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MBSMA Initiative Pathfinder Partner Project Objectives

Investigate methodologies for the deployment of Model Based SMA/MA.

Reliability (e.g., FMECA, LLA, FTA, PRA, Maintainability, Availability)
System Safety (e.g., MSPSP, Hazard Analysis)
Software Assurance (e.g., Control/Testing Plans, Process/Supplier Risks, Software FMECA/FTA)

Quality Assurance (e.g., Control/Testing Plans, Process/Supplier Risks, Parts/Materials Approvals,
Mission Assurance Requirements, PRACA/FRACAS)

Provide Recommendations, Guidance, and Risk-Based Strategies for
MBSMA/MA and MBSE Collaboration

Is Model-Based Engineering valid and useable for Reliability Engineering for NASA mission
Safety and Mission Assurance ?

NASA MODEL BASED Safety and Mission Assurance
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MBSMAI Methodology

Use three mission test cases to evaluate the ability of Model-Based Engineering to support Reliability Analyses of
Probability Analysis (PA)) Failure Mode Effects and Criticality Analysis (FMECA), Fault Tree Analysis (FTA), and
Limited Life Analysis (LLA).
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MBSMAI Methodology

% Model Model Model ) 0
.‘D_J ()] (b} QO c .
3 IS T @ Modeling Process Guidance
s Report B Report E Report o
3 = = =
=
(Q‘ Evaluate Evaluate Evaluate

Model Model Model . . .

o Optimal Modeling Environment

@ & = — . *
g Report g Report § Report 5 Requirements

Evaluate Evaluate Evaluate ] 0

* Tool readiness was also
assessed.
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Failure Diagrams and Functional Block
Diagrams are the core of the MADe
model.
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MBSMAI Phase 1: EUROPA Propulsion Modeling
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Electrical resistance Short circuit (05Z31A Electrical potential Transient electrical Over-voltage (052314 Quer-current (052314 Line defects (052314 - Insufficient clearances Solid particle Impact loads (052314 Contaminated input Insufficient cleaning Solid particle
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- Enging) - Engine) Engine) (057314 - Engine) Engine) Engine) Engine)
Premature Operation Premature Operation
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Intermittent operation Intermittent operation
or Failure to cease or Failure to cease
operation operation

Convert Mechanical -
linear Force (057314 -
Engine)

¥
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05Z31A - Engine - Failure Diagram

Failure Diagrams and Functional Block
Diagrams are the core of the MADe
model.
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1: EUROPA Propulsion Modeling
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The inherent error checking capability of MADe was able to
aIert the modeler of any discrepancy in the design.
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Defining the model required the
modeler to use different elements
i.e. Block, Operation, Signal, etc.)
and different diagrams (i.e. State
Machine Diagram).
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Defining Orthogonal State Machines with appropriate Guard Conditions are
required in order to define Redundancy in SysML/MagicDraw when using
Tietronox Plugin.

Appropriate signal were defined in order to connect the model at different

levels.
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All model information is entered manually using the
Specification window at every level. Failure modes, effects,
causes, signals, probabilities of failure, critically levels and

etc. are as such information that will go into the model,
when modeling for Reliability.
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MBSMAI Phase 1: EUROPA Model Probability Analysis Evaluation

+

v e S R e The Probability of failure reported for the entire Europa
RBD DIAGRAMS R(t) = 0.9999999‘ Propulsion Subsystem at 12 Yrs. (0.0387234) by the
SYSTEM HIERACHY | Propulsion > Series Group > Pressurant Control Assembly - Fuel MADe faU|t tree mOdUIe Corresponds tO the PrOba b|||ty Of
ITEM ID & MAME | Pressurant Contral Assembly - Fuel S/—\ INDENTURE LEVEL 2 . '
RELIABILITY 0.9973737|  INHERENT AVAILABILITY (' 09999999 ) MTTF (HRS) 219,324 63 SUCCGSS/RE'Iab”Ity reported by the MADe RBD module
Series Group 21 (09612766)
Paratel Group MADe RBD prediction results matches to about 5 decimal
= = places to the traditional method on a component per
component basis
LVO4FGE PCVTFGE PC\VEFGH
= = 1 S Europa Propulsion Subsystem Ps R(t) =0.998
PTO2FGAB FIFG - PCAFR) ——
I ] — ‘ — L
¥ LVO3FGA PCVEFGA PCVBFGA = : \
I = (]
L SysML/MagicDraw with Tietronix plugins does not
R()-0.9999998 currently support Probability Analysis. However, custom
Plugins have been developed by individual enterprises.
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MADe fault tree are derived from the functional block diagram model and/or reliability block
diagram (RBD). It helps ensure that the fault tree will be consistent with the RBD/functional block
diagram. MADe quantifies the top 10 - 50 cut sets in terms of probability of failure for the
Hardware based fault tree.

SysML/MagicDraw Fault Trees are derived from failure effects stereotyped for each component and

the relations and hierarchies are obtained from the transition lines and allocated signal defined in
every state machine diagrams.



MBSMAI Phase 1: EUROPA Model Failure Modes Effects and Criticality

Analysis (FMECA)

FMECAs correlated well to

silure Level: ALL Criticality Level: ALL End Cffect: ALL

e the defined models. Format
= __ and content short comings

'mw‘;wa DEILCTON | COMPLMMATING snmn
PR

ot Ml I O e 7 o T ] el i can be overcome manually.

5
4

Likelihood of | 3

Occurrence 2
1
<1

[ 1 Severity
et Category 3 3 HIR 2 1R 118
riticality ™ Severit
Risk Matrix V;,uey 1 2 3 4 5
Relative Severity of Failure Modes

There currently is
no SPF or CIL report from
MADe or
SysML/MagicDraw.

14 Oxidizer Pressurant Tank Pressure Transducer (PTOLXGAB) Drift ;t;unzonem rendom Al {Information only, reduced visibilty into pressurant system status | System operates nominally Ground trending No response necessary? 2 .| 14
1] Oxidizer Pressurant Tank Pressure Transducer (PTOIXGAB) :I ;;‘ésvm orFase g;unpr;onem rendom Al {Information only, loss of pressurant system status System operates nominally Ground trending No response necessary? 2 .| 4
Uncontrolled loss of pressurant (eventual complete mission
. Launch . Detection by GNC through .
1484 Oxidizer Pressurant Tank Pressure Transducer (PTOLXGAB) External leak Mechanical failure Cru\lsje Jb\ ending loss of pressurant), cannot supply adequate flow rate for |Loss of mission e ayct v No effective mitigaion 6 SPF | 144
' |thrusting Que
Uncontrolled loss of pressurant (eventual complete mission Detection by GNG throuch
149) Oxidizer Pressurant Tank Pressure Transducer (PTOIXGAB) External leak Mechanical failure Tour  |ending loss of pressurant), cannot supply adequate flow rate ~ |Loss of remainder of mission e \mpayct v No effective mitigaion 5 SPF | 14
for thrusting

NASA MODEL BASED Safety and Mission Assurance




=, Project Explorer 3
4 =F Sounding Rocket
a8 Functions
a Payload
» m8 Functions
4 ACS
- a8 Functions
4 Celestial ACS
a8 Functions
4 Iy, Airborne Computer
4 o2 Functions
- a8 Transmit
- a8 Transmit
- a8 Convert
4 1, Failure Diagram
. W Cause
@ Mechanism
& Fault
@ Failure Condition
Battery
Command Uplink
MU
Pitch Valve
Plumbing
Power Relay
Roll Valve
Star Tracker
Tank
& Telemetry Interface
o Waw Valve
& Instrument
o Parachute Recovery
o Telemetry
Rocket Engine

°
°
°
°
o
o
o
o
o

W Failure Concepts &2
Search...

- [ Assembly and reassembly
- [ Design

- [ Maintenance

- [0 Manufacturing

. [0 Operation

. [ Transportation

5 Palette 53 Library| = Outline
Search...

2 Compenents [107]
3 Parts [134]

NASA MODEL BASED Safety and Mission Assurance

Command Uplink

.
W
Star Tracker Airborne Computer
- L
—
- =
’—w’ =
e
| > —
- /// ——,r:: Telemetry Interface
- —
f -
e
——
s
7
-
Pitch Valve
Tank Plumking Yaw Valve

Vecee® ~- 0O

£ - O

1

Power Relay

Roll'Valve

e

Battery

.

-

Celestial ACS - System Model

TYYYYY

Sewnding Fecket - System Model

LB

Fucket Engine - System Model




=, Project Explorer 3
4 =F Sounding Rocket
a8 Functions
a Payload
» m8 Functions
4 ACS
- a8 Functions
4 Celestial ACS
a8 Functions

& Airborne Computer
4 o2 Functions
- a8 Transmit
- a8 Transmit
- a8 Convert
4 1, Failure Diagram
. W Cause
@ Mechanism
& Fault
@ Failure Condition
Battery
Command Uplink
MU
Pitch Valve
Plumbing
Power Relay
Roll Valve
Star Tracker
Tank
& Telemetry Interface
o Waw Valve
& Instrument
o Parachute Recovery
o Telemetry
Rocket Engine

°
°
°
°
o
o
o
o
o

W Failure Concepts &2
Search...

- [ Assembly and reassembly
- [ Design

- [ Maintenance

- [0 Manufacturing

. [0 Operation

. [ Transportation

B Palette 2 Library| = Outline
Search...

2 Compenents [107]

3 Parts [134]

NASA MODEL BASED Safety and Mission Assurance

Viece

Command Uplink

% Compensating Provisions - Perforating of the Plumbing

Compensating Provisions

Compensating Provisions

Mame

| Abort Mission

V| Modify Mission

Change System Configuration

Condition-based Maintenance

Assign one or more Compensating Provisions for Perforating of the Plumbing.

Detection Methods

Definiticn

Aborting or canceling the mission in response to the failure,
Changing the system configuration to resolve the failure,
Repairing or replacing the item in a condition-directed manner,

Muodifying the mission phase, segment, capability or objective in response

Medify Sensor Set Adding or modifying a sensor/alarm to the failure.
o Override System A manual or autemnatic override of an item to a standby itern.
e — B . . -
Marrative
OK
LS
Celestial ACS - System Model
& = 0

« &5 Celestial ACS

m

& Sounding Rocket
B Criticality & Reliability Editor

Item / Failure Selection

us
@ Gas - Mass flow rate
@ Pneumatic - Mass flow rate
@ Pneumatic - Mass flow rate
@ Discrete - Data
@ Discrete - Data
@ Discrete - Data
O Gas - Mass flow rate
@ Gas - Mass flow rate
@ Gas - Mass flow rate

4 ui

@ Mechanical - linear - Linear velocity

& Sounding Rocket

Criticality =

A Wi

"

44 Airbone Comput

High

Probability/Occurrence

S

en m

criticality and severity parameters using the

.

l">\

‘£z Command Uplink

Criticality Editor feature. Failure detection and

compensation factors can be added to the
model on every failure diagram.

\\\ RH\‘"“-\-\. /

-

~

k|

Extremely Improbable

Severity

Low

Probability/Occurrence

2

N

4 Command Uplink

11 Battery

-,
|

\
[
41 MU

™

4, Pitch Valve

-

#4 Plumbing

| Plumbing

M

X
r 1

2 R/C Properties
p

odeling in MADe, the modeler can add

]
8
b3

a
v

i



% Comtarment | 19 Duagraen |l Stcaer

P FRTEY Re—r—

e —

T

«3uESy Sl
“* Rackst Engine [
=y

ki
Stage | Ingine

5
g

Bement | Tags | Traceabiey | Alocaters

Expert -

kel
Mtk St Mok

gk 2o
7 Trace
Tvorty
Conteat e
b Ted Cane bt v
i) Lo o gz
Desreen) T Pty Mrchaomn

All model information was entered
manually using the Specification
window at every level. Failure
modes, effects, causes, signals,
probabilities of failure, critically
levels and etc. are as such
information that will go into the
model, when modeling for Reliability.
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The Probability of failure reported for the
Sounding Rocket MADe model corresponds
to the Probability of Success/Reliability of
the traditional method at the component
level; mission life probabilities also compare
favorably if the duration and duty cycles
assumed for each are the same.

SysML/MagicDraw with Tietronix plugins does not
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Star Trackers [ | 0.00000017] 100%| 0599589515 0.988511308] 0 898511808[Single Strin 0 589589515]

Star Tracker Head (Mini Slar Tracker) [ 1 T E | 3346153848 0000000026 | 0.599909937| 0.999772286] 0.999772268| Single Strin

Star Tracker Processor (Mini Star Tracker) [ 1 T E [ eoasassssd] 0.000000144 | 0.999999928] 0.998730355] 0.998739355

Command Uplink [ | 2.06538E-07] 100%] 0.999998897] 0.998201111] 0.898201111[Single String | 0.999899857] 0.998201111] 0.998201111
Avionics Board - Hedium Complexity 1 [ E| 4365292 2.05538E.07 0.998999897| 0988201111 0.998201111]

Telemetry Interface [ | [ | 100%] 0999995726 0995210152] 0.895210152[Single String | 0.999999726] 0.995210152] 0.995210152]
Avionics Board - High Complexity [ 1824484.5] 5.481E.07 | 0.999989726| 0985210152 0.995210152Single Strin 0.999999726] 0.995210152| 0.885210152
IMU 1] I I 100%] 0998998989 0.899799719] 0.989798718[Single Strng | 0.999999989] 0.886796719] 0.999799719]
NG Scalable SRU [ 1 T E [ 43m3e0102] 2 28654F-08) | 0.998599989] 0.995799719] 0989795718[Single String | 0.999989385[ 0989785719[ 0989785719
Airborne Computer 1 5.66045E-07| 100%| 0998998723 0.895149609] 0.985148608[Single String | 0.999999723] 0.885148609] 0.995149608]
Avionics Board - High Complexity 1 E 18244845 5.481E07] 0.998999726] 0995210152 0.895210152[Single String | 0.999899723| 0.995149609]0.895148609]
Memory i E 218586859.7] 4 56548E-08) 0.995939588] 0.999959958( 0.959953998)

Power control circuit 1 E 420466859.9 2.37831E-08 0.998999999] _0.999979186] 0899979166

Power 1] I [ I 100%] 0998998873 0.897776719] 0.887776718]Single Strng | 0.999999873] 0.887776719] 0.997776719)
Relays [ 1 [T E [ 7101388822 14081808 | 0999999983 0 909878851] 0899876851 |Single Strin | 0999099873 0.997776719] 0997778719
Battery in LEO (the entire battery: not technology specific) [ T [ sreeeeesesr] 0.00000024) | 0.39989988| 0.987acsn0s] 0.997893808

Delta V. 1 100%] 0.999999697] 0.994693998] 0.994693996[Single Siring 1.993999697] 0.994693996] 0994693998
Tank 1 E 5959577 615| 167797E-07| 0599599516 0.988531177] 0998531177
Plumbing 1 E 6110313813 1.63658E-08) 0.998999992| 0.999856646( (0.899856646

Thruster Valve 3 | E 7089554 5 1.41053-07] 0.998585789 0.9963 0.9563]
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Max Redundan|
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currently support Probability Analysis. However,
custom Plugins have been developed by individual
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MADe, and
Traditional
Method Fault
Trees show
similar basic
events.

SysML/MagicDraw Fault Trees
also contain Boolean logic
errors (i.e., events decomposed
into to subordinate events
without a combining logic or
gate, and logic gates with only

R one input) but perform

accurate Boolean math.

SysML/MagicDraw FT
output from the Tietronix
Plugin shows immediate
Failure Causes as the basic
event not hardware failure
since State Diagrams were
optimized for the FMECA.
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MBSMAI Phase 1: Sounding Rocket Model Failure Modes Effects and

Criticality Analysis (FMECA) Evaluation
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ibd [Block] CapiBRIC - ISS Prototype [ ) CapiBRIC - 1SS ]J
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The Brine Reservoir only
has 1 port. This port is
either connected to the
system to feed the
evaporation trays, or it is
connected to the ARFTA
to receive brine.
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The CapiBRIC
SysML model in
SysML/MagicDraw
provided by JSC
consisted of a
Block Definition
Diagram, a wiring
Diagram and 13
state machines
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MBSMAI Phase 1: CapiBRIC Model Fault Tree Evaluation

kg ofrie Traditional fault tree method was used to confirm that the
et hardware fault tree quantification in MADe was equivalent to
those in traditional software tool.
[ | ]
capillary tray Brine droplet
leaks brine entrainment
I I I [ ]
FT1-1 FT1-2 . ‘ ‘ . ‘
‘ ‘ InletVahve el | Inlet Filter Fails Blower Fails | | HeaterFals | | Temp. Sensor Sweep Gas Valva Fails Inlat Valve Fails Resevoir Fails embly Fails | | Swes
| | | | 000000000é0000
capillary tray excessive brine cell deformities Excessive flow
does not deploy flow from from blower
i G L The SysML/MagicDraw CapiBRIC model was provided to the MBSMAI
| | | model development and evaluation team and not developed internally
ooy et matacicn so the model structure is similar but not exactly the same as that in
MADe or traditional analysis performed by the team
O O
deployment
mechanism
malfunction
| Nen | =5 ” e s | = |
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MBSMAI Phase 1: CapiBRIC Model Failure Modes Effects and Criticality

Analysis (FMECA) Evaluation
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It is currently unclear if a SysML model FMECA can be customized to
characterize severity/likelihood for risk assessment. SysML/MagicDraw
FMECAs were generated at the system, and all other lower levels using

Tietronix FMEA Plugin. MagicDraw Tietronix generated FMECAs were found
to correspond well with traditional artifacts in content and format when the
state machines were defined accordingly.

MADe FMECAs were generated at the system, and fully decomposed
levels using a simple override/mode setting. MADe FMECAs were found
to relatively correspond well with traditional artifacts in content and
format once optional mission specific narratives were added.
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*1S'MODEL-BASED ENGINEERING VALID AND USEABLE

FOR RELIABILITY ENGINEERING?

Model-Based Engineering is found to be valid and useable for Reliability
Engineering for NASA Safety and Mission Assurance,
If adequate modeling processes and environment are established.
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" Recommended Process Guidance for Cross-Discipline Model-Based

Engineering

Pre- Requisite: Establish Modelling process and controls

1) Establish a multi-discipline modeling team (Systems Engineering (SE) and SMA at a
minimum);

2) Establish modeling responsibilities (e.g., SE’s model requirements, Designer’s model
structure (Functional Block Diagram/Wire Diagram), REs model failure behaviors and
characteristics) and controls;

3) Complete modeling and share common data between modelling elements;

4) Produce Reliability artifacts and share resulting data between modelling elements;

5) Verify and refine modelling (and designs) until a final and acceptable result is
achieved,;

6) Share modeling with future missions.
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" Recommended Optimal Modeling Environment Requirements

for Cross-Discipline Model-Based Engineering

The Modeling environment/tool shall:

e Be easily mastered structure and interface for efficiency.

e Support for the development of models from the traditional reliability artifacts rather than only deriving the artifacts
from the models for efficiency via model re-use.

e Have the ability to create a functional model of the systems for efficiency and clarity:.

e Have the ability to ensure that changes to one diagram (e.g., adding a component) propagates to other parts/diagrams
of the model automatically or at least shows as an error that needs to be resolved by the modeler.

e Have the ability to allocate requirements to a functional diagram/element for consistent and accurate effect
assessment.

e Include modeling diagrams that connect hierarchically to each other for efficiency and clarity which will allow non-

modelers to easily traverse and drill down within the model for understanding and accuracy validation.

Have Libraries of standard components with baseline failure and function data for consistency and accuracy.

Have Libraries of standard failure mechanisms and causes for consistency and efficiency.

Have the ability to combine models and duplicate modeling for efficiency.

Include Model component and system error checking for accuracy.

Include Model change control/reporting for accuracy.

Have performance that shortens analysis time while maintaining consistency and accuracy between models.

Have the ability to add models of systems or portions of systems to a library of shareable models for efficiency.
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" Recommended Optimal Modeling Environment Requirements

for Cross-Discipline Model-Based Engineering

The Modeling environment/tool shall:

Have the ability to produce a FMECA with NASA defined levels and characterization factors, a Fault tree with
precise Boolean logic for accuracy, life assessments at the component and system level, and availability assessments
at the component and system level.

Have the ability to perform maintainability assessments interconnected with maintenance/sparing plans at the
component and system level.

Have the ability to import requirements, CAD and BOM/part lists type data to create modeling elements or as
supporting data for efficiency.

Have the ability to select requirements allocated to each element as the effects and functions for accuracy and
efficiency.

Include an export function to other modeling formats and reliability tools (e.g., Windchill Prediction tool (formerly
Relex), Saphire, QRAS, etc.)

Have the ability to perform probability analysis using at least 217F, Telecordia, FIDES, PRISM, and/or enterprise
custom databases (SEAM). Or import data from reliability tools (e.g., Windchill Prediction tool, etc.) for accuracy
and efficiency.

Have the ability to import results (e.g., radiation effects, life expectancy data, traditional analysis data) from other
models or sources for efficiency and accuracy.
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+C°c5nc|usi'c')n and Path Forward

Conclusions

* Model-Based Organizations, including NASA, must decide for themselves how to
implement model-based engineering in a way that makes sense for all their
engineering, assurance, operational, and production elements. Therefor it is essential
to the subject matter experts from each element as early as possible.

* Not all tools are ready to support all disciplines.

Path Forward

e Conduct Phase 2 of this study in which evaluations and testing will consist of
follow-on Reliability evaluations with more complex system/model (e.g.,
Cubesat Mission) and Safety Analyses.

» Work with tool vendor’s to customize tools for even more compatibility with
SMA disciplines.

e Conduct Phase 3 of this study which will evaluate Software Assurance and
Quality Engineering Analysis compatibility.

Risk Management
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