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SUMMARY & CONCLUSIONS 

It has long been well known that actual system reliability 

typically falls well short of early estimates.  Failure rates are 

often ten or more times higher than anticipated.  Many reasons 

have been given for this, but over-optimism is the fundamental 

cause of too-favorable reliability predictions.  Most forecasts of 

reliability are essentially best-case scenarios, as are predictions 

of budget and schedule.  Confident engineers assemble 

estimates bottom-up, including the known factors and ignoring 

problems that they hope won’t happen.  Traditional reliability 

estimation is based on simply summing up the component 

failure rates.  This ignores most actual failure causes. The way 

to reduce over-optimism is to use the historical system level 

failure rate from similar projects.  Adjustments should not be 

made based purely on engineering judgment, but only if there 

is so logical quantitative justification.  The traditional 

component-based reliability estimate is useful as a lower bound 

on the system failure rate. The difference between this lower 

bound component-based reliability and the historical system 

level reliability indicates how much of the total failure rate is 

due to system level problems rather than component failures.   

1 INTRODUCTION 

The traditional system failure rate estimate is simply the 

sum of the component failure rates.  Actual failure rates are 

usually higher and often much higher, showing that this failure 

rate estimator is inaccurate.  The failure causes that make actual 

reliability fall short of the estimated reliability are well-known 

and include problems in design, manufacturing, operations, and 

management.  Failures are caused by design errors, interface 

problems, system level effects, unanticipated environmental 

effects, and operator error.  Specific problems include 

misunderstood operational environment, use of low reliability 

components, manufacturing quality problems, inadequate and 

unrealistic testing, inaccurate reliability prediction techniques, 

inconsistencies in failure classification and data collection, and 

short term management focus on cost and schedule leading to 

insufficient effort to improve reliability.   

These failure causes are difficult to anticipate and estimate, 

but they inevitably appear in the system level failure rate data.  

The actual level of failures not caused by components depends 

on the system design maturity and the organizations reliability 

knowledge and effort.  There is an over-optimistic tendency to 

assume that historical failure rates can easily be improved.   

 

1.1 Over-optimism 

The component-based reliability estimate is readily 

accepted as reasonable because of a natural optimism bias, the 

observed fact that estimates are usually too close to the best 

case, which Kahneman calls the planning fallacy.  A way to 

avoid over-optimism is to base reliability estimates on the 

actual reliability of similar projects [1].   

Although the general failure causes are well known, it 

seems very difficult to make accurate reliability predictions.  A 

first step in reducing over-optimism can be made by simply 

multiplying the best-case failure rate by a factor of 10 or 20, as 

suggested by historical experience.   

The initial failure rate estimate can be corrected using 

actual failure rate data obtained during test and operations.  The 

inverse of the system failure rate is the system Mean Time 

Before Failure (MTBF).  Initial testing often produces infant 

mortality, occurring well before the estimated system MTBF.  

The highest failure rate causes have the shortest MTBFs and 

cause the earliest failures.  Early failures are often due to design 

or component selection errors which are usually diagnosed and 

fixed, in a process called reliability growth.  As some of the 

failure causes are corrected, the initial failure rate declines and 

may ultimately approach the best case failure rate based on the 

component failure rates.   

2 ESTIMATED FAILURE RATES ARE OFTEN MUCH 

HIGHER THAN ACTUAL FAILURE RATES 

There is usually a significant gap between predicted 

reliability and actual operational reliability.  One study of 

military avionics found that failure rates can be 7 to 20 times 

higher than predicted [2] [3].  The estimate produced by 

traditional reliability analysis is too low.   

3 TRADITIONAL RELIABILITY ANALYSIS 

Traditional reliability analysis assumes that the system 

failure rate is determined by the component failure rates.  

Failure rate data is collected in handbooks and reliability 

analysis using reliability block diagrams is used bottom-up to 

estimate the overall system failure rate.  If all components are 

needed and there is only one of each, and if the component 

failure rates are small, the system failure rate is the sum of the 

component failure rates.  When this approach was first 

established in the mid-1900’s, systems were much simpler and 

components such as electronic tubes accounted for nearly all 

the system failure rates.  Since then, much higher quality 



components have reduced component-caused failures and 

greater system complexity has led to failures caused by 

problems in management, requirements, design, interfaces, 

manufacturing, and software.  These factors are not addressed 

in traditional reliability prediction methods. [4]   

4 EXPLANATIONS FOR THE RELIABILITY GAP 

The explanations as to why estimated failure rates are 

much lower than actual failure rates include two kinds of 

problems with traditional analysis.  The estimator assumptions 

can be questioned.  Only component failures are included.   

4.1 Objections to the usual reliability estimation assumptions 

Traditional reliability analysis makes several unrealistic 

assumptions.  They are that all system failures are due to 

component failures, that the failures are independent, that the 

component failure rates are accurately known, and that repair 

or replacement of a failed part returns the system to its original 

good-as-new condition.   

In reality, component failures are a small part of all 

reported failures.  Common cause failures are not independent.  

All spares of a particular component may fail for the same 

reason, an internal manufacturing fault or some excessive 

system stress.  Component failure rates are often optimistic 

underestimates.  Repairs may not restore the system to its 

original condition.  Repairs are often imperfect and they may 

introduce other defects leading to failures of other parts.   

4.2 Objections to component-based reliability estimation 

A system is much more than the sum of its parts.  An 

integrated system is designed to produce system level 

performance of a different kind than that of its components.  

Just as systems have system level performance, they have 

system level failures.  Yet “System integration and interfacing 

is seldom considered.” [2] “Many reported failures are not 

caused by part failures at all, but by events such as intermittent 

connections, improper use, maintainers using opportunities to 

replace 'suspect' parts, etc.” [2]  

A survey of “Experts’ Opinions on the Reliability Gap,” 

found some significant contributors were as follows:  

• Definitions – inconsistencies in failure classification and 

data collection 

• Design – use of low reliability components, lack of 

derating, interface problems, system level effects 

• Environment - misunderstood operational environment  

• Management – short term focus on cost and schedule 

leading to reduced reliability effort with little time and 

funds for testing, repair, and design correction 

• Manufacturing – quality problems, process errors, 

inadequate testing 

• Operations – misuse, accidents, operator error 

• Prediction - inaccurate techniques, assumptions, data [2]  

The causes for underestimated failure rates include the 

assumptions of the prediction techniques, lack of understanding 

the operational environment, manufacturing problems, design 

problems, and short-term management focus limiting design 

and test effort. [3]  The direct cause of actual high failure rates 

is the combination of high system complexity and limited time 

and budgets. [2] [3]  To this can be added a lack of 

understanding of how to design for reliability, of what is the 

best obtainable reliability, and how to achieve it within given 

budget and schedule constraints.   

5 OVER-OPTIMISM 

A fundamental cause of all overly favorable predictions is 

over-optimism.  The Nobel laureate, Daniel Kahneman, 

explored how humans think in his best-selling 2011 book, 

Thinking, Fast and Slow [1].  He found that planning estimates 

are usually over-optimistic, unrealistically close to the best 

case, and not based on similar cases.  Over-optimism usually 

persists beyond the planning phase of a project and into the 

execution phase.  Psychological optimism produces two effects, 

over-optimistic estimates and overconfidence that the low 

estimates will be met.  Over-optimism is not only not cured by 

increased subject matter expertise; it is encouraged! Good 

models and accurate data can help produce the illusion of 

certainty, predictability, and controllability.   

Kahneman mentions that the planning expert Flyvbjerg 

endorsed the idea of taking a broader or outsider view to cure 

the over-optimism as “the single most important piece of advice 

regarding how to increase accuracy in forecasting.” The outside 

view can be implemented by using the statistics of similar cases 

in a method called reference class forecasting.  Reference class 

forecasting simply focuses on the historical results of similar 

projects.  Overall historical top-down estimation is both much 

easier and much more accurate than detailed bottom-up 

estimation. [1]   

5.1 Over-optimism in cost and schedule estimates 

System cost and schedule, like failure rate, are often 

underestimated due to over-optimism.  Just as the system failure 

rate is often estimated bottom-up as the sum of the component 

failure rates, the system cost can be estimated as the sum of the 

component, design, integration, and test costs without failures, 

redesign, and retest, and the system schedule can be estimated 

as the sum of sequential development task times without 

allowance for failures causing rework and retest or externally 

imposed delays.  Several different top-down cost estimators 

exist for aerospace systems, but user adjustments for difficulty 

and use of engineering judgment often introduce over-

optimism.  Actual costs and schedules can be several times the 

original estimates, and failure rates are typically many times 

higher than the original estimates.   

Frequently cited reasons for poor estimates are poor 

estimating methods and lack of good data.  This certainly 

applies, but if it was the only cause of error, estimates would 

sometimes too pessimistic, and this rarely happens.  Over-

optimism causes too low cost, schedule, and failure rate 

estimates.  Kahneman notes that “The optimism of planners and 

decision makers is not the only cause of overruns.” “Errors in 

the initial budget are not always innocent.” [1]  Project 

advocates may assume that the cost, schedule, and performance 

requirements are soft and that additional time and money can 

be provided or requirements reduced if needed.   



6 ENGINEERING JUDGMENT CANNOT BE TRUSTED 

Engineers develop a trained judgment and can produce 

highly effective intuitive decisions simply by following their 

gut.  An engineering judgment comes to mind with a feeling of 

rightness but without obvious reasons.  There are several 

problems with using engineering judgment.  It has  no conscious 

basis, so the reasons behind it cannot easily be explained.  

Intuitive judgments seem obviously right and are strongly 

emotionally held, so it is difficult to challenge them.  Over-

confidence and over-optimism often distort engineering 

judgment. The problems of engineering judgment can be 

reduced by using logical, fact-based analysis. [5]   

6.1 NASA shuttle failure analysis was over-optimistic 

A contractor study of space shuttle risk found the solid-fuel 

rocket boosters had a failure rate of about 1 in 40.  However, 

rather than use this historical data, NASA made an “engineering 

judgment” and “decided to assume a failure probability of 1 in 

1,000” or even 1 in 10,000. [6]  An Air Force review noted that 

the “arbitrary assignment of risk levels apparently per sponsor 

direction” had “no quantitative justification at all.”  The Air 

Force found that the boosters’ track record “suggest[s] a failure 

rate of around one-in-a-hundred.” [6]   

NASA’s internal analysis also minimized risk.  A failure in 

the solid rocket booster (the failure that destroyed Challenger) 

was assigned a probability of 1 in 100,000. [6]  Even after the 

Challenger accident, the NASA chief engineer thought the 

actual risk “would be 10 to the minus 5 … based on engineering 

judgment.” [6]  After Challenger, risk analysis found that the 

actual probability of a fatal accident was about 1 in 100. [7]  The 

simple direct use of historical data would have been far superior 

to using engineering judgment in this extreme case of over-

optimism.   

7 REDUCING OVER-OPTIMISM  

The suggested cure for over-optimism is to base estimates 

on actual historical data from similar projects.  Traditional 

reliability estimation neglects many failure causes.  Even for 

components, there is an optimistic tendency to assume that 

historical failure rates can be easily improved.   

Reliability estimates can be made more realistic by basing 

them very closely on actual historical data from similar 

projects.  The major problem is finding similar projects with 

relevant data.  Adjustments from similar project’s data should 

be based only on observable quantitative differences, such as 

design generation, parts count, and test hours.  It would be 

helpful to provide two estimates, the traditional best-case 

estimate based on bottom-up summation of parts failure rates 

and a top-down estimate based on historical data from similar 

systems.  It would be reasonable to expect a strong reliability 

growth program, test it - break it - fix it, to gradually reduce the 

high initial failure rate and approach the historical level of 

reliability for similar systems, but not the best case reliability.   

8 USE OF SIMILAR HISTORICAL DATA 

A similar system uses similar technology to perform a 

similar function in a similar environment. [4]  “Since field data 

on a similar-system is the best starting-point for quantification 

of the new-system reliability, it should be used to the maximum 

extent possible.” [4]   

There is a need for a “methodology that translates the 

observed value from the predecessor system to the conditions 

of interest for the new system.  This translation consists of 

beginning with the observed failure rate on the predecessor 

system and adjusting it to account for differences in complexity, 

temperature, environment, and processes.” [4]   

9 ACTUAL FAILURE CAUSES AND RATES 

Relatively few failures are due to components. This has 

been observed in electronic, military, and space systems.  

9.1 Electronic systems failure data 

Table 1 lists the predominant failure causes for electronic 

systems with the percentage of failures attributed to each of the 

them. [4]  Intermittent components lead to maintenance actions 

and are often replaced, adding to the logistics burden, so should 

be included in the failure rate. [4]   

Table 1 – Failure Causes for Electronic Systems  

Components 

(22%) 

Failure resulting from a part not 

performing its intended function. 

No defect (20%) Intermittent failures that cannot be 

reproduced. 

Manufacturing 

(15%) 

Failures resulting from errors in 

manufacturing. 

Induced (12%) Failures resulting from an externally 

applied stress such as environment or 

maintenance.   

Design (9%) Failures resulting from bad design.   

Wear out (9%) Failures resulting from wear out. 

Software (9%) Failure due to a software fault. 

System 

Management 

(4%) 

Failures to interpret system 

requirements or provide the 

resources required.   

 

9.2 Military and space systems failure causes  

A study of over 500 military systems found a consistent 

result, that "only 20% of the field problems encountered were 

hardware reliability problems." [2] It was also found that 

"human error is the cause for a large proportion (i.e., from 20 to 

50%) of all equipment failures.” [2]  Interfaces, the 

environment, system level problems, and human error “have 

historically caused the large majority of launch vehicle and 

spacecraft failures.” [8]   

10  DUANE-CROW RELIABILITY GROWTH 

Duane observed that if N(t) is the number of failures 

occurring until time t, the cumulative failure rate, N(t)/t, often 

declines as a fractional power of the cumulative test time, t.  The 

cumulative failure rate is  



N(t)/t = k t
-

   (1) 

The reliability growth rate is , the downward slope of 

N(t)/t versus t.  It usually varies from 0.2 to 0.6.  [9] [10]  

Crow provided a theoretical basis for the Duane model by 

assuming that failures occur according to a non-homogeneous 

(time-varying) Poisson process with a power law mean value 

function, m(t).  The mean number of failures over time is  

m(t) = k t


    (2)  

where  is between zero and one.  The expected cumulative 

failure rate is  

N(t)/t = m(t)/t = k t
-1    (3) 

The Crow and Duane reliability growth models are 

equivalent, with the Duane  equal to Crow’s 1 - .  The 

parameter k is the same in both.  The reliability growth 

parameters are usually estimated from the failure time data.  [9] 

[10] Here we will use a modified reliability growth model to 

estimate the initial failure rate as testing begins.   

10.1 Applying the Duane-Crow reliability growth model 

Crow used a 56 failure data set to illustrate reliability 

growth.  [11] A graphical Duane model fit to the data gives  

Duane N(t)/t = 0.640 t
-0.283

 (4) 

Crow’s computational analysis of this data, based on an 

assumed non-homogeneous Poisson process, found  

Crow N(t)/t = 0.217 t 
-0.073

   (5) 

The data and models are shown in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Failure rate N(t)/t with Duane and Crow models 

 

The downward slopes showing reliability growth differ.   

The Crow model does not reflect the early infant mortality data 

and gives a barely noticeable projection of future reliability 

growth. 

10.2 Crow’s data does not show long term reliability growth 

Figure 3 shows the cumulative failure rate, N(t)/t plotted 

versus time, t, but in a linear rather than log-log graph.  A two 

part failure model is also shown, rather than the single model 

equation used by Duane and Crow.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Cumulative failure rate 

A Duane-Crow model equation with N(t)/t = 1.11 t 
-0.5

 fits 

the data from time 0 to 100.  The high initial failure rate declines 

and becomes constant.  A flat line fits the data points from time 

100 to 400.  It is well known, and illustrated by the “bathtub 

curve,” that failure rates often decline strongly during an initial 

period of “infant mortality,” and then tend to be constant during 

the operational phase.  Using a Duane-Crow log-log line fit to 

the early data exaggerates the long term reliability growth 

potential, since the limiting failure rate is zero for large time.  

The best predictor of the long term failure rate would be the 

failure rate at the end of the reliability growth effort, assuming 

no “end-of-life” increase in failure rate occurs.  Reliability 

growth and long term operation have different failure rate 

behavior and require different models.   

11  THE abcd RELIABILITY GROWTH MODEL 

The explanation of failure mode correction suggests a two 

phase model of failure rate, an initial period of reliability 

growth and a later period of constant failure rate. 

11.1 Reliability growth components 

The expected components of a failure rate model are shown 

in Figure 4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The three failure rate components 
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There are three failure rate components in Figure4, a 

correctable and declining failure rate equal to 0.9 t
-0.5

, a 

constant random failure rate of 0.1, and a constant correctable 

but uncorrected failure rate.  At time equal to 50 time units, the 

failure correction process is completed.  A correctable failure 

rate of 0.13 remains, producing a constant total failure rate of 

0.23 after time 50.  Continuing to remove the remaining failure 

modes would have produced the continually declining failure 

rate shown.   

11.2 The abcd model 

The mathematical model in Figure 4 is  

Failure rate = 0.9 t
-0.5

 + 0.1 from t = 0 to 50  (6a) 

= 0.9 50
-0.5

 + 0.1 = 0.23 after t = 50         (6b) 

A simple abcd mathematical model for reliability growth 

and failure rate decline is  

Failure rate = a t
-b 

+ c from t = 0 to td   (7a) 

= d + c after td, where d = a td
-b

           (7b) 

The reliability growth effort continues and the failure rate 

declines until the time td when reliability improvement stops 

and the failure rate becomes constant.  Depending on td, most 

or only a few of the correctable failures will be removed.   

11.3 The abcd model for the Crow data set 

The abcd model is applied to the Crow reliability growth 

data set.  Figure 3 showed a rough fit to the Duane-Crow data 

set, with failure rate equal to 1.11 t 
-0.5

 to time 100.  The abcd 

model gives a better fit.   

Failure rate = 1.37 t
-0.99 

+ 0.14 from t = 0 to td = 100 (8a)  

= 0.01 + 0.14 = 0.15 after td = 100            (8b) 

The remaining correctable failures are few since the 

reliability growth time,  td = 100 is long compared to the 

random failure MTBF = 1/c =7.1.   

 

12  PREDICTING THE INITIAL FAILURE RATE USING 

THE abcd MODEL 

Reliability growth models were developed to predict the 

reliability improvement and test time that can be expected based 

on initial testing.  The model parameters of the reliability 

growth parameter and the required test time were obtained by 

curve fitting or computations based on the initial failure rate 

data.  Here we use the abcd reliability model to predict the 

initial failure rate, based on reasonable assumptions about 

reliability growth, test time, and the final failure rate. 

 

N(t)/t  = a t
-b 

+ c from t = 0 to td   (9) 

 

We assume that d, the remaining correctable failure rate, is 

y times the final long term failure rate, c.   

N(td)/td = a td
 -b 

= d = y c  (10) 

 

a = c y td
 b

   (11) 

 

The value of b depends on the design and can be estimated 

based on past experience.  The values of td and y reflect the 

reliability improvement period and the acceptable level of 

uncorrected failures that could be corrected, d = y c.  However 

td and y are strongly inversely related.  If td is doubled, the 

minimum MTBF of the remaining failure modes is also 

doubled, and this reduces d, the number of undetected 

correctable failures, and also reduces y.  This reduces the 

expected variation of the factor y td
 b

. The model is 

 

N(t)/t  = c y td
 b

 t
-b 

+ c from t = 0 to td (13) 

 

The initial failure rate at t = 1 is  

 

N(t)/t  = c y
 
td

 b
 + c  (14) 

 

Comparing this to the Duane-Crow data set model, b = 

0.99, c = 0.14 and td = 100.  The initial failure rate at t = 1 is 

1.37 + 0.14 =1.51, approximately equal to the first data point, 

1.43.  At td = 100, failure rate = c + d = 0.01 + 0.14 = 0.15.   

The reliability growth parameter b is typically 0.2 to 0.8.  

The long term constant failure rate c can be estimated as equal 

to the total component based failure rate.  The scale factor that 

multiplies c is y
 
td

 b
, and here is equal to 137/0.14 = 9.8.  

Comparisons to data indicate that this is a typical value.   

13 ESTIMATING THE RELIABILITY GAP 

The quantitative reliability gap data is very limited but 

consistent: 

• Failure rates can be 7 to 20 times higher than predicted 

using parts-based estimates. [2] [3]   

• Electronic components account for only 22% of failures.  

[4]   

• Only 20% of the field problems were hardware. [2]   

Experience indicates that the actual failure rate can be a 

factor of 5 to 10 even 20 times the traditional parts-based failure 

estimate.  This suggests that an estimate of the initial failure rate 

could be roughly 10 times the components-based failure rate.  

This might make sense if the parts count is a good indicator of 

general system complexity and that this correlates with the 

overall failure rate. However this seems implausible when we 

remember that the other failure causes include extrinsic factors 

such as environment and human error.  This requires only a 

minor adjustment to the usual easily obtained component-based 

failure rate estimate.  It seems that the only way to estimate the 

initial failure rate and reliability gap is to use the initial failure 

rate of similar systems, perhaps adjusted for degree of 

similarity.   

13.1 The reliability gap seems very unpredictable.  

The reliability growth model is based on the expectation 



that high probability failures will appear in early testing and be 

removed.  In the ideal case for failure rate prediction, all the 

failure modes would have constant failure rates.  Consider a 

group of high rate failure modes.  Which one happens first and 

when it occurs compared to its MTBF are random events.  

Testing identical systems can very easily produce different 

initial failure rates.  Then add the fact that environmental effects 

and human error are not constant, but may occur any time or 

never, and the initial size of the reliability gap seems very 

unpredictable.  

14  DISCUSSION 

Prediction errors can be expected.  “Reliability prediction 

is not a simple task and it is almost an impossible task for new, 

highly sophisticated, state-of-the-art equipment.” [2] However, 

failure rate estimates based on historical experience are less 

likely to be over-optimistic and more likely to be accurate.  

Unbiased failure rate estimates can help lead to better reliability 

specifications, planning, design, and testing and ultimately to 

better reliability.   
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