

DO-366 Appendix-C&D Update with Consideration for New A2 RDR Values

Prepared for **RTCA F2F** By: Kevin McDonough (kmcdonough@bihrle.com, (734) – 355 – 5404)

Bihrle Applied Research Inc. | 81 Research Drive, Hampton, VA 23666 USA | +1 757.766.2416 | bihrle.com

Background and Objectives

- DO-366 Appendices C and D document analyses of the air-to-air radar (ATAR)'s field of regard (FOR) in terms of alerting times before a loss of DAA well clear (LoDWC)
- These analyses are to be repeated because
 - SC-228 Phase 2 work selects an alternative non-cooperative DWC
 - 2200 ft horizontal distance
 - 450 ft vertical distance
 - The one radar category in DO-366 will be expanded to 3 categories characterized by varying UA speed ranges
 - High speed UA from 100 to 291 KTAS
 - Medium speed UA from 100 to 200 KTAS
 - Low speed UA from 40 to 110 KTAS (not analyzed in this work)

ATAR Field of Regard (FOR) Requirements

- Radar Declaration Range (RDR) Requirement (computed by Adaptive Aerospace Group and NASA)
 - It is dependent on:
 - The bearing angle of the intruder aircraft to the ownship UAS
 - The size of the intruder aircraft which is based on the intruder aircraft speed
 - The speed of the ownship UAS (A1 for high speed, A2 for medium speed)
 - Assumed FOR angular ranges: $\pm 110^{\circ}$ azimuth, $\pm 15^{\circ}$ altitude
 - 1.5 deg/s turn rate for A1 UAS and 3 deg/s turn rate for A2 UAS
- Radar Closest Performance Range (RCPR) Definition
 - 4000 ft for A1, 2200 ft for A2
- Track declaration time

۲

15 seconds track delay when the intruder enters the FOR within the RDR

A1 (High Speed) UAS

Intruder Size	Nominal RDR [nm]
Small ($s_{int} \leq 100$ KTAS)	4.9
Medium (100 < $s_{int} \leq 130$ KTAS)	5.2
Large (130 > s_{int} KTAS)	5.7

Intruder Destine Angle	RDR Correction Factor			
Intruder bearing Angle	Small	Medium	Large	
angle < 30	1	1	1	
$30 \le angle < 60$	0.59	0.67	0.76	
$60 \le angle < 90$	0.33	0.51	0.66	
90 ≤ angle < 110	0.17	0.25	0.40	

A2 (Medium Speed) UAS

Intruder Size	Nominal RDR [nm]
Small ($s_{int} \leq 100$ KTAS)	3.6
$\text{Medium (100} < s_{int} \leq 130 \text{ KTAS)}$	3.9
Large (130 > s_{int} KTAS)	4.4

Intruder Desting Angle	RDR Correction Factor			
Intruder Bearing Angle	Small	Medium	Large	
angle < 30	1	1	1	
$30 \le angle < 60$	0.69	0.78	0.84	
60 ≤ angle < 90	0.38	0.52	0.72	
90 ≤ angle < 110	0.23	0.29	0.42	

Full Encounter Set

- 1 million encounters are created overlaying NASA UAS trajectories with VFR trajectories sampled from MIT Lincoln Lab's uncorrelated encounter model
- Weighted distributions represent the frequency at which the encounters actually occur
 - Trajectories with high ownship speeds occur infrequently in the original NASA UAS track data; trajectories with lower ownship speeds have longer track durations

Encounter Set Stats

- The 1 million encounters were filtered to a set that includes only those encounters that are strictly within the speed bounds for A1 UAS
 - 100 KTAS to 291 KTAS
 - This includes all A2 UAS encounters as well
 - 100 KTAS to 200 KTAS
 - A1 UAS set includes 247,827 encounters
 - A2 UAS set includes 157,299 encounters

	A1 UAS (247,827 encs)		A2 UAS (157,299 encs)			
	# of Encs	% of Encs	Weighted % of Encs	# of Encs	% of Encs	Weighted % of Encs
LoWC	79,949	32.26	3.98	48,480	30.82	3.79
NMAC	12,252	4.94	0.20	7,849	4.99	0.19

Appendix D Definitions and Goals

- App Goal: Compare RDR Time Margin to corrective alert requirements
- Definition: time margin $\Delta t = t_{LoWC} t_{decl}$
 - t_{LoWC} = the time of first loss of well clear (LoWC)
 - t_{decl} = the time of track declaration
- Average corrective alert time: 55 seconds
- Late Alert time: 20 seconds

A1 LoWC Time Margin Data

- Green has a time margin of $\Delta t \ge 55 s$
- Yellow has a time margin of $0 \text{ s} \le \Delta t < 55 \text{ s}$
- Red has a time margin of $\Delta t < 0 s$
- This includes ALL of the data. All of the Red and many of the smaller valued Yellow data are intruders that entered the FOR below the RCPR (< 4000 ft).

A2 LoWC Time Margin Data

Appendix D Preliminary Results

Δt Bracket [s]	A1 UAS (79,949 total)		
	# of Encs	% of LoWC Encs	Weighted % of LoWC Encs
Δt > 55	69,555	86.99	95.16
$20 < \Delta t \le 55$	10,352	12.95	4.61
$\Delta t \leq 20$	42	0.05	0.22

Δt Bracket [s]	A2 UAS (48,480 total)		
	# of Encs	% of LoWC Encs	Weighted % of LoWC Encs
$\Delta t > 55$	24,077	49.66	52.09
$20 < \Delta t \le 55$	24,359	50.25	47.66
$\Delta t \leq 20$	44	0.09	0.23

App D Preliminary Results Comments and Questions

- Late alert % is very low for A1 UAS. It appears that the RDR may be too conservative for A1
- Possible differences due to 1.5 deg/s turn vs 3 deg/s that is used for A2 UAS analysis
 - 3 deg/s results in RDR that is roughly 0.7-0.85 the RDR at 1.5 deg/s
- Rounding up in the way RDR definition:
 - Using worst case bearing across the bearing range (e.g. using 0 deg bearing for all of 0 to 30 deg)
 - Taking the largest RDR across ownship speed range
 - Using 1.5 deg/s turn rate

Appendix C Definition and Goals

- App Goal: Determine effect of 15 second track delay when intruder enters FOR within RDR
- Definition: time margin $\Delta t = t_{LoWC} t_{decl}$
- We want to find the percentage (and weighted percentage) of LoWC encounters entering the FOR below RDR that results in a $\Delta t \leq 30$ seconds
 - For a encounter first observed within RDR, a 15 second delay is considered for track declaration time.
- We also want to ignore any cases below the RCPR
 - RCPR defined as 4,000 ft horizontal distance for A1 and 2,200 ft for A2

A1 LoWC Time Margin Data When Intruder Entered FOR Within RDR

- Same color convention as before
- Removal of sub-RCPR FOR entrance data and only considering the cases where the intruder entered within the RDR.
- No more Red data.

A2 LoWC Time Margin Data When Intruder Entered FOR Within RDR

Percent of Sub-RDR Encounters Currently within the FOR relative to Δt for A1 UAS

• By $\Delta t = 30$ seconds, nearly all of the Sub-RDR entrance encounters are within the FOR

Percent of Sub-RDR Encounters Currently within the FOR relative to Δt for A2 UAS

• Even with the reduced RDR based off of the 3 deg/s turn rate, nearly all of the Sub-RDR entrance encounters are still within the FOR by $\Delta t = 30$ seconds

Appendix C Preliminary Results

Where the intruder entered	A1 UAS (79,949 total)			
the FOR	# of Encs	% of LoWC Encs	Weighted % of LoWC Encs	
Within RDR but above RCPR	3,642	4.55	6.57	
Within RDR but above RCPR with $\Delta t \leq 30$ seconds (cases impacted by 15 second track delay)	18	0.02	0.20	
Below RCPR	40	0.05	0.06	

Where the intruder entered	A2 UAS (48,480 total)			
the FOR	# of Encs	% of LoWC Encs	Weighted % of LoWC Encs	
Within RDR but above RCPR	2,832	5.84	6.63	
Within RDR but above RCPR with $\Delta t \leq 30$ seconds (cases impacted by 15 second track delay)	52	0.11	0.29	
Below RCPR	31	0.06	0.05	

App C Preliminary Results Comments and Questions

- There are some significant changes in percent values from the previous work
- E.g. previously, 3527 encounters (3.3%, 2.1% weighted) of LoWC events could be affected by 15 sec delay where as current work suggests only 18 (0.02%, 0.2% weighted) for A1 and 52 (0.11%,0.29% weighted) for A2 encounters of the current set are impacted.
- This could be explained by differences in the set and our analysis parameters (no τ factor, >100 KTAS ownship, HMD is 2200 from 4000 last time).

Are the RDR Requirements and Definitions Suitable?

- Interesting cases to consider
 - Entrance in to the RDR through any of the radial faces (like what is circled in red)
 - What happens when the intruder enters the FOR at $1.01 \times RDR$ for a given bearing?
 - Is there a different definition or functional version of RDR that might make sense (i.e. something without the range discontinuities)?

