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Kevin L. Mikkelsen and Alan S. Estenson.
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SUMMARY

This report presents the results of cold-flow model tests to determine the static
performance of multiple configurations of a NASA one-sided ejector nozzle system. The
existing ejector nozzle system hardware was provided by NASA and was previously used for
acoustic tests. A new facility adapter duct and ejector box support brackets were designed and
fabricated by the FluiDyne Aerotest Laboratory of Aero Systems Engineering, Inc. The tests
were performed in the Channel 8 static thrust stand at ASE’s FluiDyne Aerotest Laboratory

in Plymouth, Minnesota.

Facility checkout tests were made using a standard American Society of Mechanical
Engineers (ASME) long-radius metering nozzle. These tests demonstrated facility data

accuracy at flow conditions similar to the model tests.

Channel 8 static tests included 40 ASME nozzle facility checkout tests and 24 model
tests (plus an additional 1 at no charge). The model nozzle pressure ratio varied from 1.4 to

3.0.

Test results include: thrust coefficients, thrust vector angles and location, nozzle
discharge coefficients, charging station total and static pressures, and model static pressure

distributions (in the Data Appendix).
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DEFINITION OF SYMBOLS
Speed of sound
Cross-section area, in2
Sonic throat area, in2
Real-gas ideal thrust function correction, dimensionless
Balance readout, millivolts
Discharge coefficient, dimensionless
Thrust coefficient, dimensionless
Diameter, inches
Acceleration of gravity, 32.174 ft/sec2
Resultant thrust, lbt
Axial thrust, bt
Vertical thrust, 1bs

Real-gas mass flow function, (Ibm °RY?)/( 1b¢ sec)

Axial distance from the balance vertical bridge V3 to the model reference
plane at exit of the fan nozzle. (Lrer = 32.25 inches to exit of ejector box)

Axial distance to the intersection of the resultant thrust vector with the
model centerline, measured from the model reference plane, positive
downstream of the reference plane, inches

Vertical displacement of resultant thrust vector at the reference plane,
measured from nozzle centerline to the intersection of the thrust vector and
the reference plane, positive upward, inches

Mass flow rate, slugs/second

Mach number, dimensionless

Pitching moment about the intersection of the reference plane and the
model centerline, positive clockwise with flow left to right, (=LxHy), inlb¢
Pressure, static unless otherwise specified by subscript, psia

Radius from centerline, inches

see Ly inches

Gas constant, 1716.32 ft¥/sec®*R
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Rn Reynolds number, dimensionless

T Temperature, °R (unless stated as °F)
\% Velocity, ft/sec
W Mass flow rate, lbm/sec

Wx,Wy;  Dead-weight calibration loads, bt

y Distance from wall

o Thrust vector angle, degrees

Y Ratio of specific heats, dimensionless

) Boundary layer thickness

0 Meridian angle measured clockwise from top looking upstream, degrees
A Pressure ratio, P/Pa, dimensionless

p Density, slugs/ft®

)y Summation

A Incremental quantity

T Temperature ratio, Ttg/Tt;, dimensionless

n Temperature difference ratio, (T - Tt;)/(Ttg - Tt;), dimensionless

Subscripts

a Ambient

e Exit

1 Ideal

1,) Counter for summations
r Resultant

t Total conditions

w Wall

X Axial component

y Vertical component
0 Freestream

1,2,... See Figures 3 and 7

Superscript

* Sonic condition, M =1
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1.0 INTRODUCTION

This cold flow model study investigated the static performance of a NASA one-
sided ejector nozzle system. The existing nozzle and ejector box hardware were
provided by NASA and were previously tested at NASA for acoustics. A facility
adapter and ejector box support system were designed and fabricated by ASE for these
tests. The tests were conducted at Aero Systems Engineering’s FluiDyne Aerotest
Laboratory located in Plymouth, Minnesota. Tests were conducted in the Channel 8

static thrust stand and exhausted directly to atmosphere.

The test program was defined by NASA test specifications. NASA technical
liaisons for these tests included Dr. Khairul Zaman, Mr. Raymond Castner, Dr. James

Bridges, and Mr. David Friedlander.

This report describes the test facility, test model, data acquisition and analysis
procedures, and presents the test results. Test conditions and major results are
tabulated and plotted in Figures 10 - 13. Detailed data and calculations are contained
in a separate Appendix. Detailed ASE part drawings are included at the end of this

report.
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2.0 FACILITY DESCRIPTION

The tests described in this report were performed in the Channel 8 static thrust
stand at Aero Systems Engineering’s FluiDyne Aerotest Laboratory located in

Plymouth, Minnesota.

2.1 Channel 8 Static Thrust Stand

Channel 8 is a cold-flow, high-pressure-ratio, static thrust stand with the
ability to exhaust either to atmosphere or into a sealed test cabin connected to a

vacuum system or ejector. The general arrangement of Channel 8 is shown in Figures

1,3 and 7.

The airflow for the test nozzle is obtained from the facility 500-psi dry air
storage system. Air is throttled, metered through the Station 1 ASME long-radius
metering nozzle, and discharged through the test model either to atmosphere or the

facility vacuum system.

The model assembly is supported by a 3-component strain-gage force balance
and is isolated from the facility piping by a seal; see schematics in Figures 3 and 7.

For the current tests, the model airflow was nominally 70 °F.

For all tests described in this report, the test cabin was in an open
configuration as shown in Figure 9a. The model exhausted into the open cabin and
diffuser. The diffuser piping system was opened to allow the model flow to exhaust to

atmosphere.
Facility instrumentation is provided to calculate the mass flow rates at Station

1 and to calculate the exit thrust produced by the test nozzle; details are described in

Section 4. The test data include measurements of axial and vertical balance forces, air

NASA/CR—2020-220453 2



mass flow rates, model total and static pressures, and the air temperatures and
pressures necessary to calculate the flow rate and forces. Static and total pressures
were measured with an Esterline Pressure Systems Inc. (PSI) Netscanner 98RK with
Model 9816 multi-ported transducers. Force balance and temperature signals were

recorded with a Hewlett-Packard / Agilent 34970a electronic data acquisition system.

2.2 Operational Procedures
The Channel 8 desired nozzle flow was set by regulating the total airflow to

obtain the desired pressure ratio to atmosphere, Pis/Pa, in the ASE charging station

duct upstream of the model adapter duct.

NASA/CR—2020-220453 3



3.0 MODEL DESCRIPTION

3.1 Model Adapters

Facility adapting hardware as well as flow conditioning and a charging
station duct were provided by ASE. The flow conditioning consisted of two
perforated plates and five screens. Flow conditioning details are provided in the

Data Appendix.

A facility adapter duct (1.18333-100) was used to transition from the ASE-
provided charging station and flow conditioning duct to the NASA nozzle hardware.

This duct was designed and fabricated by ASE.

3.2 Model Components

The nozzle round-to-rectangular transition duct, AR 8:1 rectangular nozzle tip
('NA8Z"), ejector box assembly, plastic plugs for setting the position of the ejector
upper plate, and tab strip were provided by NASA. The charging station and flow
conditioning were provided by ASE. Support brackets (LL18333-101) to attach the
ejector nozzle assembly to the primary nozzle assembly were designed and fabricated
by ASE. The existing ejector left and right side plates were modified by ASE to allow
attachment of these brackets (.L18333-102).

Because the existing model components did not incorporate o-ring seals, a
variety of sealing methods were utilized. A non-adhesive two-part RTV compound
was used to create a seal within the joint between the round-to-rectangular duct and
the rectangular nozzle tip. At the joint between the rectangular nozzle tip and the
side and bottom plates of the ejector box, an adhesive Loctite 5920 RTV was applied

externally to create a seal. (See Figure 9e and the notes on Figure 2 — drawing
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LL18333-010.) Small gaps between the ejector box side plates and upper surface of the

primary nozzle were blocked with foam sealing tape, Figure 9d.

For these model tests, the variations in configuration included the installation
of a tab strip onto the nozzle upper surface and changes in position and angle of the
ejector box upper plate. The tab strip was attached using two button head screws and
Loctite EA E-20NS 2-part epoxy. The heads of the two mounting screws were filled in
with red wax. The position and angle of the upper plate was set by installing different
combinations of plastic plugs in the ejector box side walls. The plastic plugs that were
used in each configuration are documented in Figure 8. For each configuration, the
heights of the ejector entry slot and ejector box exit were inspected. These inspection

results are documented in Figure 8 and in the separate Data Appendix.

An unused mounting hole in the bottom plate of the ejector box was plugged
with a provided countersunk screw and nut. Red wax was used to fill above the screw

head and provide a smooth flow surface.

The model assembly is shown in Figure 2 — drawing L18333-010. Model
configurations are defined in Figure 8. Photographs of model assemblies and
components are shown in Figures 9a-i. Detailed ASE drawings of the test hardware

are contained in the last section of this report and on the DVD-ROM.

3.3 Model Instrumentation

The charging station instrumentation for the model (station 8) consisted of two

6-probe area-weighted rakes (Pig) at theta = 100 and 260 degrees. Four associated
static pressures (Psg) were located on the outer wall at 45, 135, 225, and 315 degrees.

(Theta equals 0 degrees at model top-dead-center and is positive in the clockwise
direction when looking upstream.) This charging station was located upstream of the

transition adapter duct and nozzle model.

NASA/CR—2020-220453 5



Five static pressure taps were located in a row along the centerline of the

ejector box upper plate; they are shown in photographs in Figure 9.

Four tubes were taped into place on the ejector box upper and lower plates such
that their open ends were flush with the aft-facing surface. (Figure 9e¢) These tubes
measured “flange” static pressures near the ejector box exit, but they do not provide a
true base area static pressure reading. Two additional open tubes were positioned to
measure local pressures upstream from the ejector box inlet. (Figure 9¢) These
measurements are provided for reference purposes; they were not incorporated into

the ASE data reduction process.

Instrumentation details are provided on the individual part drawings.

NASA/CR—2020-220453 6



4.0 DATA ANALYSIS PROCEDURES

The following subsections describe the data analysis procedures. Station

notations are defined in Figures 3 and 7.
4.1 P¢ Definitions

For these tests, an arithmetic mean method was used to determine the ASE

charging station total pressure Pt;. The individual Pty probes were physically located

in equal area weighted positions. This total pressure measurement was located

upstream of the transition duct to the nozzle.

For reference, FluiDyne’s standard mass-momentum routine is described
below. The mass-momentum method was not used for these tests. For flows with
nearly-uniform total pressure profiles, the average total pressure may be obtained by
simply area-weighting individual probe measurements. For flows with non-uniform
total pressure profiles, however, a more accurate measure of the average total
pressure is obtained from the mass-momentum method (Reference 1). This method
represents a non-uniform flow by average properties that simultaneously satisfy both

the mass flow and the momentum of the real flow.

From continuity:

Y y -1 2j_ Y ( y - 1 2)
PAM |- |1+ XY=~ = SPAM |—— |1+ X\
\/RT( M PiA;M; ‘/RT' M

]

and from momentum:

PAQ+ y M®» = ZPjA; 1+ v M)
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where the individual Aj; were determined from the flow path and rake geometry, P; is
assumed to vary linearly between the inner and outer wall, Py is measured directly,

and

y -1

2 Ptjy
.= S —_ -1
M; y -1 (P

If total temperature is assumed constant in the passage, then:

2
1+ yM? IPA; 1+ yM)

-1 -1
M \/1 + YT M2 2P;A;M; ‘/1 - M]2

The right side of the above equation is calculated by summation from the measured
quantities. Squaring the above equation results in a quadratic (with variable M2),
which is readily solved for a unique value of the effective Mach number, M, satisfying
the stated requirements. Knowing the effective Mach number, the effective static
pressure, P, is determined from the preceding continuity equation, and finally, the

effective total pressure is calculated from:
Y

P, :P(1+ _7'21 szy-l

4.2 T¢ Definitions

Tt was measured with facility Type K thermocouples. For model performance

and ASME checkout nozzle tests, Tig was calculated from Ti by subtracting the

temperature drop due to adiabatic throttling of flow between the meter station and

the ASE charging station. Adiabatic walls were assumed. The temperature drop was

NASA/CR—2020-220453 8



calculated from Joule-Thomson throttling values (Reference 2) and typically varied

between 1° and 5°F.

4.3 Flow Rates

The total mass flow rate through the test nozzle system was determined with a

choked ASME long-radius metering nozzle at Station 1 (see Figures 3 and 7).

_ KiCpiAPy (Al*/Al )

VTa

The critical flow factor, K, was calculated as a function of total pressure and
total temperature. The equation for K, applicable to the range of P; and T: normally

encountered in the present test facility, was obtained from Reference 3.
K =0.53160 + (P:+16.9)(1.581- 0.00834(T: - 520)) x 10°®

where Tt is in °R and P is in units of psia.

Throat Reynolds Number at Station 1 was calculated using the following

equation from Reference 4.

p,MdlT, (1+02M?)" +198.6]
T2 (L+02M?f°

R, =1.50994 x 10’

where all parameters pertain to the desired station.

The meter discharge coefficient, Cpi1, was calculated as a function of throat

Reynolds number using a semi-empirical equation (Reference 6):

NASA/CR—2020-220453 9



Laminar: Rn1 < 500,000:
C,, =1-6.92R2°

Transitional: 500,000 < Rn1 < 2,000,000:
Perform linear interpolation based on value of Rni between the laminar

and turbulent curves.

Turbulent: Rn: > 2,000,000:
C,p, =1-0.184R.%

For these tests, the values of Rxi ranged from approximately 2,100,000 to
5,000,000.

Ai, the meter geometric throat area, was 0.7811-in?2. Meter pressure, Pt,, was
measured with the PSI system. Ti, was measured using shielded type K (chromel-

alumel) thermocouple probes. All electrical outputs were measured and recorded with

a digital data acquisition system.

A*/A is the isentropic area ratio calculated from the Mach Number at the
meter throat. For all test conditions in this calibration, the flow meter was choked,

A*/A=1. 1If the Station 1 flow meter unchoked, A/A would be calculated using

equations valid for y = 1.4.

A*A = 3.863931L° 1 - L for A < 1.8929
and

A*/A =1, for L > 1.8929,

where A equals the meter total pressure Pi1 divided by measured throat static

pressure, Pa.

NASA/CR—2020-220453 10



Calculated flow rates (Ibm/sec) for these model tests were in the range:
1.5<Ws<34
4.4 Discharge Coefficients

Discharge coefficients were calculated for Channel 8 performance tests.
Discharge coefficient is defined as the ratio of the actual flow rate through a nozzle to
the ideal isentropic flow rate at the overall nozzle pressure ratio. Overall nozzle

pressure ratios are defined as As = Pig/Pa. In a static thrust stand, Pa is either

atmospheric pressure or test chamber pressure. Because these tests were run with
the test cabin open, P, was the ambient atmospheric pressure in the test facility. The

nozzle discharge coefficient is then

Cpg = We/Wg;
where

Wy =P, AgKg (A" TA) 1T,

Pis and Ttg, were defined in Sections 4.1 and 4.2. Ks was evaluated using a

previous equation, as functions of Ptg and Ttg

The flow area for the nozzle, As, was 3.54 in2. This area was specified by

NASA.

For the ASME checkout nozzle tests, the throat area of the 2.25-inch diameter

nozzle was Ag = 3.9729 in2.

NASA/CR—2020-220453 11



A*/A, the 1sentropic area ratio, is used to correct the ideal flow rate when the
nozzle is unchoked. A*/A for cold flow was calculated using equations valid for y = 1.4,

obtained from Reference 4.

A'JA =3.86393 L™ Y11 for k< 1.8929

and

A"/A =1for A >1.8929.
4.5 Thrust Measurement

Model thrust is measured by a force balance system with a control

volume approach.

The static axial thrust of an exhaust nozzle is defined as the axial exit
momentum of the exhaust flow, plus the excess of exit pressure over ambient pressure
times the exit area.

Hx = mvex + (Pe - Pa) Aex= axial thrust

The vertical thrust, Hy, was obtained from the vertical force balances. Hy is

defined positive downward.
Hy = vertical thrust, downward.
The resultant thrust, Hy, was calculated as the vector sum of the axial thrust,

Hx, and vertical thrust, Hy. The resultant thrust vector angle relative to the facility

centerline was determined as:

NASA/CR—2020-220453 12



Referring to Figures 3 and 7, the location of the thrust vector is defined by Lk,
the axial distance from the reference plane to the intersection of the resultant thrust
vector with the facility centerline. Ly is defined positive downstream of the reference

plane. Lgis found by summation of moments.

Ly is the vertical distance to the intersection of the resultant thrust vector with
the reference plane, measured positive upward from the model centerline, and is
calculated from Lx and a. The reference plane was chosen as the exit plane of the
gjector box. Pitching moment about the reference point (model centerline at the
reference plane) is calculated as MO = Hylx. MO is defined positive clockwise with

flow from left to right.

The model size was determined by the existing NASA hardware and was small
for ASE’s force measurement system. However, thrust measurements were

acceptable during these tests.
4.6 Static Thrust Coefficients

Thrust coefficient is defined as the ratio of the measured nozzle thrust to

the ideal thrust of the duct flow (expanded isentropically from P to Pa). In Channel

8, thrust coefficients are calculated for the axial and vertical thrust components, and

for the resultant thrust vector (in vertical plane):

Hx — HY 2 2
=% Cr = = + C
Cr, " e Cr, = 4/Cr, T,

Ideal thrust, mvi, was calculated from the actual mass flow and the
dimensionless ideal thrust function based on nozzle pressure ratio. The dimensionless
1deal thrust function, mivi/P:A*, is a function of only the nozzle overall pressure ratio,

A (for a given vy).
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ms Vig = (A*/A)s CpgAsPig (mivi/PtA*)s

where

v e
. 2 |t /y+1 [
v =v| —— —\1-
(m|V| PtA) Y|:’Y+1:| ’Y-l l

= 1.81162 V1-x02%7t fory =14

4.7 Pressure and Temperature Data

Pressure instrumentation for facility and charging station pressures were
described previously. Pressures were measured using an Esterline Pressure Systems
Inc. (PSI) Netscanner 98RK with Model 9816 multi-ported transducers. All charging
station and model pressures were measured with 30 psid range pressure modules.
Temperature measurements were obtained using chromel/alumel thermocouples.

Temperatures were expressed in °F and °R
4.8 Force Balance Calibration

The force balance calibration determined the output characteristics of the three
force balance flexures. Known loads were applied in the axial and vertical directions
to obtain a matrix of balance equations, including force interactions, of the form:

V1 =KnuBi1 + Ki2B2 + Ki13B3

H, = K21B1 + K22B2 + K23B3

V3 =Ks31B1 + K32B2 + K33B3

NASA/CR—2020-220453 14



In the above equations, B; is the balance output in millivolts for the axial and
vertical bridges. Kj terms are the calibration coefficients obtained during the
calibration process, where the off-diagonal terms (i#)) are the interaction correction
terms, which numerically have the effect of canceling any interactive load along one
axis of the system due to an applied load along an orthogonal axis. The reference
coordinate system is defined along the facility centerline and all forces and moments

are defined with respect to this coordinate system.
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5.0 PRESENTATION OF RESULTS

5.1 ASME Checkout Nozzle Tests

A standard 2.25-inch diameter ASME long-radius flow nozzle was tested to
demonstrate proper facility operation and accuracy in determining Cp and Cr of static

test nozzles.

The ASME test results are tabulated in Figure 5 and are plotted in Figures 6a-
¢ with the predicted (or target) value curves. The target-value curves are based on
semi-empirical equations consistent with those described for the ASME meter in

Sections 4.3 and 4.5. Photographs of the ASME nozzle are shown in Figure 4.

The test results were statistically analyzed for bias (average difference between
actual and predicted values) and scatter (standard deviation of the individual biases

from the overall bias). This analysis is summarized in the following table.

Static Checkout Results with ASME Nozzles

Average Standard
Bias Deviation ():
Test Series A Range | N Cr Co Cr Co
995" ASME 1.6-3.0 | 16 | -0.0001 0.0006 0.0004 0.0005
Pretest 1.2-1.6 6 -0.0003 -0.0006 0.0016 0.0011
2.25” ASME 1.6-24 | 10 0.0001 0.0008 0.0007 0.0006
Post Test

1.1-14 6 0.0026 -0.0004 0.0012 0.0008
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5.2 Model Tests

The model configuration definitions are provided in Figure 8. Photographs of
the test configurations are contained in Figures 9a-1. Model test conditions and major
test results for the static tests are tabulated in Figure 10. The tabulations include:

configuration, data point number, actual values of independent test variables (As, Pty
Ttg, Pamb, Tamb), and major test results (Ws, Cr,, Cpg, a, and Ly). Results are plotted in
Figures 11 through 13. Nozzle thrust coefficients are plotted in Figures 11a-b. Nozzle

discharge coefficients are plotted in Figures 12a-b. Thrust vector angles are plotted

in Figure 13.

Detailed data, model assembly inspections, and calculations are contained in a
separate Data Appendix. A DVD-ROM containing all model data and accompanying
information is also included with the Appendix. Data and photos were also

transmitted to NASA via email as testing progressed.
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Duct assembly and charging station with 2.25-inch ASME nozzle.

|

2.25” ASME nozzle assembly, conical collector and 6 inch diffuser.
(Test cabin was in the open position for all tests.)

FIGURE 4. ASME CHECKOUT NOZZLE PHOTOGRAPHS
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L18333, Channel 8

Data Point A P, P, Cry Cp a (degrees) Ly (in.)
Pretest to Atmosphere
601.01 2.994 42.424  14.170 0.9904 0.9913 0.16 -0.01
601.02 2.992  42.387 14.165 0.9907 0.9914 0.16 -0.01
602.02 2.795 39.581 14.164 0.9924 0.9916 0.13 -0.03
602.03 2.796  39.595 14.162 0.9925 0.9916 0.14 -0.03
603.02 2.5691  36.745 14.182 0.9941 0.9907 0.15 -0.03
603.03 2.5691  36.738 14.178 0.9942 0.9907 0.15 -0.04
604.02 2.395  33.958 14.182 0.9950 0.9909 0.12 -0.05
604.03 2.394  33.932 14.177 0.9948 0.9911 0.12 -0.05
605.02 2.193 31.057 14.164 0.9946 0.9910 0.08 -0.08
605.03 2.196 31.098 14.162 0.9950 0.9912 0.09 -0.08
606.01 1.990 28.248 14.197 0.9947 0.9909 0.09 -0.08
606.03 1.994 28.272  14.177 0.9947 0.9907 0.07 -0.09
607.01 1.791 25.425 14.197 0.9936 0.9909 0.12 -0.08
607.02 1.794 25.447 14.182 0.9933 0.9907 0.08 -0.10
608.01 1.585 22.459 14.170 0.9932 0.9915 0.04 -0.14
608.02 1.586 22.467 14.162 0.9932 0.9915 0.03 -0.15
609.02 1.393 19.749 14.182 0.9929 0.9917 0.07 -0.14
609.03 1.394 19.760 14.177 0.9936 0.9917 0.03 -0.17
610.01 1.195 16.963 14.198 0.9890 0.9892 0.22 -0.13
610.03 1.195 16.939 14.177 0.9888 0.9891 0.08 -0.19

2.25 inch nozzle (6051-6245)

FIGURE 5. TABULATION OF ASME CHECKOUT NOZZLE TEST RESULTS
(SHEET 1 OF 2)
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L18333, Channel 8

Data Point A P, P, Cry Cp a (degrees) Ly (in.)
Posttest to Atmosphere
611.01 2.992  42.496 14.201 0.9903 0.9918 0.20 0.04
611.02 2.992 42.489  14.203 0.9907 0.9917 0.22 0.04
612.01 2.793  39.661 14.202 0.9923 0.9916 0.20 0.03
612.02 2.793 39.672  14.203 0.9926 0.9917 0.19 0.02
613.01 2.593  36.847 14.210 0.9940 0.9912 0.20 0.02
613.02 2.587 36.772  14.212 0.9941 0.9916 0.19 0.01
614.01 2.399  34.090 14.210 0.9951 0.9910 0.18 0.00
614.02 2.400 34.110 14.211 0.9951 0.9915 0.16 -0.01
615.03 2.195  31.187 14.210 0.9953 0.9909 0.15 -0.02
615.06 2.195 31.540 14.367 0.9953 0.9911 0.17 -0.01
616.03 1.999 28403 14.210 0.9951 0.9909 0.14 -0.03
616.05 1.995 28.664 14.366 0.9946 0.9907 0.16 -0.02
617.03 1.800 25.577 14.210 0.9943 0.9909 0.15 -0.05
617.06 1.790 25.718  14.367 0.9942 0.9912 0.17 -0.04
618.01 1.588 22.560 14.210 0.9944 0.9914 0.14 -0.08
618.04 1.593 22.880 14.366 0.9938 0.9915 0.15 -0.07
619.01 1.394 19.808 14.210 0.9945 0.9918 0.13 -0.11
619.04 1.394 20.035 14.377 0.9951 0.9916 0.18 -0.09
620.04 1.198  17.220 14.377 0.9950 0.9895 0.21 -0.14
620.05 1.196 17.195 14.381 0.9952 0.9899 0.20 -0.15

2.25 inch nozzle (6051-6245)

FIGURE 5. TABULATION OF ASME CHECKOUT NOZZLE TEST RESULTS
(SHEET 2 OF 2)
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NASA one-sided ejector nozzle model installation in Channel 8 test facility.
(flow is from right to left in these photos)

Model and facility adapter installation.
FIGURE 9a. MODEL PHOTOGRAPHS
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Config 1 - Baseline: NASA one-sided ejector nozzle system.

FIGURE 9b. MODEL PHOTOGRAPHS
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Config 1 - Baseline: side view. (flow is from left to right)

Config 1 - Baseline: top view. (flow is from left to right)

FIGURE 9c. MODEL PHOTOGRAPHS
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Foam sealing tape used to fill gaps between box side walls and nozzle surface.

FIGURE 9d. MODEL PHOTOGRAPHS
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RTYV applied externally to joint between nozzle and ejector box.

FIGURE 9e. MODEL PHOTOGRAPHS
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Config 2 — Tab Strip: baseline configuration with addition of serrated tab strip
to nozzle.

/s "4;/7 o : i .

Tab strip attached to nozzle upper surface using epoxy and screws.
FIGURE 9f. MODEL PHOTOGRAPHS
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Config 2 — Tab Strip: view inside ejector box of serrated tab strip.

R e/

Config 3 — Larger slot and exit areas: view of ejector entry slot.

FIGURE 9g. MODEL PHOTOGRAPHS
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Config 4 — Divergent upper plate: view of ejector box.

FIGURE 9h. MODEL PHOTOGRAPHS
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Config 4 — Divergent upper plate: view of ejector entry slot.

Config 4 — Divergent upper plate: view of ejector box exit.

FIGURE 9i. MODEL PHOTOGRAPHS
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JOB L18333 - NASA ONE-SIDED EJECTOR NOZZLE

ASE Detailed Drawing List

DRAWING | REV. TITLE
NUMBER
L18333-010 A [Model Assembly - NASA Ejector Test
1L18333-100 A |Facility Adapter
L18333-101 Bracket - Ejector Nozzle Support
1L18333-102 Ejector Box Modification
6070-079 D |6.5 inch Dia ID ASME Spacer Spool

For the hardware provided by NASA, part numbers were not specified and drawings
were not provided.

10/23/2018, ae

NASA/CR—2020-220453

L18333 - NASA Ejector Nozzle
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