

          (2.23)  

Finally, the curve slope in (2.23) is integrated to form the curve equation, defined in 

(2.24). 

𝑧(𝑥) = ∫
𝑡2

√𝑟𝐵
4−𝑡4

𝑑𝑡
𝑟𝐵
𝑥

         (2.24)  

In (2.24), the additional term used is defined as follows: 

 𝑡 is the substitution integration variable 

Note that this integral in (2.24) is the elliptic integral, and thus, further simplifications 

can be made using additional elliptic and Jacobi functions, [21, 24, 26], as follows in 

(2.25) and (2.26), through the use of a parameterization variable. 

𝑥(𝑢) = 𝑟𝐵cn (𝑢,
1

√2
)         (2.25)  

𝑧(𝑢) = 𝑟𝐵√2 [E (sn (𝑢,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢,

1

√2
) ,

1

√2
)]     (2.26)  
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In (2.25) and (2.26), the additional functions and terms used are defined as follows: 

 E( ) is the elliptic E function 

 F( ) is the elliptic F function 

 sn( ) is the Jacobi sine function 

 cn( ) is the Jacobi cosine function 

 𝑥(𝑢) is the parameterization of the variable 𝑥, with parameterization variable 𝑢 

 𝑧(𝑢) is the parameterization of the variable 𝑧, with parameterization variable 𝑢 

 𝑢 is the parameterization variable 

The overall parameterization of the Mylar balloon utilizes a similar technique that 

is seen in the sphere of using nominal sine and cosine trigonometric functions to 

parameterize the circle from the x-z plane around the z axis in the x-y plane to form the 

sphere.  This final parameterization of the Mylar balloon is given by (2.27) through 

(2.29), and illustrated in Figure 12.  Additionally, the relationship between the fully 

inflated radius and the arc length, which is also the uninflated radius, is provided in (2.30) 

[24, 26] with four digits of numerical accuracy. 

𝑥(𝑢, 𝑣) = 𝑟𝐵cn (𝑢,
1

√2
) cos(𝑣)        (2.27)  

𝑦(𝑢, 𝑣) = 𝑟𝐵cn (𝑢,
1

√2
) sin(𝑣)        (2.28)  

𝑧(𝑢) = 𝑟𝐵√2 [E (sn (𝑢,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢,

1

√2
) ,

1

√2
)]     (2.29)  

In (2.27) through (2.29), the additional functions and terms used are defined as follows: 

 sin( ) is the sine function 
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 cos( ) is the cosine function 

 𝑣 is the parameterization variable 

 

FIGURE 12:  Parameterized Mylar Balloon Profile 

𝑟𝐵 = 0.7627𝑎          (2.30)  

 

2.2 Derivation of Inflatable Aperture Antenna Surface Profile Shape Model 

 

Figure 11 has illustrated the similarities and differences between the surface shape 

model of the inflated Mylar balloon and that of a diametrically constrained inflatable 

aperture antenna.  Given that such similarities exist, it was hypothesized that following a 

similar calculus of variations approach to deriving the surface shape model of the 

inflatable aperture antenna could be possible.  Starting from the previously defined 

(2.20), the inflated radius of inflatable aperture antenna is used in place of the fully 

inflated Mylar balloon radius.  Therefore, the edge slope of the inflatable aperture 
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antenna at radius 𝑟𝐴 is used instead of the edge slope of the Mylar balloon, which was 

negative infinity.  This is shown below in (2.31). 

𝑧′(𝑥)|𝑥=𝑟𝐴 =
−𝑟𝐴

2

√𝑚4−𝑟𝐴
4
= −𝐴        (2.31)  

In (2.31), the additional terms used are defined as follows: 

 𝑟𝐴 is the inflated radius of the inflatable aperture antenna 

 𝐴 is the edge slope of the inflatable aperture antenna at radius 𝑟𝐴 

(2.31) is then simplified and with terms rearranged to solve for variable substitution, 𝑚, 

so that the surface slope equation can be derived in a manner similar to the derivation in 

(2.23). The final simplified form is provided in (2.32). 

𝑟𝐴
4

𝑚4−𝑟𝐴
4 = 𝐴2            

𝑟𝐴
4 = (𝑚4 − 𝑟𝐴

4)𝐴2           

𝑚4𝐴2 = 𝑟𝐴
4(1 + 𝐴2)           

𝑚4 =
𝑟𝐴
4(1+𝐴2)

𝐴2
          (2.32)  

(2.33) then uses (2.32) solution for the variable substitution, 𝑚4, to solve the surface 

slope equation, where the factor 𝑚4 is used from (2.20). 

𝑧′(𝑥) =
−𝑥2

√𝑟𝐴
4 (1+𝐴2)

𝐴2
−𝑥4

         (2.33)  

Note that in the derivation above, the edge slope, 𝐴, and the radius of the 

inflatable aperture antenna, 𝑟𝐴, are used to derive the surface slope shown in (2.33); 

however, that radius can take on a range of values, depending on allowable constrained 

diameter.  As seen in Figure 11, the radius can range from the arc length, where the edge 
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slope is zero when the surface is uninflated, to the fully inflated radius, where the edge 

slope is negative infinity when the surface is fully inflated.  It can be deduced that as that 

radius changes across those two boundary conditions, the edge slope will also change 

monotonically.  As such, a new term called the Inflation Ratio, is created to aid in the 

discussion of the shape of the inflatable aperture antenna, as a function of the constrained 

diameter to that of the allowable minimum diameter if the antenna were allowed to be 

fully inflated, where this is provided in (2.34).  Alternately, the Inflation Ratio is defined 

in (2.35), using the relationship provided in (2.30) between the arc length, 𝑎, and the fully 

inflated radius, 𝑟𝐵. 

𝐼 =
𝑎−𝑟𝐴

𝑎−𝑟𝐵
           (2.34)  

𝐼 =
𝑎−𝑟𝐴

0.2373𝑎
          (2.35)  

In (2.34) and (2.35), the additional term used is defined as follows: 

 𝐼 is the Inflation Ratio of the inflatable aperture antenna 

 When examining the functionality of the 𝐼 parameter, it can be noted that if the 

inflatable aperture antenna were uninflated, where 𝑟𝐴 = 𝑎, then 𝐼 = 0.  This is consistent 

with the notion that the inflatable aperture antenna is uninflated and this is actually a flat 

disc.  If the inflatable aperture antenna were fully inflated without restriction from a 

support structure, where 𝑟𝐴 = 𝑟𝐵, then 𝐼 = 1.  Again, this is consistent with the notion 

that the inflatable aperture antenna is fully inflated, and the shape would be like that of 

the Mylar balloon. 

 

 



33 

2.3 Inflatable Antenna Edge Slope Derivation 

 

 The surface slope given in (2.33) does not provide sufficient information for one 

to be able to integrate to obtain the inflatable antenna surface curvature similar to what is 

provided in (2.24).  To be able to obtain such derivations, the edge slope of the inflatable 

aperture antenna at radius 𝑟𝐴, 𝐴, would need to be understood at all possible values of 

radius 𝑟𝐴, and therefore across the full range of possible Inflation Ratio values.  As such, 

experimental testing was performed on an inflatable test article across the full range of 

Inflation Ratio values to obtain the edge slope value as a function of Inflation Ratio.  

Note that the testing across the full range of Inflation Ratio will allow for an 

understanding of any antenna, as the Inflation Ratio can be defined for any inflatable 

aperture diameter. 

A testing structure was created that would allow for the acquisition of multiple 

edge slope measurements across multiple Inflation Ratio values on a given inflatable test 

article.  For the sake of consistency, the test structure was created in a way that would 

allow for the inflatable test article to have its diameter modified so that a common test 

article could be utilized throughout the entire experimental test collection activity.  The 

test structure can be described as a wood-aluminum hybrid frame that utilizes 36 

diametrically adjustable support brackets which have a fixed attachment to a Mylar 

balloon test article.  The outer frame was constructed from aluminum bracketing, while a 

wood sheet interior was used so that the diametrically adjustable support brackets could 

be easily mountable.  The diameter of the diametrically constrained test article can be 

physically controlled to test various Inflation Ratio values of interest.  A Laser Radar 
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surface metrology technique was utilized to measure the edge slope around the perimeter 

of the inflatable test article, in relation to the outer seam of the Mylar balloon, which is 

parallel to the test structure frame's reference tooling balls, used to act as control points of 

reference across different Inflation Ratio data collection experiments.  The test structure 

is shown in Figure 13.   

 

FIGURE 13:  Inflation Ratio Test Structure 

The inflatable test article utilized in the experiment was a 34.5 inch diameter 

Mylar balloon, where the diameter measurement was made along the surface to the 
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maximum width where the outer seam joining the two discs was located.  As mentioned, 

36 attachment points were utilized on the inflatable test article, such that a good 

representation of measurement points around the perimeter were obtained.  Figure 14 

shows the inflatable test article before being mounted to the test structure. 

 

FIGURE 14:  Pre-Mounted Inflatable Test Article 

The test article was attached to the test structure along the 36 support brackets, as 

shown below in Figure 15.  The test article underwent initial Laser Radar surface 

metrology with the goal of maximizing tautness between the test article and the attached 

support brackets, and minimizing rim planar variations across the test article’s surface.  

The final initial test setup Laser Radar surface metrology measured the test article’s rim 

planar with the test structure to have a root mean square error of 0.002497 inches. 
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FIGURE 15:  Post-Mounted Inflatable Test Article 

The Laser Radar surface metrology was performed under various test article 

diameters using a surface metrology data sampling of 0.1 inch spacing.  This sample 

spacing allows for a maximum Nyquist sampling-based frequency of 53.6 GHz [1, 3].  

The maximum diameter for the test article was 34.5 inches, which corresponds to a fully 

inflated test diameter of 26.31 inches, per (2.30).  Thus, the testing was performed using 

nominal test diameters ranging from 34.375 inches down to 26.75 inches, at increments 

of 0.25 inches for diameters below 34.25 inches.  Testing at these diameters allowed for 

Inflation Ratio experimental data collections to be made between 0.015 and 0.946.  All 

testing was performed under constant pressurization, as a closed-loop pressurization 

control system regulated internal pressurization of the test article at all times.  Figure 16 
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shows the test article at the constrained diameter of 34.375 inches.  Figure 17 shows the 

test article at the constrained diameter of 32.0 inches.  Figure 18 shows the test article at 

the constrained diameter of 29. 75 inches.  Figure 19 shows the test article at the 

constrained diameter of 26.75 inches.    

 

FIGURE 16:  Test Article at Diameter of 34.375 Inches 
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FIGURE 17:  Test Article at Diameter of 32.0 Inches 

 

FIGURE 18:  Test Article at Diameter of 29.75 Inches 
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FIGURE 19:  Test Article at Diameter of 26.75 Inches 

At each diametrically constrained test activity, data were obtained for a large 

portion of the perimeter of the test article, as well as over the entire surface of the test 

article, using the Laser Radar metrology technique.  Data over the perimeter was 

analyzed at each of test support locations to derive the average edge slope angle at the 

particular Inflation Ratio under test.  Previously, it was stated that the edge slope was the 

desired value, however, the edge slope angle is a geometric function of the edge slope, 

and given that the edge slope angle is easier to comprehend, it was used for the following 

derivation.  Figure 20 illustrates the data and relationship across the data measured. 

 



40 

 

FIGURE 20:  Edge and Surface Data with Linear Fits 

Figure 20 illustrates the data split into edge and surface groups, where the edge 

group is colored red and the inflatable surface group is colored blue.  Data in each group 

is combined into a linear fit, and the edge slope angle, θ, is computed from the dot 

product of these two linear fits.  This process is repeated for all 32 test article diameters, 

each utilizing the 36 test article support attachment edge surface data investigations.   

 Using the Inflation Ratio constraints previously discussed, the edge slope angle at 

an Inflation Ratio of zero would have an edge slope angle of zero degrees, since the slope 

at that edge is zero.  Likewise, the edge slope angle at an Inflation Ratio of one would 

have an edge slope angle of 90 degrees, since the slope at that edge is negative infinity.  

These constraints limit the curve fit options, as those points must appear on the optimal 

curve fit.  Five curve fit options were investigated that meet these boundary constraints.  

The equations for these five curve fit options are provided next in (2.36) through (2.40).  

The tabulated correlations of these five curve fit models is provided in Table II.  Plots 

visualizing these five curve fit options are shown next in Figures 21 through 25, in the 

same sequence of (2.36) through (2.40). 

𝜃 = 90√𝐼          (2.36)  
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𝜃 = 90 sin (𝐼
𝜋

2
)          (2.37)  

𝜃 =
360

𝜋
tan−1(𝐼)          (2.38)  

𝜃 = 90√𝐼
3           (2.39)  

𝜃 = 90(1 − (𝐼 − 1)2)         (2.40)  

In (2.36) through (2.40), the additional term and function used are defined as follows: 

 𝜃 is the edge slope angle of the inflatable aperture antenna 

 tan−1( ) is the inverse tangent function 

TABLE II:  Correlation Model Performance of Inflation Ratio versus Edge Slope Angle 

Curve Fit 

Model 

Description 

Curve Fit 

Model 

Equation 

Correlation 

with Test 

Article Data 

Square Root (2.36) 0.99963 

Sine (2.37) 0.99487 

Arc-Tangent (2.38) 0.99248 

Cubic Root (2.39) 0.99513 

Polynomial (2.40) 0.99592 
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FIGURE 21:  Square Root Curve Fit Model with Edge Slope Angle Measurements 

 

FIGURE 22:  Sine Curve Fit Model with Edge Slope Angle Measurements 
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FIGURE 23:  Arc-Tangent Curve Fit Model with Edge Slope Angle Measurements 

 

FIGURE 24:  Cubic Root Curve Fit Model with Edge Slope Angle Measurements 
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FIGURE 25:  Polynomial Curve Fit Model with Edge Slope Angle Measurements 

(2.36) has the strongest correlation to the test article measurements, with a 

correlation of 0.99963, as illustrated in Figure 21.  As such, that correlation model was 

chosen for use to complete the model development of the inflatable aperture antenna.  

Equation (2.41) converts (2.36) into the form needed for the edge slope.  Equation (2.42) 

then represents (2.41), but eliminating the form of Inflation Ratio term introduced in 

(2.34). 

𝐴 = tan (
𝜋

2
√𝐼)          (2.41)  

𝐴 = tan (
𝜋

2
√
𝑎−𝑟𝐴

𝑎−𝑟𝐵
)         (2.42)  

In (2.41) and (2.42), the additional function used is defined as follows: 

 tan( ) is the tangent function 
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2.4 Inflatable Aperture Antenna Surface Profile Derivation 

 

 With the necessary edge slope equation derived in (2.42), the inflatable aperture 

antenna surface slope derivation, (2.33), can now be completed.  Equation (2.43) replaces 

the edge slope angle, from (2.33), with its derivation from (2.42), while also expanding 

the denominator. 

𝑧′(𝑥) =
−𝑥2

√
𝑟𝐴
4

tan2(
𝜋
2√

𝑎−𝑟𝐴
𝑎−𝑟𝐵

)
+𝑟𝐴

4−𝑥4

        (2.43)  

Next, a radius substitute variable defined in (2.44), is substituted into (2.43) as (2.45).  

Equation (2.46) is the integration of (2.45). 

𝑟𝐶
4 =

𝑟𝐴
4

tan2(
𝜋

2√
𝑎−𝑟𝐴
𝑎−𝑟𝐵

)
+ 𝑟𝐴

4         (2.44)  

𝑧′(𝑥) =
−𝑥2

√𝑟𝐶
4−𝑥4

          (2.45)  

𝑧(𝑥) = ∫
𝑡2

√𝑟𝐶
4−𝑡4

𝑑𝑡
𝑟𝐶
𝑥

         (2.46)  

In (2.44) through (2.46), the additional term used is defined as follows: 

 𝑟𝐶
4 is the radius substitution variable 

(2.46) follows the exact same form as (2.24), which was the elliptic Integral, and 

thus the same simplifications made previously for the Mylar balloon can now be made for 

the diametrically constrained inflatable aperture antenna, through the use of the 

parameterization variable 𝑢, in (2.47) and (2.48). 
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𝑥(𝑢) = 𝑟𝐶cn (𝑢,
1

√2
)         (2.47)  

𝑧(𝑢) = 𝑟𝐶√2 [E (sn (𝑢,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢,

1

√2
) ,

1

√2
)]     (2.48)  

Finally, the radius substitution variable, 𝑟𝐶, is simplified in (2.49). 

𝑟𝐶 = 𝑟𝐴√1 + cot2 (
𝜋

2
√
𝑎−𝑟𝐴

𝑎−𝑟𝐵
)

4

        (2.49)  

In (2.49), the additional function used is defined as follows: 

 cot( ) is the co-tangent function 

As (2.47) and (2.48) are still parameterized, the limits on the parameterization 

variable, 𝑢, must be understood so that its representation is valid in this form of the 

problem.  For this problem, the limits of 𝑥(𝑢) need to be maintained between zero and 𝑟𝐴, 

as shown next in (2.50). 

0 ≤ 𝑥(𝑢) ≤ 𝑟𝐴          (2.50)  

One natural maximum limit of elliptic Integrals comes from the elliptic Integral of the 

first kind.  The value of 𝑥(𝑢) at this maximum value of parameterization variable 𝑢 is 

given in (2.51). 

𝑥 (K (
1

√2
)) = 0          (2.51)  

In (2.51), the additional function used is defined as follows: 

 K (
1

√2
 ) is the elliptic Integral of the first kind 

Therefore, the limits of the parameterization variable 𝑢 is shown in (2.52).  

𝑢0 ≤ 𝑢 ≤ K (
1

√2
)          (2.52)  
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In (2.52), the additional term used is defined as follows: 

 𝑢0 is the minimum value of the parameterization variable 𝑢 

Here, 𝑢0 corresponds to the minimum value of the parameterization variable, and 

since the maximum value corresponds to the minimum value of 𝑥(𝑢), this minimum 

value corresponds to the maximum value of 𝑥(𝑢), which is already known to be 𝑟𝐴 from 

(2.50).  Therefore, this minimum parameterization value is derived from (2.47) at this 

point on the range of (2.50), as shown in (2.53), with the inverse Jacobi cosine function, 

𝑎𝑟𝑐𝑐𝑛( ). 

𝑟𝐴 = 𝑟𝐶cn (𝑢0,
1

√2
)           

𝑟𝐴 = 𝑟𝐴√1 + cot2 (
𝜋

2
√
𝑎−𝑟𝐴

𝑎−𝑟𝐵
)

4

cn (𝑢0,
1

√2
)         

cn (𝑢0,
1

√2
) =

1

√1+cot2(
𝜋

2√
𝑎−𝑟𝐴
𝑎−𝑟𝐵

)
4

         

𝑢0 = arccn

(

 
 1

√1+cot2(
𝜋

2√
𝑎−𝑟𝐴
𝑎−𝑟𝐵

)
4

,
1

√2

)

 
 

        (2.53)  

This range of parameterization variable 𝑢 also applies to 𝑧(𝑢), but visual 

inspection of performance shows that this new non-zero limit on 𝑢 means the limits of 

𝑧(𝑢) need to be maintained between zero and depth of the surface off of the axis, as 

stated in (2.54).   

0 ≤ 𝑧(𝑢) ≤ 𝐷𝑒𝑝𝑡ℎ         (2.54)  
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Therefore, (2.48) needs to be shifted by a constant factor to maintain the lower limit of 

(2.54), as shown next in (2.55). 

𝑧(𝑢) = 𝑟𝐶√2 [E (sn (𝑢,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢,

1

√2
) ,

1

√2
)] + 𝐶     (2.55)  

In (2.55), the additional term used is defined as follows: 

 𝐶 is the constant offset factor 

The solution to this constant offset factor goes back to lower limit on 𝑧(𝑢), as expressed 

in (2.56).   

0 = 𝑟𝐶√2 [E (sn (𝑢,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢,

1

√2
) ,

1

√2
)] + 𝐶     (2.56)  

When the shift is applied correctly, the value of 𝑥(𝑢) = 𝑟𝐴, which means the 

parameterization variable takes on the form expressed in (2.53).  Therefore, the solution 

to the constant offset factor is provided in (2.57), and the final form of the 𝑧(𝑢) 

expression is given in (2.58), both using the limits of the parameterization variable in 

(2.59). 

𝐶 = −𝑟𝐶√2 [E (sn (𝑢0,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢0,

1

√2
) ,

1

√2
)]     (2.57)  

𝑧(𝑢) =
𝑟𝐶√2[E(sn(𝑢,

1

√2
),
1

√2
)−

1

2
F(sn(𝑢,

1

√2
),
1

√2
)]

−𝑟𝐶√2[E(sn(𝑢0,
1

√2
),
1

√2
)−

1

2
F(sn(𝑢0,

1

√2
),
1

√2
)]
        (2.58)  

arccn

(

 
 1

√1+cot2(
𝜋

2√
𝑎−𝑟𝐴
𝑎−𝑟𝐵

)
4

,
1

√2

)

 
 
≤ 𝑢 ≤ K (

1

√2
)       (2.59)  

In (2.59), the additional function used is defined as follows: 

 arccn( ) is the inverse Jacobi cosine function 
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 This derivation in (2.47) and (2.58) still relies on parameterization variable 𝑢, 

using the limits in (2.59).  While this is useful in mathematical applications, it is not 

useful for engineering analysis performed in similar manners as that of paraboloidal 

antennas, which take the form of (2.60). 

𝑍(𝑋, 𝑌) =
(𝑋2+𝑌2)

4𝑓
         (2.60)  

In (2.60), the additional terms used are defined as follows: 

 𝑍(𝑋, 𝑌) is the depth of the parabolic antenna as a function of radial direction axis 

variables 𝑋 and 𝑌 

 𝑋 is the paraboloidal antenna radial direction axis variable 

 𝑌 is the paraboloidal antenna radial direction axis variable 

 𝑓 is the paraboloidal antenna focal length 

Therefore, it is desired to eliminate the parameterization variables and solve the 

inflatable aperture antenna surface in the form of 𝑧(𝑥, 𝑦).  This is accomplished in (2.61) 

through the inverse Jacobi cosine function, as a way to solve the parameterization 

variable 𝑢 in (2.47).  Equation (2.61) is then substituted in (2.57) to obtain the non-

parameterized definition of the inflatable aperture antenna surface, in (2.62), using the 

same definition before for variables 𝑢0 and 𝑟𝐶. 

𝑢(𝑥) = arccn (
𝑥

𝑟𝐶
,
1

√2
)         (2.61)  

𝑧(𝑥) =
𝑟𝐶√2[E(sn(arccn(

𝑥

𝑟𝐶
,
1

√2
),
1

√2
),
1

√2
)−

1

2
F(sn(arccn(

𝑥

𝑟𝐶
,
1

√2
),
1

√2
),
1

√2
)]

−𝑟𝐶√2[E(sn(𝑢0,
1

√2
),
1

√2
)−

1

2
F(sn(𝑢0,

1

√2
),
1

√2
)]

     (2.62)  
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The expansion of the surface into the third dimension will now follow the same 

framework as for the Mylar balloon into (2.27) through (2.29), since this is not a 

parameterized definition.  Instead, the length of 𝑥 in (2.62) will be replaced by the length 

of the combination of 𝑥 and 𝑦, shown in (2.63), with (2.64) showing the final form of the 

inflatable antenna surface. 

𝑤 = √𝑥2 + 𝑦2          (2.63)  

𝑧(𝑥, 𝑦) =
𝑟𝐶√2[E(sn(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
),

1

√2
)−

1

2
F(sn(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
),

1

√2
)]

−𝑟𝐶√2[E(sn(𝑢0,
1

√2
),
1

√2
)−

1

2
F(sn(𝑢0,

1

√2
),
1

√2
)]

   (2.64)  

In (2.63), the additional term used is defined as follows: 

 𝑤 is the magnitude of the radial direction axis variables 

 

2.5 Inflatable Aperture Antenna Surface Profile Validation 

 

Laser Radar metrology testing was performed over the entire surface of the test 

article at each Inflation Ratio test point, as described in Section III.B Edge Slope 

Derivation.  This testing involved the laser scan measuring the entire surface of the 

inflatable test article’s surface within its diametrically constrained perimeter.  This 

measured surface data was processed to determine the average measured depth from the 

vertex of the surface.  This data was then compared to the predicted surface model, which 

was derived in (2.64).  Correlation assessments of the average measured depth from the 

vertex of the surface against the predicted surface model are provided in Table III for all 

of the Inflation Ratio test points, while Table IV provides the RMS assessments between 
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the same datasets.  Plots of these datasets that underwent the correlation assessments are 

shown in Figures 26 through 57 for the 32 Inflation Ratio test points. 

TABLE III:  Correlation of Off-Vertex Depth Performance 

Inflation  

Ratio 

Correlation  Inflation  

Ratio 

Correlation  Inflation  

Ratio 

Correlation 

0.01610 0.99405  0.30339 0.99972  0.64521 0.99972 

0.02172 0.99773  0.33085 0.99984  0.67341 0.99971 

0.05269 0.99919  0.36306 0.99984  0.69722 0.99947 

0.07892 0.99953  0.39141 0.99985  0.72235 0.99958 

0.10117 0.99951  0.42359 0.99978  0.74501 0.99936 

0.13056 0.99964  0.44881 0.99971  0.78822 0.99912 

0.16104 0.99965  0.47824 0.99975  0.81090 0.99892 

0.18619 0.99969  0.51188 0.99983  0.82766 0.99705 

0.21346 0.99987  0.56186 0.99961  0.85193 0.99743 

0.23770 0.99976  0.59101 0.99960  0.88366 0.99591 

0.26773 0.99973  0.61984 0.99946    

 

TABLE IV:  Root-Mean-Square of Off-Vertex Depth Performance 

Inflation  

Ratio 

RMS 

(inches) 

 Inflation  

Ratio 

RMS 

(inches) 

 Inflation  

Ratio 

RMS 

(inches) 

0.01610 8.0241e-2  0.30339 9.2262e-2  0.64521 8.8610e-2 

0.02172 5.4313e-2  0.33085 8.8614e-2  0.67341 1.0560e-1 

0.05269 4.3107e-2  0.36306 1.0324e-1  0.69722 1.1557e-1 

0.07892 4.3663e-2  0.39141 9.9497e-2  0.72235 9.1278e-2 

0.10117 4.3136e-2  0.42359 9.6326e-2  0.74501 1.3076e-1 

0.13056 4.2488e-2  0.44881 1.0257e-1  0.78822 8.3695e-2 

0.16104 5.6605e-2  0.47824 1.0310e-1  0.81090 9.2674e-2 

0.18619 6.5102e-2  0.51188 9.8272e-2  0.82766 1.3623e-1 

0.21346 5.6469e-2  0.56186 8.4268e-2  0.85193 1.2088e-1 

0.23770 8.7152e-2  0.59101 8.8070e-2  0.88366 1.8325e-1 

0.26773 9.3182e-2  0.61984 1.1383e-1    
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FIGURE 26:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.01610 

 

FIGURE 27:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.02172 
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FIGURE 28:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.05269 

 

FIGURE 29:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.07892 
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FIGURE 30:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.10117 

 

FIGURE 31:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.13056 
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FIGURE 32:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.16104 

 

FIGURE 33:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.18619 
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FIGURE 34:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.21346 

 

FIGURE 35:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.23770 
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FIGURE 36:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.26773 

 

FIGURE 37:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.30339 
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FIGURE 38:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.33085 

 

FIGURE 39:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.36306 
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FIGURE 40:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.39141 

 

FIGURE 41:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.42359 
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FIGURE 42:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.44881 

 

FIGURE 43:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.47824 
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FIGURE 44:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.51188 

 

FIGURE 45:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.56186 



62 

 

FIGURE 46:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.59101 

 

FIGURE 47:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.61984 
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FIGURE 48:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.64521 

 

FIGURE 49:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.67341 
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FIGURE 50:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.69722 

 

FIGURE 51:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.72235 



65 

 

FIGURE 52:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.74501 

 

FIGURE 53:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.78822 
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FIGURE 54:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.81090 

 

FIGURE 55:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.82766 
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FIGURE 56:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.85193 

 

FIGURE 57:  Surface Shape Validation Data Comparison at Inflation Ratio of 0.88366 
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 As a further attempt to validate the derived model against the measurements, the 

calculated depth of the inflatable aperture antenna surface was compared against the 

simulated depth.  The depth is defined at the point on the vertex of the surface, the 𝑥 and 

𝑦 axes are zero.  Therefore, (2.64) is solved for the depth in (2.65), using two elliptic 

Integral function identities in (2.66) and (2.67) in the final form as (2.68). 

𝑧(0,0) =
𝑟𝐶√2[E(sn(arccn(

√02+02

𝑟𝐶
,
1

√2
),
1

√2
),
1

√2
)−

1

2
F(sn(arccn(

√02+02

𝑟𝐶
,
1

√2
),
1

√2
),
1

√2
)]

−𝑟𝐶√2[E(sn(𝑢0,
1

√2
),
1

√2
)−

1

2
F(sn(𝑢0,

1

√2
),
1

√2
)]

    (2.65)  

arccn (
√02+02

𝑟𝐶
,
1

√2
) = K (

1

√2
)        (2.66)  

sn (K (
1

√2
) ,

1

√2
) = 1         (2.67)  

𝑧0 = 𝑟𝐶√2 (E (1,
1

√2
) −

1

2
F (1,

1

√2
) − E (sn (𝑢0,

1

√2
) ,

1

√2
) +

1

2
F (sn (𝑢0,

1

√2
) ,

1

√2
))   (2.68)  

Using all of the measured Inflation Ratio data collections, the ratio of the measured depth 

to measured diameter was compared to the simulated ratio of depth over diameter.  The 

plot of this comparison is shown in Figure 58, where the correlation between the 

predicted model and measured models was 0.99925. 

 

FIGURE 58:  Depth to Diameter Shape Validation Data Comparison 
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 With the surface profile validated against test data, it is useful in order to visualize 

the surface profile as a function of the Inflation Ratio parameter.  The three-dimensional 

surface profile is illustrated in Figures 59 through 68 for Inflation Ratio values of 0.09, 

0.19, 0.29, 0.39, 0.49, 0.59, 0.69, 0.79, 0.89, and 0.99 respectively, all while using a 

constant diameter.  Each plot is color-coded individually to represent the depth of the 

surface illustrated in that particular figure. 

 

FIGURE 59:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.09 

 

FIGURE 60:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.19 
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FIGURE 61:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.29 

 

FIGURE 62:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.39 

 

FIGURE 63:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.49 
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FIGURE 64:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.59 

 

FIGURE 65:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.69 

 

FIGURE 66:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.79 
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FIGURE 67:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.89 

 

FIGURE 68:  Inflatable Aperture Antenna Surface Profile:  Inflation Ratio = 0.99 

 

2.6 Summary 

 

The author’s contributions derived the mathematical model of the inflatable 

aperture antenna surface using the Calculus of Variations technique in Sections 2.2 

through 2.5, following a similar, referenced derivation approach to previous efforts using 

Mylar balloons in Section 2.1.  The inflatable aperture antenna surface shape is highly 

consistent with the form of the Mylar balloon surface shape, with the primary differences 
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being with an offset factor such that the edge of the surface resides on the axis.  For the 

Mylar balloon, that edge does reside on the axis, as illustrated in Figure 10; however, it is 

at that point, where the slope is negative infinity, as illustrated in Figure 11.  

Experimental data collection activities were necessary to derive the edge slope as a 

function of the Inflation Ratio, and that data collection was performed using Laser Radar 

metrology.  That same data collection activity provided validation data for measuring the 

entire inflatable test article surface.  The validation data correlated with over 0.999 

relationship to the predicted model of the surface. 

It is important to note that the derivation of the surface of the Mylar balloon does 

not factor in wrinkles, which appear when the balloon is inflated, based on the material of 

the balloon manufactured from two flat discs.  The Mylar balloon model is derived in two 

dimensions, and extrapolated around an axis, to create the third dimension.  The 

derivation of the inflatable aperture antenna follows a similar approach, however, it is 

expected that an application of the development of the large aperture antenna surface 

model is that such a technology would not utilize two flat discs as utilized in a Mylar 

balloon.  It is expected that manufacturing of this technology would be performed on a 

shaped mandrel, where the desired shape would be used as a mold of the surface, and the 

surfaces created on the mandrel would then be joined together to form the inflatable 

aperture antenna.  Mandrels are typically predistorted to compensate for shape changes 

after curing and/or releasing film.  The surface created from such a technique would 

therefore be free of wrinkles when deployed and have the nominal predistortion aspects 

of the films handled.  
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CHAPTER III 

INFLATABLE APERTURE ANTENNA RF PERFORMANCE MODEL DERIVATION 

 

 

Optics is the study of light, in which geometric optics (GO), in particular, is the 

part of optics that deals with light rays or “beams” of light.  This is the phenomena of 

reflection and refraction, such as in prisms, lenses, mirrors, microscopes, telescopes, or 

cameras.  A consequence of geometric optics is that obstructions create a 1-to-1 mapping 

with a shadow produced, and that the beam of light can propagate without diverging.  

Now, as seen via Huygen’s analysis of diffraction, the theory of geometric optics does 

not predict the measured response, as diffraction shows that shadows do not exhibit sharp 

edges, and that beams of light diverge, or spread, as a function of transmitted distance [9, 

10, 12]. 

However, the above response does not match the natural response of light when 

light is viewed as a wave and not a ray.  Physical optics (PO) deals with the wave nature 

of light, in which the phenomena of diffraction, interference, polarization, color, 

diffraction gratings, spectroscopy, and diffraction patterns are examined [12].  It is 
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important to state that although these theories discuss the nature and effect of light, light 

is only different from RF energy when examining the frequency and corresponding 

wavelength of the spectrum of interest.  As such, it is completely correct to apply optical 

theories to determine RF performance for antennas, as a corollary for assessing the 

performance of a telescope in the optics domain. 

The remaining content of this chapter provides the background and reference of 

the PO methodology for solid parabolic antennas in Section 3.1.  Sections 3.2 through 3.6 

provide further referenced explanations of the five step analysis process highlighted in 

Section 3.1, in order to allow Section 3.7 to discuss the author’s contributions in 

modifying the PO methodology of a solid parabolic reflector antenna to support the 

analysis of the inflatable aperture antenna.  Finally, Section 3.8 summarizes the author’s 

contributions towards the PO methodology of the inflatable aperture antenna provided in 

Section 3.7 against the reference contributions from Sections 3.1 through 3.6. 

 

3.1 Background of Physical Optics Model 

 

It is also important to state that while geometric optics does have limitations in 

terms of its accuracies; some aspects of the approach are still valid and appropriate to 

utilize.  For example, in the general theory of geometric optics for antenna theory, one 

has RF rays emanating from the focal point of the antenna, which are reflected by the 

antenna surface towards the axial direction, due to the reflective properties and shape of 

parabolic antennas.  The geometric optics theory is valid when determining the direction 

of which the rays will travel once reflected by the antenna surface.  However, the 
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limitation of the geometrical optics result is that the RF energy has to be converted from 

within the near-field of the antenna to the far-field to determine realistic antenna patterns.  

According to geometric optics, the beam would exhibit no divergence, and the RF energy 

would be transmitted in a collimated beam that is the size of the diameter of the antenna 

with constant in-plane phase.  To overcome this, the geometrical optics approach 

typically determines the far-field antenna response with a two-dimensional Fast Fourier 

Transform (FFT) [1].  This is the same as how the Fraunhofer diffraction is calculated in 

the optics realm. 

To implement the physical optics approach, one must understand that the field at 

any point is considered the sum of contributions of the fields at all other points in space 

[12].  As such, for example, the feed element in an antenna system does not have a point 

source origin, as that is not the manner in which feed elements operate.  One must also 

understand the differences in the electric field and the magnetic field, and how the two 

fields interact to produce the overall electromagnetic field.  First, it is clear in Maxwell’s 

equations, provided in (3.1) and (3.2), that the Electric Field Intensity 𝐄 and the Magnetic 

Field Intensity 𝐇 jointly interact. 

𝑗𝜔𝜀0𝐄 − ∇ × 𝐇 =  −𝐉         (3.1)  

𝑗𝜔𝜇0𝐇 − ∇ × 𝐄 = −𝐌         (3.2)  

In (3.1) and (3.2), the terms and functions used are defined as follows: 

 𝜔 is the frequency of the wave, in rad/s 

 𝜀0 is the permittivity of free space 

 𝐄 is the Electric Field Intensity of the wave 
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 ∇ × is the curl operator of the variable that follows 

 𝐇 is the Magnetizing Field Intensity of the wave 

 𝐉 is the Electric Current Density of the wave 

 𝜇0 is the permeability of free space 

 𝐌 is the Magnetic Current Density of the wave 

If an arbitrary vector source current distribution pair were 𝐉(𝐫′) and 𝐌(𝐫′) with 𝐫′ 

defined in (3.3), then the radiated fields are given in (3.4) and (3.5). 

𝐫′ = �̂�𝑥′ + �̂�𝑦′ + �̂�𝑧′         (3.3)  

𝐄(𝐫) = ∫[𝐄𝑙𝑒(𝐫, 𝐫
′, 𝐉(𝐫′)) + 𝐄𝑙𝑚(𝐫, 𝐫

′, 𝐌(𝐫′))] 𝑑𝑉′      (3.4)  

𝐇(𝐫) = ∫[𝐇𝑙𝑒(𝐫, 𝐫
′, 𝐉(𝐫′)) + 𝐇𝑙𝑚(𝐫, 𝐫

′, 𝐌(𝐫′))] 𝑑𝑉′      (3.5)  

In (3.3) through (3.5), the additional terms used are defined as follows: 

 𝐫′ is the position vector of the source current sample coordinate system, [�̂�, �̂�, �̂�] 

 𝐄(𝐫) is the radiated Electric Field Intensity of the wave at position 𝐫 

 𝐇(𝐫) is the Magnetizing Field Intensity of the wave at position 𝐫 

 𝐉(𝐫′) is the arbitrary vector source Electric Current Density of the wave at 

position 𝐫′ 

 𝐌(𝐫′) is the arbitrary vector source Magnetic Current Density of the wave at 

position 𝐫′ 

 𝐄𝑙𝑒(𝐫, 𝐫
′, 𝐉(𝐫′)) is the vector Electric Field Intensity at position 𝐫 radiated by the 

vector Electric Current Density at position 𝐫′ 
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 𝐄𝑙𝑚(𝐫, 𝐫
′, 𝐌(𝐫′)) is the vector Electric Field Intensity at position 𝐫 radiated by the 

vector Magnetic Current Density at position 𝐫′ 

 𝐇𝑙𝑒(𝐫, 𝐫
′, 𝐉(𝐫′)) is the vector Magnetic Field Intensity at position 𝐫 radiated by the 

vector Electric Current Density at position 𝐫′ 

 𝐇𝑙𝑚(𝐫, 𝐫
′, 𝐌(𝐫′)) is the vector Magnetic Field Intensity at position 𝐫 radiated by 

the vector Magnetic Current Density at position 𝐫′ 

 𝑉′ is the volume of space from which position 𝐫′ exists 

 When using the PO methodology with a reflector antenna, one must understand 

the fields and currents that are incident on the reflector surface.  Included in this is the 

direction in which the fields have propagated to reach the surface, the tangential plane to 

the reflector surface at the location of incidence, and the magnitude of the field on the 

reflector surface at the location of incidence [12].  The theories utilized in GO to 

determine the direction of arrival, and therefore, the direction of reflection apply in this 

aspect.  However, in terms of the reflector surface currents, the following two equations 

apply in understanding the variation between the incident current and reflected current, 

given below in (3.6) and (3.7). 

𝐉𝑅 = −𝐉𝐼          (3.6)  

𝐌𝑅 = 𝐌𝐼          (3.7)  

In (3.6) and (3.7), the additional terms used are defined as follows: 

 𝐉𝑅 is the reflected Electric Current Density of the wave 

 𝐉𝐼 is the incident Electric Current Density of the wave 
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 𝐌𝑅 is the reflected Magnetic Current Density of the wave 

 𝐌𝐼 is the incident Magnetic Current Density of the wave 

 It is important to note that the types of RF waves that are being utilized in 

reflector antenna systems are those designated Transverse Electro-Magnetic waves 

(TEM) [9, 10, 12].  As such, the Electric and Magnetic fields remain orthogonal to each 

other, and to the direction of propagation.  Thus, the end result is that if both current 

densities were to be negated upon reflection, then the direction of propagation would not 

change, and reflection on the surface would not occur. 

 The PO methodology for a prime focus antenna is written using scripts and 

follows a straightforward five step process [12], as illustrated in Figure 69.  Note that this 

process can also be later modified to include effects such as spillover and blockages. 

 

FIGURE 69:  Physical Optics Calculation Workflow 

 

3.2 Derivation of RF Geometrical and Electrical Parameters 

 

In the first step of Figure 69, parameters such as the operating frequency, TEM 

mode numbers, focal length, focal position, aperture size, aperture sampling, radiation 

pattern angle limits, and radiation pattern angle sampling, are provided as inputs to the 

problem.  Free space constants of impedance and the speed of light are defined based on 

the free space permittivity and permeability [12], in (3.8) and (3.9). 
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𝑍0 = √
𝜇0

0
          (3.8)  

𝑐 =
1

√ 0𝜇0
          (3.9)  

In (3.8) and (3.9), the additional terms used are defined as follows: 

 𝑍0 is the impedance of free space 

 𝑐 is the speed of light in free space 

Given a specific operating frequency of an antenna, the operating wavelength of the 

antenna, the radian-based frequency of the antenna, and the wavenumber of the antenna 

[12] are defined in (3.10) through (3.12) respectively. 

𝜆 =
𝑐

𝑓
           (3.10)  

𝜔 = 2𝜋𝑓          (3.11)  

𝑘0 = 𝜔√𝜀0𝜇0          (3.12)  

In (3.10) through (3.12), the additional terms used are defined as follows: 

 𝜆 is the operating wavelength of the antenna 

 𝑓 is the operating frequency of the antenna 

 𝑘0 is the operating wavenumber of the antenna 

Given a specific size of the prime-focus parabolic antenna and its 
𝐹

𝐷
 ratio, the focal 

length, paraboloidal surface shape, and minimum far-field distance [12] are defined in 

(3.13) through (3.15) respectively. 

𝐹 =
𝐹

𝐷
𝐷           (3.13)  
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𝑧 =
(𝑥2+𝑦2)

4𝐹
− 𝐹          (3.14)  

𝑅𝐹𝐹 =
2𝐷2

𝜆
          (3.15)  

In (3.13) through (3.15), the additional terms used are defined as follows: 

 𝐹 is the focal length between the antenna focus and the antenna vertex 

 
𝐹

𝐷
 is the focal length to diameter ratio 

 𝐷 is the antenna diameter 

 [𝑥, 𝑦, 𝑧] are coordinates on the antenna’s surface 

 𝑅𝐹𝐹 is the antenna’s minimum far-field distance 

The surface profile equation given in (3.14) has the antenna feed located at the 

focus, nominally at the origin of the coordinate system, which has the antenna vertex 

located along the negative z-axis at a distance of the focal length from the coordinate 

system origin.  The far-field distance is based on the distance from the antenna vertex, 

where the nominal coordinate system of the antenna’s far-field response being in 

spherical θ-φ coordinates at the distance of 𝑅𝐹𝐹.  Additional inputs are nominally 

specified to determine the desired angular antenna response, defined in (3.16) and (3.17). 

𝛉 = 𝜃𝑚𝑖𝑛: Δ𝜃: 𝜃𝑚𝑎𝑥         (3.16)  

𝛗 = φ𝑚𝑖𝑛: Δφ: φ𝑚𝑎𝑥         (3.17)  

In (3.16) and (3.17), the additional terms used are defined as follows: 

 𝛉 is the set of far-field angles off of the axial axis 

 𝜃𝑚𝑖𝑛 is the minimum off-axial far-field angle 
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 Δ𝜃 is the increment of the off-axial far-field angle 

 𝜃𝑚𝑎𝑥 is the maximum off-axial far-field angle 

 𝛗 is the set of far-field angles rotated around the axial axis 

 φ𝑚𝑖𝑛 is the minimum axial-rotated far-field angle 

 Δφ is the increment of the axial-rotated far-field angle 

 φ𝑚𝑎𝑥 is the maximum axial-rotated far-field angle 

For circularly symmetric antenna patterns, 𝛗 may usually take the form of a 

single value.  Additionally, 𝛉 may usually take the form of a set of angles from zero to 

the user-specified maximum off-axial angle.  For an antenna pattern that is not circularly 

symmetric, the 𝛗 set should not be a single value, as that set of far-field antenna angles 

would not provide a sufficient set of angular data to have the antenna pattern properly 

characterized. 

 

3.3 Derivation of Antenna Source Geometry and Currents 

 

In the second step of Figure 69, the reflector feed element geometry and aperture 

incident currents are determined, which are dependent on the nature of the feed element 

geometry and the distance between the feed and the aperture surface.  The feed of an 

antenna pattern can typically take the form of a hardware-specific feed profile given the 

size and shape of the antenna feed, or can take the form of a user-specified feed-taper 

utilizing a cosinusoidal response to achieve the feed taper at the edge of the aperture [2, 

12].  This second style of antenna feed is used in this derivation effort, with the subtended 
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angle of the paraboloid given in (3.18) and the cosinusoidal powers associated with the 

antenna feed response in terms of Electric and Magnetizing Fields of the wave in (3.19) 

and (3.20). 

𝜃𝑠𝑢𝑏𝑡𝑒𝑛𝑑𝑒𝑑 = 2 tan−1 (
𝐷

4𝐹
)         (3.18)  

𝑞𝐸 =
1

2

𝑇

10 log10(cos(𝜃𝑠𝑢𝑏𝑡𝑒𝑛𝑑𝑒𝑑))
        (3.19)  

𝑞𝐻 =
1

2

𝑇

10 log10(cos(𝜃𝑠𝑢𝑏𝑡𝑒𝑛𝑑𝑒𝑑))
        (3.20)  

In (3.18) through (3.20), the additional terms used are defined as follows: 

 𝜃𝑠𝑢𝑏𝑡𝑒𝑛𝑑𝑒𝑑 is the subtended angle of the paraboloid 

 𝑞𝐸 is the cosinusoidal power of the feed Electric Field Intensity 

 𝑇 is the feed taper of the antenna 

 𝑞𝐻 is the cosinusoidal power of the feed Magnetizing Field Intensity 

For a y-axis axially polarized field incident on the antenna surface, the 

cosinusoidal powers are used with the polarization axis angle to provide the form of the 

reflector feed incident fields across the reflector surface [12], utilizing polar axes, in 

(3.21) for the Electric Field Intensity.  Equation (3.22) defines the relationship for the 

Magnetizing Field Intensity incident on the reflector surface, with (3.23) providing the 

final form. 

𝐄𝑖𝑛𝑐(𝐫𝑠) = [((cos(𝛉𝑠))
𝑞𝐸 sin(𝛗𝑠))�̂�𝑠 + ((cos(𝛉𝑠))

𝑞𝐻 cos(𝛗𝑠))�̂�𝑠]
e−𝑗𝑘0𝑟𝑠

𝑟𝑠
   (3.21)  

𝐇𝑖𝑛𝑐(𝐫𝑠) =
1

𝑍0
𝐫𝑠 × 𝐄𝑖𝑛𝑐(𝐫𝑠)        (3.22)  

𝐇𝑖𝑛𝑐(𝐫𝑠) = [(−(cos(𝛉𝑠))
𝑞𝐻 cos(𝛗𝑠))�̂�𝑠 + ((cos(𝛉𝑠))

𝑞𝐸 sin(𝛗𝑠))�̂�𝑠]
e−𝑗𝑘0𝑟𝑠

𝑍0𝑟𝑠
   (3.23)  
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In (3.21) through (3.23), the additional terms used are defined as follows: 

 𝐫𝑠 is the radial element on the reflector surface, in the reflector polar coordinate 

system, [𝐫�̂�, �̂�𝑠, �̂�𝑠] 

 𝛉𝑠 is the theta angle element on the reflector surface, in the reflector polar 

coordinate system, [𝐫�̂�, �̂�𝑠, �̂�𝑠] 

 𝛗𝑠 is the phi angle element on the reflector surface, in the reflector polar 

coordinate system, [𝐫�̂�, �̂�𝑠, �̂�𝑠] 

 𝐄𝑖𝑛𝑐(𝐫𝑠) is the incident Electric Field Intensity of the wave at position 𝐫𝑠 on the 

reflector surface 

 𝑗 is the imaginary unit number, defined by √−1 

 𝑟𝑠 is the distance to the reflector surface for position vector 𝐫𝑠 

 𝐇𝑖𝑛𝑐(𝐫𝑠) is the incident Magnetizing Field Intensity of the wave at position 𝐫𝑠 on 

the reflector surface 

Given that polar coordinates are an inconvenient form to describe interactions on 

the reflector surface, commonly understood in Cartesian form [12], (3.21) is defined in 

Cartesian form in (3.24) through (3.26) and (3.23) is defined in Cartesian form in (3.27) 

through (3.29). 

𝐄𝑖𝑛𝑐(r𝑠,𝑥) = (((cos(θ𝑠))
(𝑞𝐸+1) − (cos(θ𝑠))

𝑞𝐻) cos(φ𝑠) sin(φ𝑠))
e−𝑗𝑘0𝑟𝑠

𝑟𝑠
   (3.24)  

𝐄𝑖𝑛𝑐(r𝑠,𝑦) = ((cos(θ𝑠))
(𝑞𝐸+1)(sin(φ𝑠))

2 + (cos(θ𝑠))
𝑞𝐻(cos(φ𝑠))

2)
e−𝑗𝑘0𝑟𝑠

𝑟𝑠
   (3.25)  

𝐄𝑖𝑛𝑐(r𝑠,𝑧) = (−(cos(θ𝑠))
𝑞𝐸 sin(θ𝑠) sin(φ𝑠))

e−𝑗𝑘0𝑟𝑠

𝑟𝑠
      (3.26)  
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𝐇𝑖𝑛𝑐(r𝑠,𝑥) = (−(cos(θ𝑠))
(𝑞𝐻+1)(cos(φ𝑠))

2 − (cos(θ𝑠))
𝑞𝐸(sin(φ𝑠))

2)
e−𝑗𝑘0𝑟𝑠

𝑍0𝑟𝑠
   (3.27)  

𝐇𝑖𝑛𝑐(r𝑠,𝑦) = ((−(cos(θ𝑠))
(𝑞𝐻+1) + (cos(θ𝑠))

𝑞𝐸) sin(φ𝑠) cos(φ𝑠))
e−𝑗𝑘0𝑟𝑠

𝑍0𝑟𝑠
   (3.28)  

𝐇𝑖𝑛𝑐(r𝑠,𝑧) = ((cos(θ𝑠))
𝑞𝐻 sin(θ𝑠) cos(φ𝑠))

e−𝑗𝑘0𝑟𝑠

𝑍0𝑟𝑠
      (3.29)  

In (3.24) through (3.29), the additional terms used are defined as follows: 

 [r𝑠,𝑥, r𝑠,𝑦, r𝑠,𝑧] is the position vector on the reflector surface, in Cartesian 

coordinates  

 θ𝑠 is the theta angle on the reflector surface toward the position vector 𝐫𝑠 

 φ𝑠 is the phi angle on the reflector surface toward the position vector 𝐫𝑠 

 𝐄𝑖𝑛𝑐(r𝑠,𝑥) is the incident Electric Field Intensity of the wave at position 𝐫𝑠 on the 

reflector surface in the x-axis Cartesian coordinate 

 𝐄𝑖𝑛𝑐(r𝑠,𝑦) is the incident Electric Field Intensity of the wave at position 𝐫𝑠 on the 

reflector surface in the y-axis Cartesian coordinate 

 𝐄𝑖𝑛𝑐(r𝑠,𝑧) is the incident Electric Field Intensity of the wave at position 𝐫𝑠 on the 

reflector surface in the z-axis Cartesian coordinate 

 𝐇𝑖𝑛𝑐(r𝑠,𝑥) is the incident Magnetizing Field Intensity of the wave at position 𝐫𝑠 

on the reflector surface in the x-axis Cartesian coordinate 

 𝐇𝑖𝑛𝑐(r𝑠,𝑦) is the incident Magnetizing Field Intensity of the wave at position 𝐫𝑠 

on the reflector surface in the y-axis Cartesian coordinate 



86 

 𝐇𝑖𝑛𝑐(r𝑠,𝑧) is the incident Magnetizing Field Intensity of the wave at position 𝐫𝑠 on 

the reflector surface in the z-axis Cartesian coordinate 

 

3.4 Derivation of Antenna Surface Geometry 

 

In the third step of Figure 69, the aperture is divided into sampled surface points.  

These sampled surface points are based on the surface profile of the aperture.  Integration 

areas corresponding to the sampled surface points, based on the curvature of the aperture 

at those sampled surface points, are also calculated in this third step.  The specific 

reflector surface points and angles to those points, in which the incident Electric and 

Magnetizing Field Intensities of the wave was defined in (3.24) through (3.29) are 

defined by this process.  Given the reflector surface defined by (3.14), the vertex and 

center of the reflector in the z-axis is defined by (3.30). 

𝑧(𝑥 = 0, 𝑦 = 0) = −𝐹         (3.30)  

As the reflector surface is defined by the antenna diameter, 𝐷, the minimum number of 

points on a single axis is defined by the Nyquist sampling process in (3.31) [1, 3]. 

𝑁 = floor (
𝐷

2𝜆
) + 1         (3.31)  

In (3.31), the terms and functions used are defined as follows: 

 𝑁 is the minimum number of sample points across a single axis for the reflector 

antenna 

 floor( ) is the floor operator process of the argument 
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Given the number of sample points, the set of x-axis and y-axis points that could 

comprise the reflector surface are given by (3.32) and (3.33). 

r𝑠,𝑥,𝑎𝑙𝑙 = −
𝐷

2
:

D

(𝑁−1)
:
𝐷

2
         (3.32)  

r𝑠,𝑦,𝑎𝑙𝑙 = −
𝐷

2
:

D

(𝑁−1)
:
𝐷

2
         (3.33)  

In (3.32) and (3.33), the additional terms used are defined as follows: 

 [r𝑠,𝑥,𝑎𝑙𝑙, r𝑠,𝑦,𝑎𝑙𝑙] are the x-axis and y-axis potential reflector grid points defined by 

the gridding process 

An illustration of all the possible x-axis and y-axis grid points associated with the 

parabolic reflector, as defined by (3.32) and (3.33) is shown below in Figure 70. 

 

FIGURE 70:  Potential X- & Y-Axis Reflector Grid Points 
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However, this format of the reflector surface points defined in (3.32) and (3.33) 

define a pure grid, which is inconsistent with the outer circle defined by the prime focus 

reflector surface, and so that set of points must be limited to the subset of points that meet 

the condition [12] provided in (3.34), in that the points must be within the radius of the 

reflector.  The constrained version of the grid points that are defined in (3.34) is 

illustrated in Figure 71. 

[r𝑠,𝑥, r𝑠,𝑦] ∶= √r𝑠,𝑥,𝑎𝑙𝑙
2 + r𝑠,𝑦,𝑎𝑙𝑙

2 ≤
𝐷

2
       (3.34)  

 

FIGURE 71:  Sampled X- & Y-Axis Reflector Grid Points 

Given the set of sampled x-axis and y-axis reflector points, the sampled z-axis point is 

again defined by (3.14), and provided in (3.35) for the specific x-axis and y-axis sampled 
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points.  Figure 72 illustrates the three-dimensional form of the constrained reflector grid 

points using an 
𝐹

𝐷
 ratio of 0.25. 

𝑓(r𝑠,𝑥, r𝑠,𝑦 , r𝑠,𝑧) = r𝑠,𝑧 −
(r𝑠,𝑥

𝟐+r𝑠,𝑦
𝟐)

4𝐹
+ 𝐹       (3.35)  

 

FIGURE 72:  Sampled Reflector Grid Points 

The theta and phi angles to these sampled reflector surface points are defined by (3.36) 

and (3.37), with the plots of the theta and phi angles to these sampled reflector grid points 

shown in Figures 73 and 74, respectively, using the same 
𝐹

𝐷
 ratio of 0.25. 

θ𝑠 = cos−1 (
𝐹r𝑠,𝑧

r𝑠√r𝑠,𝑥
𝟐+r𝑠,𝑦

𝟐+r𝑠,𝑧
𝟐
)        (3.36)  
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φ𝑠 = tan−1 (
r𝑠,𝑦

r𝑠,𝑥
)          (3.37)  

 

FIGURE 73:  Sampled Reflector Grid Point Theta Angles 

 

FIGURE 74:  Sampled Reflector Grid Point Phi Angles 
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Next, the axial components of the normal vector to the reflector surface, based on 

the shape of the reflector surface [12], are provided in (3.38) through (3.40).  The normal 

vector to the reflector surface is based on the derivative of the reflector shape (3.35).  The 

magnitude of this normal vector is given in (3.41), and the unit normal components are 

provided in (3.42) through (3.44). 

n𝑥 =
𝜕

𝜕𝑥
𝑓(r𝑠,𝑥 , r𝑠,𝑦 , r𝑠,𝑧)         (3.38)  

n𝑥 = −
r𝑠,𝑥

2𝐹
   

n𝑦 =
𝜕

𝜕𝑦
𝑓(r𝑠,𝑥, r𝑠,𝑦 , r𝑠,𝑧)         (3.39)  

n𝑦 = −
r𝑠,𝑦

2𝐹
   

n𝑧 =
𝜕

𝜕𝑧
𝑓(r𝑠,𝑥 , r𝑠,𝑦, r𝑠,𝑧)         (3.40)  

n𝑧 = 1   

‖n‖ = √(−
r𝑠,𝑥

2𝐹
)
2

+ (−
r𝑠,𝑦

2𝐹
)
2

+ (1)2       (3.41)  

n𝑥
′ =

−
r𝑠,𝑥
2𝐹

√(−
r𝑠,𝑥
2𝐹

)
2
+(−

r𝑠,𝑦

2𝐹
)
2
+(1)2

         (3.42)  

n𝑦
′ =

−
r𝑠,𝑦

2𝐹

√(−
r𝑠,𝑥
2𝐹

)
2
+(−

r𝑠,𝑦

2𝐹
)
2
+(1)2

         (3.43)  

n𝑧
′ =

1

√(−
r𝑠,𝑥
2𝐹

)
2
+(−

r𝑠,𝑦

2𝐹
)
2
+(1)2

         (3.44)  

In (3.38) through (3.44), the additional terms used are defined as follows: 

 [n𝑥, n𝑦, n𝑧] are the reflector surface normal vector components at the sampled 

grid points [r𝑠,𝑥, r𝑠,𝑦, r𝑠,𝑧] 
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 ‖n‖ is the magnitude of the reflector surface normal vector 

 [n𝑥
′ , n𝑦

′ , n𝑧
′ ] are the reflector surface unit normal vector components at the 

sampled grid points [r𝑠,𝑥, r𝑠,𝑦, r𝑠,𝑧] 

Figure 75 illustrates the surface normal vectors from the sampled reflector grid points of 

Figure 72, where the normal vector is in the direction leaving each sampled reflector grid 

point.  These normal vectors will be utilized in the fourth step of the analysis process. 

 

FIGURE 75:  Sampled Reflector Grid Points with Normal Vectors 

Finally, the surface area is defined based on the two-dimensional integration of 

the surface [12], similar to how (2.3) defines the arc-length of a curve as the integration 



93 

of along the curvature in one dimension.  This is defined in (3.45) and expanded on for 

the parabolic antenna using its shape from (3.35) in (3.46) through (3.49). 

∆𝑆 = ∫ ∫ √1 + (
𝜕𝑧(𝑥,𝑦)

𝜕𝑥
)
2
√1 + (

𝜕𝑧(𝑥,𝑦)

𝜕𝑦
)
2

𝑑𝑆
𝑦+∆𝑦/2

𝑦−∆𝑦/2

𝑥+∆𝑥/2

𝑥−∆𝑥/2
     (3.45)  

𝑑𝑆 = ∆𝑥∆𝑦√1 + (−
𝑥

2𝐹
)
2
√1 + (−

𝑦

2𝐹
)
2

       (3.46)  

∆𝑆 = 𝑑𝑆𝑥𝑑𝑆𝑦          (3.47)  

𝑑𝑆𝑥 = 𝐹 [ln (
𝑥

2𝐹
+ √(

𝑥

2𝐹
)
2

+ 1) +
𝑥

2𝐹
√(

𝑥

2𝐹
)
2

+ 1]
𝑥−∆𝑥/2

𝑥+∆𝑥/2

     (3.48)  

𝑑𝑆𝑦 = 𝐹 [ln (
𝑦

2𝐹
+ √(

𝑦

2𝐹
)
2

+ 1) +
𝑦

2𝐹
√(

𝑦

2𝐹
)
2

+ 1]
𝑦−∆𝑦/2

𝑦+∆𝑦/2

     (3.49)  

In (3.45) through (3.49), the additional terms and functions used are defined as follows: 

 ∆𝑆 is the sampled surface area of the reflector surface at the sampled grid point 

[𝑥, y, 𝑧] 

 ∆𝑥 is the sampling interval in the x-axis 

 ∆𝑦 is the sampling interval in the y-axis 

 ln( ) is the natural logarithm function 

The implementation of this process is performed around each of the sampled 

reflector grid points, at equally spaced points defining a box around the sampled reflector 

grid point, in the X and Y axes, as observed in (3.48) and (3.49).  These box points 

around the sampled reflector grid point are defined in (3.50) through (3.53). 

𝑇+,+ = [r𝑠,𝑥 +
D

(𝑁−1)
, r𝑠,𝑦 +

D

(𝑁−1)
]        (3.50)  



94 

𝑇+,− = [r𝑠,𝑥 +
D

(𝑁−1)
, r𝑠,𝑦 −

D

(𝑁−1)
]        (3.51)  

𝑇−,+ = [r𝑠,𝑥 −
D

(𝑁−1)
, r𝑠,𝑦 +

D

(𝑁−1)
]        (3.52)  

𝑇−,− = [r𝑠,𝑥 −
D

(𝑁−1)
, r𝑠,𝑦 −

D

(𝑁−1)
]        (3.53)  

In (3.50) through (3.53), the additional terms used are defined as follows: 

 𝑇+,+ consists of the positive adjusted x-axis component and positive adjusted y-

axis component, [T𝑥,+, T𝑦,+], around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇+,− consists of the positive adjusted x-axis component and negative adjusted y-

axis component, [T𝑥,+, T𝑦,−], around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇−,+ consists of the negative adjusted x-axis component and positive adjusted y-

axis component, [T𝑥,−, T𝑦,+], around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇−,− consists of the negative adjusted x-axis component and negative adjusted y-

axis component, [T𝑥,−, T𝑦,−], around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

This set of box points around each sampled reflector grid point are utilized in the 

calculation of the sampled surface point surface area, using three intermediate steps [12] 

which utilize the two evaluation point criteria from (3.48) and (3.49), where these 

intermediate steps are defined (3.54) through (3.65), to derive the full surface area 

equation in (3.66). 

𝑇𝑥,+,1 =
𝑇𝑥,+

2𝐹
          (3.54)  

𝑇𝑥,+,2 = √𝑇𝑥,+,1
2 + 1         (3.55)  
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𝑇𝑥,+,3 = 𝐹(𝑇𝑥,+,1𝑇𝑥,+,2 + log(𝑇𝑥,+,1 + 𝑇𝑥,+,2))      (3.56)  

𝑇𝑥,−,1 =
𝑇𝑥,−

2𝐹
          (3.57)  

𝑇𝑥,−,2 = √𝑇𝑥,−,1
2 + 1         (3.58)  

𝑇𝑥,−,3 = 𝐹(𝑇𝑥,−,1𝑇𝑥,−,2 + log(𝑇𝑥,−,1 + 𝑇𝑥,−,2))      (3.59)  

𝑇𝑦,+,1 =
𝑇𝑦,+

2𝐹
          (3.60)  

𝑇𝑦,+,2 = √𝑇𝑦,+,1
2 + 1         (3.61)  

𝑇𝑦,+,3 = 𝐹(𝑇𝑦,+,1𝑇𝑦,+,2 + log(𝑇𝑦,+,1 + 𝑇𝑦,+,2))      (3.62)  

𝑇𝑦,−,1 =
𝑇𝑦,−

2𝐹
          (3.63)  

𝑇𝑦,−,2 = √𝑇𝑦,−,1
2 + 1         (3.64)  

𝑇𝑦,−,3 = 𝐹(𝑇𝑦,−,1𝑇𝑦,−,2 + log(𝑇𝑦,−,1 + 𝑇𝑦,−,2))      (3.65)  

A𝑠 = (𝑇𝑥,+,3 − 𝑇𝑥,−,3)(𝑇𝑦,+,3 − 𝑇𝑦,−,3)       (3.66)  

In (3.54) through (3.66), the additional terms used are defined as follows: 

 𝑇𝑥,+,1 is the first intermediate calculation of the positive adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑥,+,2 is the second intermediate calculation of the positive adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑥,+,3 is the third intermediate calculation of the positive adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 
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 𝑇𝑥,−,1 is the first intermediate calculation of the negative adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑥,−,2 is the second intermediate calculation of the negative adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑥,−,3 is the third intermediate calculation of the negative adjusted x-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,+,1 is the first intermediate calculation of the positive adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,+,2 is the second intermediate calculation of the positive adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,+,3 is the third intermediate calculation of the positive adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,−,1 is the first intermediate calculation of the negative adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,−,2 is the second intermediate calculation of the negative adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 𝑇𝑦,−,3 is the third intermediate calculation of the negative adjusted y-axis 

component, around the sampled grid point [r𝑠,𝑥, r𝑠,𝑦] 

 A𝑠 is the sampled surface area of the reflector surface at the sampled grid point 

[r𝑠,𝑥, r𝑠,𝑦, r𝑠,𝑧] 
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Evaluation of (3.66) shows that each grid point does not have equal curvature 

surface area throughout the surface.  However, for grid points that are located near the 

edge of the reflector, their surface area may be too large based on this approach, as this 

nominal approach utilizes potential area beyond the sampled grid point, since the 

evaluation criteria in (3.48) and (3.49) extend into regions beyond the actual surface of 

the antenna.  As such, a process is enabled to reduce the surface area of grid points that 

meet the any of the criteria specified in (3.67) through (3.70).   

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑥,+ ∶= √(r𝑠,𝑥 +
D

(𝑁−1)
)
2

+ r𝑠,𝑦
2 >

𝐷

2
      (3.67)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑥,− ∶= √(r𝑠,𝑥 −
D

(𝑁−1)
)
2

+ r𝑠,𝑦
2 >

𝐷

2
      (3.68)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑦,+ ∶= √r𝑠,𝑥
2 + (r𝑠,𝑦 +

D

(𝑁−1)
)
2

>
𝐷

2
      (3.69)  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑦,− ∶= √r𝑠,𝑥
2 + (r𝑠,𝑦 −

D

(𝑁−1)
)
2

>
𝐷

2
      (3.70)  

As stated, if any of the criteria from (3.67) through (3.70) are found to be true, 

then the box defined in (3.50) through (3.53) is subdivided in the X and Y axes by a 

factor of 
D

10(𝑁−1)
 to produce 100 sub-boxes.  Those sub-boxes are then evaluated to see if 

they are found to be within the radius of the reflector.  If they are within the radius of the 

reflector, then the process of deriving the surface area for each grid point is performed 

around the center of each sub-box, replicating the process of (3.48) and (3.49) but with 

different sub-box centers per sub-box and the reduced sub-box spacing of 
D

10(𝑁−1)
.  The 

surface area of each of these grid points with any of the conditions met in (3.67) through 
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(3.70) are then found as the sum of the sub-box surface areas that are within the reflector 

radius.   

A visualization of the reflector surface area, using this criteria approach in (3.67) 

through (3.70) to accurately reduce the surface area for grid points near the reflector 

edge, is illustrated in Figure 76.  This information will be utilized later in the fifth step of 

this analysis process defined in Figure 69. 

 

FIGURE 76:  Sampled Reflector Grid Point Surface Area 
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3.5 Derivation of Antenna Aperture Incident Equivalent Currents 

 

In the fourth step of Figure 69, the incident fields from the second step are 

converted to incident Electric and Magnetic Current Densities, using the methodology 

provided in (3.4) and (3.5).  Additionally, the reflected Electric and Magnetic Current 

Densities are determined from the incident field direction of travel and the reflector 

curvature normal vector directions, using the methodology provided in (3.6) and (3.7).  

Equations (3.71) and (3.72) are the driving equations to convert between the incident 

fields on the reflector surface and the incident current densities.  The use of (3.71) and 

(3.72) enable the Cartesian field components, from (3.24) through (3.29), to be converted 

into incident current densities.  Equations (3.73) through (3.75) provide the normalized 

Electric Current Densities, while (3.76) through (3.78) provide the normalized Magnetic 

Current Densities, all in Cartesian form at the same reflector surface grid points as in 

(3.24) through (3.29). 

𝐉𝑖𝑛𝑐(𝐫𝑠) = 𝐧(𝐫𝑠) × 𝐇𝑖𝑛𝑐(𝐫𝑠)        (3.71)  

𝐌𝑖𝑛𝑐(𝐫𝑠) = −𝐧(𝐫𝑠) × 𝐄𝑖𝑛𝑐(𝐫𝑠)        (3.72)  

𝐉𝑖𝑛𝑐(r𝑠,𝑥) = (n𝑦
′ 𝐇𝑖𝑛𝑐(r𝑠,𝑧) − n𝑧

′𝐇𝑖𝑛𝑐(r𝑠,𝑦)) A𝑠      (3.73)  

𝐉𝑖𝑛𝑐(r𝑠,𝑦) = (n𝑧
′𝐇𝑖𝑛𝑐(r𝑠,𝑥) − n𝑥

′ 𝐇𝑖𝑛𝑐(r𝑠,𝑧))A𝑠      (3.74)  

𝐉𝑖𝑛𝑐(r𝑠,𝑧) = (n𝑥
′ 𝐇𝑖𝑛𝑐(r𝑠,𝑦) − n𝑦

′ 𝐇𝑖𝑛𝑐(r𝑠,𝑥))A𝑠      (3.75)  

𝐌𝑖𝑛𝑐(r𝑠,𝑥) = −(n𝑦
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑧) − n𝑧

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑦)) A𝑠      (3.76)  

𝐌𝑖𝑛𝑐(r𝑠,𝑦) = −(n𝑧
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑥) − n𝑥

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑧)) A𝑠      (3.77)  
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𝐌𝑖𝑛𝑐(r𝑠,𝑧) = −(n𝑥
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑦) − n𝑦

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑥)) A𝑠      (3.78)  

In (3.71) through (3.78), the additional terms used are defined as follows: 

 𝐧(𝐫𝑠) is the normal vector of the wave at position 𝐫𝑠 on the reflector surface 

 𝐉𝑖𝑛𝑐(r𝑠,𝑥) is the incident Electric Current Density of the wave at position 𝐫𝑠 on the 

reflector surface in the x-axis Cartesian coordinate 

 𝐉𝑖𝑛𝑐(r𝑠,𝑦) is the incident Electric Current Density of the wave at position 𝐫𝑠 on the 

reflector surface in the y-axis Cartesian coordinate 

 𝐉𝑖𝑛𝑐(r𝑠,𝑧) is the incident Electric Current Density of the wave at position 𝐫𝑠 on the 

reflector surface in the z-axis Cartesian coordinate 

 𝐌𝑖𝑛𝑐(r𝑠,𝑥) is the incident Magnetic Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the x-axis Cartesian coordinate 

 𝐌𝑖𝑛𝑐(r𝑠,𝑦) is the incident Magnetic Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the y-axis Cartesian coordinate 

 𝐌𝑖𝑛𝑐(r𝑠,𝑧) is the incident Magnetic Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the z-axis Cartesian coordinate 

The reflected Electric and Magnetic current densities are derived using (3.6) and (3.7), 

and are provided in (3.79) through (3.84) for the reflected Electric and Magnetic current 

densities, respectively. 

𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑥) = −(n𝑦
′ 𝐇𝑖𝑛𝑐(r𝑠,𝑧) − n𝑧

′𝐇𝑖𝑛𝑐(r𝑠,𝑦)) A𝑠      (3.79)  

𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑦) = −(n𝑧
′𝐇𝑖𝑛𝑐(r𝑠,𝑥) − n𝑥

′ 𝐇𝑖𝑛𝑐(r𝑠,𝑧)) A𝑠      (3.80)  
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𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑧) = −(n𝑥
′ 𝐇𝑖𝑛𝑐(r𝑠,𝑦) − n𝑦

′ 𝐇𝑖𝑛𝑐(r𝑠,𝑥)) A𝑠      (3.81)  

𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑥) = (n𝑦
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑧) − n𝑧

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑦)) A𝑠      (3.82)  

𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑦) = (n𝑧
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑥) − n𝑥

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑧)) A𝑠      (3.83)  

𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑧) = (n𝑥
′ 𝐄𝑖𝑛𝑐(r𝑠,𝑦) − n𝑦

′ 𝐄𝑖𝑛𝑐(r𝑠,𝑥)) A𝑠      (3.84)  

In (3.79) through (3.84), the additional terms used are defined as follows: 

 𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑥) is the reflected Electric Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the x-axis Cartesian coordinate 

 𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑦) is the reflected Electric Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the y-axis Cartesian coordinate 

 𝐉𝑟𝑒𝑓𝑙(r𝑠,𝑧) is the reflected Electric Current Density of the wave at position 𝐫𝑠 on 

the reflector surface in the z-axis Cartesian coordinate 

 𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑥) is the reflected Magnetic Current Density of the wave at position 𝐫𝑠 

on the reflector surface in the x-axis Cartesian coordinate 

 𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑦) is the reflected Magnetic Current Density of the wave at position 𝐫𝑠 

on the reflector surface in the y-axis Cartesian coordinate 

 𝐌𝑟𝑒𝑓𝑙(r𝑠,𝑧) is the reflected Magnetic Current Density of the wave at position 𝐫𝑠 

on the reflector surface in the z-axis Cartesian coordinate 
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3.6 Derivation of Antenna Aperture Radiation Patterns 

 

Finally, in the fifth step of Figure 69, the far-field polarized field profiles of the 

antenna pattern are determined from the reflected Electric and Magnetic current densities 

using the methodology provided in (3.4) and (3.5).  The driving equations to determine 

the far-field polarized fields [12] are provided in (3.85) and (3.86) using the far-field 

angles defined previously in (3.16) and (3.17).  Equations (3.87) and (3.88) provide the 

combined theta-polarized and combined phi-polarized fields [2, 12] from the far-field 

Electric and Magnetizing Field Intensity components in (3.85) and (3.86) for a given 

polarization. 

𝐇𝐹𝐹(𝛉, 𝛗) = −
𝑗𝑘

4𝜋
�̂� ∫𝐌𝑟𝑒𝑓𝑙(𝐫𝑠)e

−𝑗𝑘�̂�𝑅𝐹𝐹 𝑑𝑆𝐹𝐹      (3.85)  

𝐄𝐹𝐹(𝛉, 𝛗) =
𝑗𝑘

4𝜋
�̂� ∫ 𝐉𝑟𝑒𝑓𝑙(𝐫𝑠)e

−𝑗𝑘�̂�𝑅𝐹𝐹 𝑑𝑆𝐹𝐹       (3.86)  

𝐅θ(𝛉, 𝛗) = (𝐄𝐹𝐹(𝛉, 𝛗) + 𝑍0𝐇𝐹𝐹(𝛉, 𝛗))�̂�       (3.87)  

𝐅φ(𝛉, 𝛗) = (𝐄𝐹𝐹(𝛉, 𝛗) + 𝑍0𝐇𝐹𝐹(𝛉, 𝛗))�̂�       (3.88)  

In (3.85) through (3.88), the additional terms used are defined as follows: 

 𝐇𝐹𝐹(𝛉,𝛗) is the far-field Magnetizing Field Intensity of the wave at far-field 

angles [𝛉,𝛗] 

 𝐄𝐹𝐹(𝛉,𝛗) is the far-field Electric Field Intensity of the wave at far-field angles 

[𝛉,𝛗] 

 𝑑𝑆𝐹𝐹 is the far-field region of interest to integrate the reflected current densities 

from the reflector surface 
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 𝐅θ(𝛉,𝛗) is the combined theta-polarized far-field antenna pattern at far-field 

angles [𝛉,𝛗] 

 𝐅φ(𝛉,𝛗) is the combined phi-polarized far-field antenna pattern at far-field 

angles [𝛉,𝛗] 

 

3.7 Modification of Physical Optics Modeling for Inflatable Aperture Antenna 

 

The modifications necessary to augment the physical optics modeling of reflector 

aperture antennas to support modeling inflatable aperture antennas is focused on the 

calculations performed in the third step of Figure 69 to derive the surface geometry.  

Three unique modification activities are necessary in order to perform physical optics 

modeling of inflatable aperture antennas.  First, the inflatable aperture antenna surface 

profile needs to be modified to be in the form of the reflector surface profile provided in 

(3.35).  Second, the surface normal vector needs to be redefined using derivatives of the 

inflatable aperture antenna equation.  Third, the surface area of each grid point on the 

inflatable aperture antenna needs to be redefined using the arc length of the inflatable 

aperture antenna surface profile.  

Efforts to define the inflatable aperture surface profile antenna in the form of 

(3.35) are based on the inflatable aperture surface profile (2.64) and (2.68).  In (3.35), the 

z-axis of the surface profile when x and y components are zero is the negative focal 

length, and it is desired that the inflatable aperture antenna surface profile is shown in this 

same manner.  Equation (2.68) provides the z-axis when the x and y components are zero, 

and so that equation is used with the nominal surface profile provided in (2.65), where 
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the z-axis is zero at the edge of the inflated surface, where the x and/or y-axis values are 

maximized.  The combination of these equations to mimic (3.35) is provided next in 

(3.89) and simplified in (3.90). 

𝑧(𝑥, 𝑦) =

𝑟𝐶√2 [E (sn (arccn (
√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)]

−𝑟𝐶√2 [E (sn (𝑢0,
1

√2
) ,

1

√2
) −

1

2
F (sn (𝑢0,

1

√2
) ,

1

√2
)]

−𝑟𝐶√2 (E (1,
1

√2
) −

1

2
F (1,

1

√2
) − E (sn (𝑢0,

1

√2
) ,

1

√2
) +

1

2
F (sn (𝑢0,

1

√2
) ,

1

√2
)) − 𝐹

 (3.89)  

𝑧(x, y) =
𝑟𝐶√2 [E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)]

−𝑟𝐶√2 (E (1,
1

√2
) −

1

2
F (1,

1

√2
)) − 𝐹

 (3.90)  

With the surface profile equation defined in the proper format by (3.90), the 

second step of the necessary modifications to redefine the surface normal vector can be 

performed.  Previously, (3.38) and (3.39) defined the partial derivatives of the x and y-

axis components of (3.35), and the final normal vector was defined in (3.42) through 

(3.44).  The modification of that process is started in (3.91) and (3.92), as the 

modification of (3.38) and (3.39), utilizing the inflatable antenna surface profile given in 

(3.90). 

n𝑥 =
𝜕

𝜕𝑥
𝑧(𝑥, 𝑦)          (3.91)  

n𝑥 =
𝜕

𝜕𝑥
(
𝑟𝐶√2 [E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)]

−𝑟𝐶√2 (E (1,
1

√2
) −

1

2
F (1,

1

√2
)) − 𝐹

)  

n𝑥 =
𝜕

𝜕𝑥
(𝑟𝐶√2 [E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)])  

n𝑦 =
𝜕

𝜕𝑦
𝑧(𝑥, 𝑦)          (3.92)  
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n𝑦 =
𝜕

𝜕𝑦
(
𝑟𝐶√2 [E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)]

−𝑟𝐶√2(E (1,
1

√2
) −

1

2
F (1,

1

√2
)) − 𝐹

)  

n𝑦 =
𝜕

𝜕𝑦
(𝑟𝐶√2 [E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
) −

1

2
F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)])  

Initial examination of (3.91) and (3.92) show that they are both functions of the 

elliptic E, elliptic F, Jacobi sine, and Jacobi cosine functions.  In order to complete these 

partial derivatives, the chain rule will be required to evaluate to the inner-most variable 

arguments.  Several important partial derivative identities of these elliptic E, elliptic F, 

Jacobi sine, and Jacobi cosine functions [25] are provided for reference in (3.93) through 

(3.96). 

𝜕

𝜕𝑢
E(𝑢, 𝑘) = √1 − 𝑘2 sin2(𝑢)        (3.93)  

𝜕

𝜕𝑢
F(𝑢, 𝑘) =

1

√1−𝑘2 sin2(𝑢)
         (3.94)  

𝜕

𝜕𝑢
sn(𝑢, 𝑘) = cn(𝑢, 𝑘)dn(𝑢, 𝑘)        (3.95)  

𝜕

𝜕𝑢
cn(𝑢, 𝑘) = −sn(𝑢, 𝑘)dn(𝑢, 𝑘)        (3.96)  

In (3.93) through (3.96), the additional function used is defined as follows: 

 dn( ) is the Jacobi delta amplitude function 

The use of a quadruple function chain rule process to solve the partial derivative 

of (3.91) is shown next in (3.97) and simplified in (3.98). 

n𝑥 =

𝑟𝐶√2
𝜕

𝜕𝑥
(E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
))

𝜕

𝜕𝑥
(sn (arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
))

𝜕

𝜕𝑥
(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
))

𝜕

𝜕𝑥
(
√𝑥2+𝑦2

𝑟𝐶
)

−
𝑟𝐶√2

2

𝜕

𝜕𝑥
(F (sn (arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
))

𝜕

𝜕𝑥
(sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
))

𝜕

𝜕𝑥
(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
))

𝜕

𝜕𝑥
(
√𝑥2+𝑦2

𝑟𝐶
)

 

 (3.97)  
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n𝑥 = 𝑟𝐶√2
𝜕

𝜕𝑥
(sn (arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
))

𝜕

𝜕𝑥
(arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
))

𝜕

𝜕𝑥
(
√𝑥2+𝑦2

𝑟𝐶
)

(

 
 

𝜕

𝜕𝑥
(E (sn (arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
))

−
1

2

𝜕

𝜕𝑥
(F (sn (arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
))
)

 
 

 

 (3.98)  

(3.93) and (3.94) provided the reference partial derivatives of the elliptic E and 

elliptic F functions, respectively, while (3.95) provided the reference partial derivative of 

the Jacobi sine function.  Using a variable substitution shown in (3.99), (3.100) through 

(3.103) provide an augmentation of (3.93) and (3.94) that eliminates the asin( ) function 

component in the evaluations of those partial derivatives [25]. 

𝑢 = asin(𝑥)          (3.99)  

𝛿

𝛿𝑥
E(𝑥, 𝑘) = √1 − 𝑘2 sin2(asin(𝑥))

𝜕

𝜕𝑥
(asin(𝑥))      (3.100)  

𝛿

𝛿𝑥
E(𝑥, 𝑘) = √

1−𝑘2𝑥2

1−𝑥2
         (3.101)  

𝛿

𝛿𝑥
F(𝑥, 𝑘) =

1

√1−𝑘2 sin2(asin(𝑥))

𝜕

𝜕𝑥
(asin(𝑥))       (3.102)  

𝛿

𝛿𝑥
F(𝑥, 𝑘) =

1

√(1−𝑘2𝑥2)(1−𝑥2)
        (3.103)  

(3.98) contains five distinct partial derivative expressions that need evaluation to 

be fully simplified.  Those partial derivative expressions are therefore simplified using 

(3.101), (3.103), and (3.95) in their evaluations.  Equation (3.104) provides the inner-

most partial derivative expression of the argument of the inverse Jacobi cosine function.   

𝜕

𝜕𝑥
(
√𝑥2+𝑦2

𝑟𝐶
) =

𝑥

𝑟𝐶√𝑥
2+𝑦2

         (3.104)  

(3.105) provides the nominal definition of the inverse Jacobi cosine function using 

definite integrals, so that the derivative of the inverse Jacobi cosine function can be 

provided in (3.106) and simplified in (3.107). 



107 

arccn(𝑥, 𝑘) = ∫
𝑑𝑡

√(1−𝑡2)(1−𝑘2+𝑘2𝑡2)

1

𝑥
        (3.105)  

𝜕

𝜕𝑥
(arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
)) = −

1

√
1

2
(1−

𝑥2+𝑦2

𝑟𝐶
2 )(1+

𝑥2+𝑦2

𝑟𝐶
2 )

      (3.106)  

𝜕

𝜕𝑥
(arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
)) = −

𝑟𝐶
2√2

√𝑟𝐶
4−(𝑥2+𝑦2)2

       (3.107)  

(3.108) evaluates the partial derivative of the Jacobi sine function.  Equations (3.109) 

through (3.111) provide reference identities of the Jacobi sine, cosine, and delta 

amplitude functions, and then (3.112) simplifies the partial derivative evaluation of 

(3.108) using the identities from (3.110) and (3.111). 

𝜕

𝜕𝑥
(sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
)) = cn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) dn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) (3.108)  

sn (arccn (𝑥,
1

√2
) ,

1

√2
) = √1 − 𝑥2        (3.109)  

cn (arccn (𝑥,
1

√2
) ,

1

√2
) = 𝑥         (3.110)  

dn (arccn (𝑥,
1

√2
) ,

1

√2
) =

1

√2
√𝑥2 + 1       (3.111)  

𝜕

𝜕𝑥
(sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
)) =

1

𝑟𝐶
2√2

(√𝑥2 + 𝑦2)√𝑥2 + 𝑦2 + 𝑟𝐶
2    (3.112)  

(3.113) evaluates the partial derivative of the elliptic E function, and then simplifies that 

using the identity from (3.109) in (3.114) and (3.115). 

𝜕

𝜕𝑥
(E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

√
  
  
  
  
  
  
  
 

1−
1

2

(

 
 
sn(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
)

)

 
 

2

1−

(

 
 
sn(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
)

)

 
 

2    (3.113)  

𝜕

𝜕𝑥
(E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

√
  
  
  
  
  
 
1

2
(1+(

√𝑥2+𝑦2

𝑟𝐶
)

2

)

(
√𝑥2+𝑦2

𝑟𝐶
)

2      (3.114)  
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𝜕

𝜕𝑥
(E (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

√𝑟𝐶
2+𝑥2+𝑦2

√2√𝑥2+𝑦2
     (3.115)  

(3.116) evaluates the partial derivative of the elliptic F function, and then simplifies that 

using the identity from (3.109) in (3.117) and (3.118). 

𝜕

𝜕𝑥
(F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

1

√

(

 1−
1

2
(sn(arccn(

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
))

2

)

 

(

 1−(sn(arccn(
√𝑥2+𝑦2

𝑟𝐶
,
1

√2
),

1

√2
))

2

)

 

 (3.116)  

𝜕

𝜕𝑥
(F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

1

√1
2
(1+(

√𝑥2+𝑦2

𝑟𝐶
)

2

)(
√𝑥2+𝑦2

𝑟𝐶
)

2
    (3.117)  

𝜕

𝜕𝑥
(F (sn (arccn (

√𝑥2+𝑦2

𝑟𝐶
,
1

√2
) ,

1

√2
) ,

1

√2
)) =

𝑟𝐶
2√2

√𝑥2+𝑦2√𝑟𝐶
2+𝑥2+𝑦2

     (3.118)  

With the five partial derivative expressions from (3.98) now defined in (3.112), (3.107), 

(3.104), (3.115) and (3.118) respectively, (3.98) is now evaluated using these five 

expressions, which is shown next in (3.119) and then simplified in (3.120). 

n𝑥 = 𝑟𝐶√2 (
1

𝑟𝐶
2√2

(√𝑥2 + 𝑦2)√𝑥2 + 𝑦2 + 𝑟𝐶
2) (−

𝑟𝐶
2√2

√𝑟𝐶
4−(𝑥2+𝑦2)2

) (
𝑥

𝑟𝐶√𝑥
2+𝑦2

)

(

 
 
 

√𝑟𝐶
2+𝑥2+𝑦2

√2√𝑥2+𝑦2

−
1

2

𝑟𝐶
2√2

√𝑥2+𝑦2√𝑟𝐶
2+𝑥2+𝑦2)

 
 
 

 (3.119)  

n𝑥 =
−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)2

         (3.120)  

The derivation of the normal component with respect to the y-axis follows the 

same process as for the x-axis, but with the change of the inner-most component partial 

derivative, from (3.104), being taken with respect to the y-axis, which is provided below 

in (3.121).  The solution to (3.92) will utilize (3.121) in its final form in (3.122). 

𝜕

𝜕𝑦
(
√𝑥2+𝑦2

𝑟𝐶
) =

𝑦

𝑟𝐶√𝑥
2+𝑦2

         (3.121)  



109 

n𝑦 =
−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)2

         (3.122)  

The unit normal vector for the inflatable reflector antenna is given in (3.123) 

through (3.125), which is based on the form of (3.42) through (3.44), utilizing instead 

(3.120) and (3.122). 

n𝑥
′ =

−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2

√(
−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(
−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(1)2

      (3.123)  

n𝑦
′ =

−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2

√(
−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(
−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(1)2

      (3.124)  

n𝑧
′ =

1

√(
−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(
−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)

2
)

2

+(1)2

       (3.125)  

The surface area of each grid point on the inflatable aperture antenna needs to be 

redefined using the partial derivative expressions from (3.120) and (3.122), based on the 

surface area (3.45).  The use of those partial derivative expressions, substituted into 

(3.45) is shown in (3.126), and simplified in (3.127). 

∆𝑆 = ∫ ∫ √1 + (
−𝑥√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)2

)
2

√1 + (
−𝑦√𝑥2+𝑦2

√𝑟𝐶
4−(𝑥2+𝑦2)2

)
2

𝑑𝑆
𝑦+∆𝑦/2

𝑦−∆𝑦/2

𝑥+∆𝑥/2

𝑥−∆𝑥/2
   (3.126)  

∆𝑆 = ∫ ∫
√(𝑟𝐶

4−𝑥2𝑦2−𝑦4)(𝑟𝐶
4−𝑥2𝑦2−𝑥4)

𝑟𝐶
4−(𝑥2+𝑦2)2

𝑑𝑆
𝑦+∆𝑦/2

𝑦−∆𝑦/2

𝑥+∆𝑥/2

𝑥−∆𝑥/2
      (3.127)  

As can be seen in (3.120) and (3.122), as well as the combined and simplified 

(3.127), the x-axis and y-axis components are not separable, as was possible for the 
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parabolic reflector antenna.  In order for the surface area of each grid point to utilize the 

approach of (3.54) through (3.66), the partial derivatives would need to not be a function 

of both the x-axis and y-axis variables, and so the approach to solving the surface area at 

each grid point must be done via numerical calculations performing a double integration 

analytically. 

 

3.8 Summary 

 

This work provided the full referenced, derivation of the physical optics modeling 

for solid parabolic reflector antennas in Sections 3.1 through 3.6, and provided the 

author’s contributions of the necessary augmentation to that modeling approach to 

implement physical optics modeling of inflatable aperture antennas in Section 3.7.  The 

augmentation for inflatable aperture antennas introduced changes to the derivation of the 

normal vector along the inflatable aperture antenna surface, as well as the derivation of 

the surface area of each analyzed grid point along the inflatable aperture antenna surface.  

Both of these modifications utilized the inflatable aperture antenna surface profile 

derivations from Chapter II, as well as other identities associated with the utilized elliptic 

E, elliptic F, Jacobi sine, and Jacobi cosine functions, along with the derivatives of those 

functions.   

Of particular note, one can observe a commonality in the form of the normal 

vector components, as provided for the solid parabolic reflector antenna in (3.38), and for 

the inflatable aperture antenna in (3.120).  Regarding the partial derivative of the shape 

equation with respect to the x-axis, both equations contain the x-component term in the 
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numerator.  For the solid parabolic reflector, the denominator is twice the focal length.  

For the inflatable aperture antenna, the denominator is a set of square-root functions of 

the x-component, y-component, and the radius substitution variable, which was a 

function of the uninflated radius and inflated radius.  Both of these denominator terms 

describe the shape of the two structures, but the solid parabolic antenna is a simple 

relationship of only the focal length.  The nature of the inflatable aperture antenna shape 

term being a function of the uninflated radius, inflated radius, and the x- and y-axis 

components also illustrates why the surface area cannot be separated out into piecewise 

axis calculations, and must be performed via numerical integration. 
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CHAPTER IV 

RF PERFORMANCE MODEL COMPARISON OF INFLATABLE APERTURE 

ANTENNA WITH SOLID PARABOLIC APERTURE ANTENNA 

 

 

The RF performance of an antenna depends on several factors, ranging from, but 

not limited to, the size of the aperture, the frequency of transmission and/or reception, the 

focal length to diameter ratio, and the feed taper.  The RF performance is measured in 

terms of the gain pattern of the antenna, which is the far-field response of the antenna 

with respect to the far-field angles.  When comparing different antennas, one typically 

examines the difference in the gain, efficiency, beamwidth, first-null beamwidth, first 

side-lobe level, or the first side-lobe angles.  No single metric can accurately assess the 

RF performance of the antenna, as the RF performance is not defined by a single value.  

It is with this understanding that this chapter will discuss the RF performance testing of 

the inflatable aperture antenna against the solid parabolic reflector antenna. 

The remaining content of this chapter provides the author’s implementation 

results and comparisons of the PO methodologies of analyzing a solid parabolic antenna 

against an inflatable aperture antenna.  Section 4.1 provides an analysis of the 
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performance of a solid parabolic antenna as a function of sample spacing, while Section 

4.2 provides brief background explanations of the performance metrics that will be used 

to assess the inflatable aperture antenna.  Section 4.3 discusses the author’s RF 

performance comparison methodologies, used in Sections 4.4 through 4.7 to illustrate the 

performance of the inflatable aperture antenna.  Finally, Section 4.8 summarizes the 

author’s contributions towards the performance assessments using the methodology 

described in Sections 4.1 through 4.3 from results provided in Sections 4.4 through 4.7. 

 

4.1 Performance Assessment of Solid Parabolic Reflector Antenna Physical Optics 

Modeling 

 

The processes described in Chapter III to model the physical optics-based RF 

performance of a solid parabolic reflector antenna and an inflatable aperture antenna were 

developed into two unique calculation scripts using Matlab®.  The scripts only differed 

where necessary, as described in Section 3.7, such that the surface profile, surface 

normal, and surface area calculations for the inflatable aperture antenna.  The scripts 

were setup to require a minimal set of input parameters to describe the antenna diameter 

(units of number wavelengths), focal length to diameter ratio (unitless), and input feed 

taper (dB).  The inflatable aperture antenna script required one additional parameter 

referring to the Inflation Ratio of the inflatable aperture antenna, so that the proper shape 

can be modelled.  The approach to setup the scripts in this manner removed the direct 

dependence on the antenna performance as functions of operating frequency and diameter 

size, where one common antenna operating at two unique frequencies would have unique 
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antenna patterns and RF performance.  This approach simplified the process to only 

require one input parameter.   

(3.31) had stated that the minimum number of sampling points was based on a 

ratio of one-half the aperture size divided by the wavelength, but other references state 

that higher sampling provides higher fidelity in the simulation, where the one-half ratio is 

a pure minimum to obtain proper results.  A test case was ran on the solid parabolic 

reflector antenna script where the sample spacing was set to fractional values of one-half, 

one-fourth, and one-eighth.  The test case utilized an antenna diameter of 20 wavelengths, 

a focal length to diameter ratio of 0.8, and a feed taper of -11 dB.  The antenna pattern of 

these test cases are shown for the max far-field theta angle of 10° in Figure 77, while 

Figure 78 zooms into the main beam region of the pattern out to roughly 1°, and Figure 

79 zooms onto the first side-lobe of the pattern between roughly 4.95° and 5.9°. 

 

FIGURE 77:  Parabolic Reflector Far-Field Patterns Against Sample Spacing 
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FIGURE 78:  Main-Lobe Parabolic Reflector Far-Field Patterns Against Sample Spacing 

 

FIGURE 79:  Side-Lobe Parabolic Reflector Far-Field Patterns Against Sample Spacing 

 A few key artifacts can be deduced from these three figures.  First, at a glance 

from Figure 77, the pattern responses look very close, but when examining the zoomed in 

pattern responses in Figure 78 and Figure 79, one can observe minor differences in the 

responses.  Figure 78 shows the peak gain at an angle of 0° increases slightly with 
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smaller sampling spacing.  Figure 79 shows that the first side-lobe peak reduces slightly 

with smaller sampling spacing, while the first side-lobe peak location shifts slightly 

closer to the boresight vector direction.  Therefore, for implementation, the utilized 

sample spacing equation will be (4.1), instead of (3.31) which provides the minimal 

sample spacing from the Nyquist sampling theorem. 

𝑁 = floor (
𝐷

8𝜆
) + 1         (4.1)  

 

4.2 Metrics of RF Performance Model Comparisons 

 

Section 4.1 briefly introduced some antenna pattern metrics in assessing the 

utilized sample spacing for all of the RF comparison assessments that will be provided in 

this work, but did not formally introduce the full set of antenna pattern metrics that will 

be used for the RF comparison assessments.  The full set of antenna pattern metrics 

includes: peak gain, half-power beamwidth, first-null beamwidth, first side-lobe level 

degradation, and the first side-lobe level angle. 

The first metric is that of the peak gain of the response, which occurs at an angle 

of zero.  Equation (4.2) shall formally describe this peak gain, referring back to the theta-

aligned polarization from (3.87).  Note that these efforts do not account for any 

polarization mismatch loss. 

Gmax = 𝐅θ(0,0)          (4.2)  

In (4.2), the additional term used is defined as follows: 

 𝐆max is the peak gain of the antenna pattern 
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The second metric is that of the half-power beamwidth, which is what represents 

when the antenna response is 3dB below the peak gain, which is half the power at the 

peak gain.  This is formalized in (4.3). 

3 = Gmax − 𝐅θ(θ3𝑑𝐵 , 0)         (4.3)  

In (4.3), the additional term used is defined as follows: 

 θ3𝑑𝐵 is the theta angle where the antenna gain is 3dB below the peak gain 

The third metric is that of the first-null beamwidth, which represents when the 

antenna pattern reduces down to a null response, lack of any energy, for the first time.  

This is formalized in (4.4) however, it should be noted that the definition can provide 

multiple values, and so a minimum function is utilized to guarantee that the lowest angle, 

or first, is returned. 

−∞ = 𝐅θ(min(θ𝑁𝑢𝑙𝑙) , 0)         (4.4)  

In (4.4), the additional term and function used are defined as follows: 

 θ𝑁𝑢𝑙𝑙 is the theta angle where the antenna gain is null for the first time 

 min( ) is the minimum function to guarantee that the first null theta angle is 

returned 

The fourth and fifth metrics are that of the first side-lobe level degradation and the 

first side-lobe level angle.  The first side-lobe level degradation represents the difference 

in the magnitude of the antenna peak gain from the peak gain at the first side-lobe level 

angle.  The first side-lobe level angle represents the location where the first side-lobe 

level peaks, and can be represented at the minimum angle location where the partial 

derivative of the antenna gain response is zero, given that it is observed at a starting angle 
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greater than that of the first null beamwidth.  These two metrics are formalized in (4.5) 

and (4.6). 

∆G𝑆𝐿𝐿 = 𝐅θ(θ𝑆𝐿𝐿 , 0) − Gmax        (4.5)  

0 =
𝜕

𝜕θ
𝐅θ(min(θ𝑆𝐿𝐿 > θ𝑁𝑢𝑙𝑙) , 0)        (4.6)  

In (4.5) and (4.6), the additional terms used are defined as follows: 

 ∆G𝑆𝐿𝐿 is the first side lobe level degradation 

 θ𝑆𝐿𝐿 is the theta angle where the first side lobe of the antenna gain occurs 

Figure 80 provides a graphic of an antenna pattern overlaid with labels and 

identifiers to aid in the understanding of this set of antenna pattern metrics that will be 

used to ascertain antenna pattern performance [2].   

 

FIGURE 80:  Metrics for RF Performance Model Comparisons 
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These metrics will be the set used to describe the RF performance comparisons of 

the solid parabolic reflector antenna and the inflatable aperture reflector antenna.  

Additionally, there will be terms used that describe the differences in these metrics 

between the two antenna types, which will be taken as differences with respect to the 

solid parabolic reflector antenna. 

 

4.3 Methodologies of RF Performance Model Comparisons 

 

With the RF performance metrics used to assess the performance variations 

between the solid parabolic reflector antenna and the inflatable aperture antenna 

described, the description of how the two antenna technologies compared is provided 

next.  It is now known from the derivations in Chapter II that the inflatable aperture 

antenna has a fundamentally different shape profile than that of the solid parabolic 

reflector antenna.  It is also known that there is not a single shape of the inflatable 

aperture antenna, as it is a function of the Inflation Ratio, which can range from zero to 

one.  It will be of interest to analyze the performance of the inflatable aperture antenna 

within this range.  Three distinct shape parameters will be used to perform the 

comparison testing between the solid parabolic reflector antenna and the inflatable 

aperture antenna, which include common diameters, common depths, and common arc-

lengths.  These comparison techniques are illustrated in Figures 81, 82, and 83, 

respectively. 
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FIGURE 81:  RF Performance Model Comparisons:  Constant Diameter 

 

FIGURE 82:  RF Performance Model Comparisons:  Constant Depth 
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FIGURE 83:  RF Performance Model Comparisons:  Constant Arc Length 

In Figures 81 through 83, the additional terms used are defined as follows: 

 𝐷𝑃 is the diameter of the solid parabolic reflector antenna 

 𝐷𝐼 is the diameter of the inflatable aperture antenna 

 𝑑𝑃 is the depth of the solid parabolic reflector antenna 

 𝑑𝐼 is the depth of the inflatable aperture antenna 

 𝐿𝑃 is the arc-length of the solid parabolic reflector antenna 

 𝐿𝐼 is the arc-length of the inflatable aperture antenna 

Throughout all of the comparisons, the inflatable aperture antenna diameter will be the 

baseline.  Therefore, for the constant depth and arc-length comparisons over the Inflation 

Ratio range, an example aperture size of 20 wavelengths with an Inflation Ratio of 0.01 

will have a different depth or arc-length than the same size aperture with an Inflation 

Ratio of 0.99.  As a common depth or arc-length is desired, the solid parabolic reflector 
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antenna will have unique diameters from that of the inflatable aperture antenna, while 

maintaining the desired depth or arc-length for the given Inflation Ratio of the inflatable 

aperture antenna. 

 

4.4 RF Performance Assessment of Inflatable Aperture Antenna 

 

This section will provide the RF performance assessment of the inflatable 

aperture antenna, independent of the solid parabolic antenna.  As mentioned in Section 

4.3, the solid parabolic reflector antenna size will be augmented to match the common 

size property of the inflatable aperture antenna, and so by implementing such a technique, 

the RF performance of the inflatable aperture antenna only needs to be calculated once.  

As mentioned in Section 4.1, the script to analyze the performance of the inflatable 

aperture antenna was a function of the antenna diameter (units of number wavelengths), 

Inflation Ratio (unitless), focal length to diameter ratio (unitless), and input feed taper 

(dB).  For the inflatable aperture antenna, the focal length no longer represents the shape 

of the antenna, but rather only the distance between the antenna vertex and the antenna 

feed.  Therefore, an optimal focal length to diameter ratio was necessary to be found, and 

a minimization on the RMS error technique was selected, with the error taken against a 

parabolic curve, due to the nature of the parabolic curve aggregating energy at the focal 

point.  For the inflatable aperture antenna, this created a focal length to diameter curve as 

a function of Inflation Ratio, which is shown next in Figure 84. 
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FIGURE 84:  Utilized Focal Length to Diameter Curve as a Function of Inflation Ratio 

As expected in Figure 84, the focal length to diameter ratio goes to infinity as the 

Inflation Ratio goes towards zero, as an Inflation Ratio of exactly zero means that the 

inflatable aperture antenna has no curvature.  Interestingly, while a solid parabolic 

reflector antenna can have a minimum focal length to diameter ratio of 0.25, the 

minimum focal length to diameter ratio for the inflatable aperture antenna goes to a value 

near 0.386. 

The RF performance of the inflatable aperture antenna will be illustrated next in 

Figures 85 through 94 for Inflation Ratio values of 0.05 through 0.95 in increments of 

0.1.  Each plot will illustrate the pattern using feed tapers values between -11dB and 0dB, 

in increments of 1dB, while maintaining a constant diameter of 20 wavelengths, while 
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using the focal length to diameter ratio value for a given Inflation Ratio value from 

Figure 84. 

 

FIGURE 85:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.05 

 

FIGURE 86:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.15 
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FIGURE 87:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.25 

 

FIGURE 88:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.35 

 

FIGURE 89:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.45 
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FIGURE 90:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.55 

 

FIGURE 91:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.65 

 

FIGURE 92:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.75 
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FIGURE 93:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.85 

 

FIGURE 94:  Inflatable Aperture Antenna Far-Field Patterns:  Inflation Ratio = 0.95 

There are several trends that can be observed across the pattern responses 

presented in Figures 85 through 94.  The peak gain of the inflatable aperture antenna does 

decrease with an increase in the Inflation Ratio.  The first null angle oscillates as the 

Inflation Ratio increases.  The first side-lobe level degradation decreases as the Inflation 

Ratio increases, meaning that the energy is not as focused in the main beam.  Finally, the 

disparity in the pattern responses across the feed taper range decreases as the Inflation 
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Ratio increases, showing how the focused feed energy cannot improve the overall 

antenna response in the peak gain.   

With the nominal focal length to diameter ratio value defined as a function of the 

Inflation Ratio, the RF performance will be assessed using the focal length to diameter 

ratio value for a given Inflation Ratio value from Figure 84.  The RF performance of the 

inflatable aperture antenna was calculated at antenna diameters ranging from 20 

wavelengths to 100 wavelengths, in steps of 10 wavelengths.  The RF performance was 

calculated across Inflation Ratio values ranging from 0.01 to 0.99 in increments of 0.01.  

The RF performance was calculated using feed taper values between -11dB and 0dB, in 

increments of 1dB.  Figures 95 through 103 will illustrate the RF performance calculated 

with the inflatable aperture antenna.  Each figure will contain five plots, corresponding to 

the peak gain in the first row, half-power beamwidth and first null beamwidth in the 

second row, and first side lobe level degradation and first side lobe level angle in the 

third row.  Each figure is color coded against its colorbar to represent the numeric value 

of interest for each of the metrics. 
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FIGURE 95:  Inflatable Aperture Antenna Performance:  Diameter = 20 Wavelengths 
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FIGURE 96:  Inflatable Aperture Antenna Performance:  Diameter = 30 Wavelengths 
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FIGURE 97:  Inflatable Aperture Antenna Performance:  Diameter = 40 Wavelengths 
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FIGURE 98:  Inflatable Aperture Antenna Performance:  Diameter = 50 Wavelengths 
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FIGURE 99:  Inflatable Aperture Antenna Performance:  Diameter = 60 Wavelengths 
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FIGURE 100:  Inflatable Aperture Antenna Performance:  Diameter = 70 Wavelengths 
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FIGURE 101:  Inflatable Aperture Antenna Performance:  Diameter = 80 Wavelengths 
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FIGURE 102:  Inflatable Aperture Antenna Performance:  Diameter = 90 Wavelengths 
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FIGURE 103:  Inflatable Aperture Antenna Performance:  Diameter = 100 Wavelengths 

 There are many common trends that can be gathered across the data presented in 

Figures 95 through 103.  The peak gain of the inflatable aperture antenna does increase 

with the antenna diameter, and for a given antenna diameter, the peak gain increases as 
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the feed taper varies from -11dB through 0dB.  These are consistent with the performance 

of solid parabolic reflector antennas.  Also of note for the inflatable aperture antenna, the 

peak gain does vary with the Inflation Ratio, though not in terms of oscillating in value 

like the half-power beamwidth, first null beamwidth, or first side-lobe level degradation.  

The first side-lobe level degradation typically oscillates to larger negative values as the 

half-power beamwidth oscillates to larger angles.  This shows that there is no single 

optimal configuration of the inflatable aperture antenna. 

 The previous analysis illustrated the calculated RF performance of the inflatable 

aperture antenna using the best-fit focal length for a given Inflation Ratio.  This next set 

of analysis addresses the question of whether that best-fit focal length provides the 

optimal RF performance.  To analyze this problem, the previous best-fit focal length was 

varied for a given Inflation Ratio by percent variations between -10% to +10% in 1% 

increments.  This does mean that a change in focal length to diameter ratio of 0.1 has 

different meaning at lower Inflation Ratios, where the best-fit focal length was larger, 

than it would at higher Inflation Ratios, where the best-fit focal length is smaller.  This 

issue was avoided by the use of the percent variation approach.  The RF performance was 

again calculated at diameters ranging from 20 wavelengths to 100 wavelengths, in steps 

of 10 wavelengths.  The RF performance was calculated across Inflation Ratio values 

ranging from 0.01 to 0.99 in increments of 0.01.  The RF performance was calculated 

using a fixed feed taper value of 0dB.  Figures 104 through 112 will illustrate the percent 

variation focal length-based RF performance calculated with the inflatable aperture 

antenna against the performance with the best-fit focal length.  Each of these figures will 

follow the same format used in Figures 95 through 103. 
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FIGURE 104:  Focal Length Variation Comparisons:  Diameter = 20 Wavelengths 
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FIGURE 105:  Focal Length Variation Comparisons:  Diameter = 30 Wavelengths 
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FIGURE 106:  Focal Length Variation Comparisons:  Diameter = 40 Wavelengths 
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FIGURE 107:  Focal Length Variation Comparisons:  Diameter = 50 Wavelengths 
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FIGURE 108:  Focal Length Variation Comparisons:  Diameter = 60 Wavelengths 
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FIGURE 109:  Focal Length Variation Comparisons:  Diameter = 70 Wavelengths 
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FIGURE 110:  Focal Length Variation Comparisons:  Diameter = 80 Wavelengths 



146 

 

  

  

FIGURE 111:  Focal Length Variation Comparisons:  Diameter = 90 Wavelengths 
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FIGURE 112:  Focal Length Variation Comparisons:  Diameter = 100 Wavelengths 

 There are several important observations that can be gathered across the data 

presented in Figures 104 through 112.  The peak gain degradation shows the difference of 

the focal length variation against the best-fit focal length, and the results show differences 
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as a non-periodic function of the Inflation Ratio.  The peak gain degradations vary as a 

function of the focal length variation percentage as a function of the antenna diameter.  

The half-power beamwidth, first null beamwidth, and first side-lobe level degradation 

variations also vary in terms of antenna size, Inflation Ratio, and focal length variation 

percentage, but those three terms look to follow common trends in changes.  The first 

side-lobe angle does not have consistent variation as the other RF metrics have, though at 

some antenna diameters, performance at high Inflation Ratios is noted to have distinct 

performance offsets.   

This is due to the main beam expanding in such a way that the first null is no 

longer nominally defined due to the poor antenna design, and so the main beam spreads 

and the side-lobe now identified as the first side-lobe was related to the second side-lobe 

of the best-fit pattern.  Figure 113 illustrates the actual antenna patterns, zoomed into the 

primary region of interest near the main beam and first side-lobe, for a diameter of 30 

wavelengths.  In this figure, the Inflation Ratio value of 0.98 is illustrated, using the focal 

length to diameter ratio errors of −2%, −4%, −6%, −8% and −10% against the optimal 

focal length to diameter ratio case corresponding to 0% in Figure 105.  Only the −4% and 

−6% cases illustrate the performance cases that are not consistent with the optimal focal 

length to diameter ratio case. 
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FIGURE 113:  Specific Focal Length Variation Comparison at 30 Wavelengths 

 

4.5 RF Performance Comparison Using Common Diameter 

 

Section 4.3 had described three methodologies of comparing the RF performance 

of the inflatable aperture antenna with the solid parabolic reflector antenna.  This section 

will utilize the common diameter approach, where the solid parabolic reflector antenna 

was analyzed at an equivalent focal length to diameter ratio to the best-fit value of each 

Inflation Ratio.  The RF performance was varied in the same methodology of diameter 

from 20 wavelengths to 100 wavelengths in increments of 10 wavelengths, feed taper 

values of -11dB to 0dB in increments of 1dB and for Inflation Ratio values of 0.01 to 

0.99 in increments of 0.01.  Figures 114 through 122 illustrate the comparative results, 
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which are displayed in comparison to the solid parabolic reflector antenna, using the 

common figure methodology of the previous section. 

 

  

  

FIGURE 114:  Common Diameter Comparisons:  Diameter = 20 Wavelengths 



151 

 

  

  

FIGURE 115:  Common Diameter Comparisons:  Diameter = 30 Wavelengths 
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FIGURE 116:  Common Diameter Comparisons:  Diameter = 40 Wavelengths 
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FIGURE 117:  Common Diameter Comparisons:  Diameter = 50 Wavelengths 
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FIGURE 118:  Common Diameter Comparisons:  Diameter = 60 Wavelengths 
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FIGURE 119:  Common Diameter Comparisons:  Diameter = 70 Wavelengths 
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FIGURE 120:  Common Diameter Comparisons:  Diameter = 80 Wavelengths 
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FIGURE 121:  Common Diameter Comparisons:  Diameter = 90 Wavelengths 
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FIGURE 122:  Common Diameter Comparisons:  Diameter = 100 Wavelengths 

There are several important observations that can be gathered across the data 

presented in Figures 114 through 122.  The peak gain degradation shows that the 

inflatable aperture antenna does not have a larger peak gain value than solid parabolic 
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reflector antenna.  The peak gain degradation does not appear to be correlated to the feed 

taper at any diameter.  That is different for the half-power beamwidth, first null 

beamwidth, and first side-lobe level degradation metrics, as the comparisons of metrics 

do vary as a function the Inflation Ratio and feed taper.  The half-power beamwidth 

angles always expand positively, meaning that the inflatable aperture antenna beam is 

wider, but the first null angle can vary positively or negatively, showing that the main 

beam’s shape is not just wider, but also steeper in the region after the half-power 

threshold is satisfied.  The first side-lobe angle also always expands positively, 

correlating to the beam being spread wider against the solid parabolic reflector antenna. 

 

4.6 RF Performance Comparison Using Common Depth 

 

Section 4.3 had described three methodologies of comparing the RF performance 

of the inflatable aperture antenna with the solid parabolic reflector antenna.  This section 

will utilize the common depth approach, where the solid parabolic reflector antenna was 

analyzed at an equivalent focal length to diameter ratio to the best-fit value of each 

Inflation Ratio.  The RF performance was varied in the same methodology of diameter 

from 20 wavelengths to 100 wavelengths in increments of 10 wavelengths, feed taper 

values of -11dB to 0dB in increments of 1dB and for Inflation Ratio values of 0.01 to 

0.99 in increments of 0.01.  Figures 123 through 131 illustrate the comparative results, 

which are displayed in comparison to the solid parabolic reflector antenna, using the 

common figure methodology of the previous section. 
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FIGURE 123:  Common Depth Comparisons:  Diameter = 20 Wavelengths 



161 

 

  

  

FIGURE 124:  Common Depth Comparisons:  Diameter = 30 Wavelengths 
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FIGURE 125:  Common Depth Comparisons:  Diameter = 40 Wavelengths 
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FIGURE 126:  Common Depth Comparisons:  Diameter = 50 Wavelengths 
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FIGURE 127:  Common Depth Comparisons:  Diameter = 60 Wavelengths 
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FIGURE 128:  Common Depth Comparisons:  Diameter = 70 Wavelengths 



166 

 

  

  

FIGURE 129:  Common Depth Comparisons:  Diameter = 80 Wavelengths 
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FIGURE 130:  Common Depth Comparisons:  Diameter = 90 Wavelengths 
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FIGURE 131:  Common Depth Comparisons:  Diameter = 100 Wavelengths 

There are several noted observations that can be gathered across the data 

presented in Figures 123 through 131.  The peak gain degradation shows that the 

inflatable aperture antenna again does not have a larger peak gain value than solid 
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parabolic reflector antenna.  The peak gain degradation again does not appear to be 

correlated to the feed taper at any diameter.  That is different for the half-power 

beamwidth, first null beamwidth, and first side-lobe level degradation metrics, as the 

comparisons of metrics do vary as a function the Inflation Ratio and feed taper.  The half-

power beamwidth angles, first null angles, and first side-lobe angles typically always 

expand positively, meaning that the beam is typically expanding consistently.  The first 

side-lobe level degradation comparisons are typically always positive, meaning that the 

first side-lobe level has larger magnitude than that of the solid parabolic reflector 

antenna, when using a common depth. 

 

4.7 RF Performance Comparison Using Common Arc Length 

 

Section 4.3 had described three methodologies of comparing the RF performance 

of the inflatable aperture antenna with the solid parabolic reflector antenna.  This section 

will utilize the common arc length approach, where the solid parabolic reflector antenna 

was analyzed at an equivalent focal length to diameter ratio to the best-fit value of each 

Inflation Ratio.  The RF performance was varied in the same methodology of diameter 

from 20 wavelengths to 100 wavelengths in increments of 10 wavelengths, feed taper 

values of -11dB to 0dB in increments of 1dB and for Inflation Ratio values of 0.01 to 

0.99 in increments of 0.01.  Figures 132 through 140 illustrate the comparative results, 

which are displayed in comparison to the solid parabolic reflector antenna, using the 

common figure methodology of the previous section. 
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FIGURE 132:  Common Arc Length Comparisons:  Diameter = 20 Wavelengths 
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FIGURE 133:  Common Arc Length Comparisons:  Diameter = 30 Wavelengths 
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FIGURE 134:  Common Arc Length Comparisons:  Diameter = 40 Wavelengths 
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FIGURE 135:  Common Arc Length Comparisons:  Diameter = 50 Wavelengths 
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FIGURE 136:  Common Arc Length Comparisons:  Diameter = 60 Wavelengths 
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FIGURE 137:  Common Arc Length Comparisons:  Diameter = 70 Wavelengths 



176 

 

  

  

FIGURE 138:  Common Arc Length Comparisons:  Diameter = 80 Wavelengths 
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FIGURE 139:  Common Arc Length Comparisons:  Diameter = 90 Wavelengths 
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FIGURE 140:  Common Arc Length Comparisons:  Diameter = 100 Wavelengths 

There are several noted observations that can be gathered across the data 

presented in Figures 132 through 140.  The peak gain degradation shows that the 

inflatable aperture antenna again does not have a larger peak gain value than solid 
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parabolic reflector antenna.  The peak gain degradation appears to have minimal 

correlation to the feed taper across the diameters tested.  However, this is different for the 

half-power beamwidth, first null beamwidth, and first side-lobe level degradation 

metrics, as the comparisons of metrics do vary greatly as a function the Inflation Ratio 

and feed taper.  The half-power beamwidth angles and first side-lobe angles typically 

always expand positively, meaning that the beam is typically expanding consistently.  

However, first null angles vary both positively, and negatively, meaning that the shape of 

the main lobe beam can become steeper between the half-power threshold and the first 

null threshold.  The first side-lobe level degradation comparisons are typically always 

positive, meaning that the first side-lobe level is larger magnitude than that of the solid 

parabolic reflector antenna, when using this common arc length approach. 

 

4.8 Summary 

 

The author’s contributions described a set of metrics to assess the RF performance 

of antennas, and utilized those metrics to form comparisons of the RF performance 

between the solid parabolic reflector antenna and an inflatable aperture antenna.  These 

metrics were calculated from the antenna pattern methodologies discussed in Chapter III.  

Three approaches were utilized to compare the inflatable aperture antenna against the 

solid parabolic reflector antenna, which involve using common diameters, depths, or arc 

lengths of the different antenna technologies.  The RF performance was assessed at 

various diameters and feed tapers, across the range of Inflation Ratios of the inflatable 

aperture antenna using best-fit focal lengths.  Additionally, the inflatable aperture antenna 
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performance was tested against itself when varying the utilized focal length.  Insights into 

the observed performance across each of these test cases were noted after performance 

plots were shown of the calculated datasets.  This effort illustrates that there is no single 

ideal configuration for an inflatable aperture antenna, but does show that operating the 

antenna at lower Inflation Ratios can cause the peak gain to have minimal degradation 

when compared to the solid parabolic reflector antenna.  
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CHAPTER V 

CONCLUSIONS 

 

 

This chapter will cover the three primary contributions of this work.  

Additionally, three topics of potential future work to continue to determine the RF 

performance of inflatable aperture antennas will be discussed. 

 

5.1 Contributions 

 

In this Dissertation, three contributions to the field of antenna technology were 

introduced.  First, the mathematical model of the inflatable aperture antenna surface 

profile shape was determined from the Calculus of Variations technique.  The derivation 

shows a highly consistent form for the shape of the inflatable aperture antenna to the 

shape of the Mylar balloon.  The primary difference between the two surface profiles is 

due to the edge of the inflatable antenna having a slope that can vary between zero and 

negative infinity, where the edge of the Mylar balloon always has a slope of negative 

infinity.  This varying slope creates an offset term in the elliptic integral functions of the 
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surface profile shape.  The shape was validated using an inflatable test article by 

measuring the surface profile via Laser Radar metrology. 

Second, the RF performance model of the inflatable aperture antenna was derived 

through the use of Physical Optics.  The derivation is based on the nominal derivation of 

a solid parabolic reflector antenna.  Primary differences in the physical optics model of 

the inflatable aperture antenna are based on the inflatable aperture surface profile, the 

modified surface normal vector of the inflatable aperture antenna, and the modified grid 

point surface area numerical integration methodology.  A common form of the surface 

normal vector was noted between the inflatable aperture antenna and the solid parabolic 

reflector antenna.  An artifact of the surface profile that causes the surface area 

calculation to have terms that cannot be separated for calculation simplification is noted. 

Finally, simulated RF performance comparisons were made of the inflatable 

aperture antenna against the solid parabolic reflector antenna.  Three approaches were 

utilized to compare the inflatable aperture antenna against the solid parabolic reflector 

antenna, which were using common diameters, depths, or arc lengths of the different 

antenna technologies.  The RF performance was assessed at various diameters and feed 

tapers, across the range of Inflation Ratios of the inflatable aperture antenna using best-fit 

focal lengths.  Additionally, the inflatable aperture antenna performance was tested 

against itself when varying the utilized focal length.  Insights into the observed 

performance across each of these test cases were noted after performance plots were 

shown of the calculated datasets.  This effort illustrates that there is no one single analysis 

metric or single ideal configuration for an inflatable aperture antenna, but does show that 
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operating the antenna at lower Inflation Ratios can cause the peak gain to have minimal 

degradation when compared to the solid parabolic reflector antenna. 

 

5.2 Future Work 

 

Three topics for potential future work as a continuation of this Dissertation effort 

are noted next.  First, the inflatable aperture antenna could be created using discs molded 

from a mandrel, where that mandrel is based on a specific targeted Inflation Ratio.  Once 

the inflatable aperture were formed and inflated based on the use of the mandrel, one 

should be able to note that wrinkles do not appear when the targeted diameter is 

maintained.  Second, the inflatable aperture antenna created from the mandrel should be 

used to perform RF antenna testing in an anechoic chamber using different feed taper 

profiles.  This testing would be useful to validate the RF performance model capability 

derived in this Dissertation effort.  Finally, the RF performance modeling should be 

extended to consider the use of a phased array antenna feed.  A phased array antenna feed 

could allow for pre- or post-compensation of the signal reflected off the inflatable 

surface, or could be used to negate regions of the inflatable antenna surface near the rim 

which diverge away more from the ideal parabolic shape.  Assuming that the 

compensation through the use of a phased array feed simulates to show promising results, 

RF performance testing considered as the second future work should be extended to test 

with the phased array feed that can compensate for the inflatable aperture antenna surface 

profile shape. 
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