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Abstract

Robotic mining could prove to be an efficient method of mining resources for ex-
tended missions on the Moon or Mars. One component of robotic mining is scouting
an area for resources to be mined by other robotic systems. Writing controllers for
scouting can be difficult due to the need for fault tolerance, inter-agent cooperation,
and agent problem solving. Reinforcement learning could solve these problems by
enabling the scouts to learn to improve their performance over time. This work is
divided into two sections, with each section addressing the use of machine learning
in this domain. The first contribution of this work focuses on the application of
reinforcement learning to mining mission analysis. Various mission parameters were
modified and control policies were learned. Then agent performance was used to
assess the effect of the mission parameters on the performance of the mission. The
second contribution of this work explores the potential use of reinforcement learning
to learn a controller for the scouts. Through learning, these scouts would improve
their ability to map their surroundings over time.
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1 Introduction

Extended missions on the lunar surface or human missions to Mars will require
vast resources and sustain high costs due to the difficulty of transporting resources
from Earth’s surface. Studies have found that the lunar regolith contains large
quantities of resources such as water, oxygen, helium-3, hydrogen, carbon, nitrogen,
and other useful elements. Further studies have analyzed the cost effectiveness
of in-situ-resource utilization (ISRU) on the Moon in comparison to transporting
resources from Earth. While the cost of mining these resources would be higher than
that of mining on Earth, the cost of transportation, for the ISRU option, would be
significantly lower. Cost savings from transportation outweigh the added cost of
mining on the lunar surface [1, 2].

For mining to be efficient on the Moon, new mining technologies must be created.
Human based mining would prove to be difficult for a variety of ergonomic, safety,
and logistic issues. Robotic mining systems would not suffer from these problems
and could potentially provide an efficient solution to mining. Robotic mining of
lunar resources could be split into three workloads. One group of robots would
scout the terrain for resources, while simultaneously generating a resource density
map. The second group of robots would harvest resources at various locations from
the scouted map. The last set of robots would collect and process resources [3].

This work focuses largely on the task of scouting. In its simplest form, scouting
consists of moving to a location, sampling resource concentration of the regolith,
then recording the resource concentration at that location. This task can be easily
distributed amongst a team of scouts to increase the search area and increase ro-
bustness to system failures. One difficulty associated with this approach is writing
controllers for this multiagent system of robots. Examples of difficult behaviors
include failure handling, inter-agent cooperation, and handling unforeseen prob-
lems. One potential solution is machine learning, specifically reinforcement learn-
ing. Reinforcement learning allows the scouts to learn their control policy instead
of prescribing one. This work seeks to determine the extent in which reinforcement
learning can be applied to robotic scouting and mapping. One application involves
using machine learning to assess the impact of various mission parameters on the
scouts’ performance. Another application of machine learning involves the learning
of a controller given few experiences.

2 Background

An agent is an entity which can view its environment via some state representation
and then take an action to interact with its environment. The action taken by
an agent is determined by its control policy [4]. After taking an action, the agent
receives a reward, R, which acts as a metric, describing the agent’s performance in
completing a desired task. The goal of the agent is to take an action which causes
the agent to receive the highest possible reward. Reinforcement learning is a sub-
field of machine learning in which an agent learns to take better actions to more
effectively achieve its goal [5].
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A Markov Decision Process (MDP) describes the nature of the transition from
one state to the next. An MDP satisfies the Markov property which states the next
state only depends upon the previous state and the action taken at the previous
state. As a result, the only information needed to make an optimal decision is
the state representation at any point in time. This allows for a memoryless policy
implementation in which the agent directly maps the state space to an optimal set
of actions. This direct mapping from state space to action space greatly simplifies
the learning problem for the agent [5].

Sparsely rewarded problems represent a large class of problems in reinforcement
learning. In these domains, a majority of the rewards received are constant and
uninformative. Problems which can be described by binary task completion or large
time delays between rewards, such as robotic exploration, fall into this category.
One of the benefits of simplifying a task to a binary completion is that the reward
function directly promotes achieving the overarching goal instead of a parallel one.
An example would be teaching a bipedal robot to walk from point A to B. Rewarding
the robot for reaching point B would almost guarantee that the robot learned to
walk to point B. Conversely, if the robot was rewarded at each time step for its
velocity towards B, it may not learn to walk to point B. Instead, it may learn to
dive in the direction of B, as diving is faster than walking. The trade-off of using a
sparse reward is that there is less information to learn from. As a result, the agent
may experience difficulty in obtaining a reward or may learn slowly, due to the lack
of information provided by the reward signal [6].

Multiagent systems are systems in which multiple agents must interact with each
other to receive a shared goal or competitive goals. With a shared goal, a shared
global reward is necessary to describe the collective performance. If individual re-
wards are used, then agents may act selfishly and maximize their individual reward.
This competition can cause agents to learn selfish policies, which results in less op-
timal global performance. An example would be a team learning to play soccer. If
each player was rewarded individually for scoring a goal, then they would learn to
never pass because it would not benefit them individually. Conversely, if each player
is awarded points when the team scores a point, they will be incentivized to work
together to score points. A major drawback of using a global reward is referred to as
the credit assignment problem. The global reward only provides each agent with the
team’s reward, but not their individual contribution to the reward. As a result it is
difficult to determine which agent credit should be assigned due to the vagueness of
the global reward. This creates difficulty in learning as each agent needs individual
feedback to learn individual control policies [7].

3 Domain

In this domain, a team of scouts is used to generate a discrete grid-map of a sim-
ulated resource distribution as shown in figures 1 and 2. It is assumed that the
agents have imperfect knowledge of resource locations through satellite data, but
need to collect soil samples to confirm. Agents are capable of continuous control
over their locomotion and have the ability to drill and sample the soil below them
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for the resource concentration. This satellite data is not accurate and will only
guide the agents’ search. Resource distributions are irregular with varying resource
concentration gradients and shapes.
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Figure 1. A representation of the scouting domain. Arrows represent rover positions
and headings. Blue boundaries represent edges of resource clusters.

Each agent is represented by a tuple of their x position, y position, and orien-
tation angle. The agents receive a state input consisting of distances to the centers
of the nearest three resources, distance to nearest agent, location of self, whether or
not they have drilled in the current grid location, and distance to nearest frontier.
In this scenario, a frontier is defined as an unchecked grid location adjacent to a
location that has been found to contain a resource.
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Figure 2. The map generated by the agents of the resource distribution shown in
figure 1. Yellow indicates higher resource concentration, green represents areas of
low concentration, and blue represents unmapped areas.

The low-level actions the agents can take consist of varying degrees of forward
thrust, turning, and the ability to determine resource contents in the regolith be-
low. To reduce the complexity of learning, a set of discrete high-level actions were
abstracted from the low-level ones. The high-level action set consisted of moving to
one of several nearby suspected resources, moving to a nearby frontier, or drilling
at the current location. The global reward function should encourage the agents
to discover as many locations containing resources as possible, with higher concen-
trations of resources given a higher priority. To accomplish this task, the reward
function is defined as the sum of the resource concentrations found at each grid-map
location, Ĉ. This sum is then divided by the sum of resource concentrations at each
location, C, depicted in equation 1. The resulting reward represents an approximate
percentage of the resource map to be filled in.

Rglobal =

∑n
i=0 Ĉi∑n
i=0Ci

(1)

This reward is received at the end of the episode by each scout on the team, with
all other rewards being zero. This ensures that team of agents prioritize discovering
as many high density resource locations as possible. This reward function is also
designed to encourage agents to work together and discover resources, instead of
racing each other to discover each resource location first.

4 Mission Parameter Testing

Without sending a robot to another planet or moon, difficulty arises in determining
which environmental factors or mission parameters affect mission performance. To
test these parameters, a simulation is used in place of a physical model. Some
parameter changes may require significant changes in controller design. As a result,
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it is difficult to compare changes in parameters with changes in mission performance,
without modifying the controller. To overcome this obstacle, reinforcement learning
was used to learn control policies for each modified environment. The rewards
received by these controllers provided a metric describing the effect of environment
parameters on the performance of the robots. These rewards were then analyzed to
determine the specific contribution of each environment variable towards the success
of the rovers.

Multiple learning algorithms were tested including policy gradient, deep Q-
network, and neuroevolution [8, 9]. In each case, agents learned a homogeneous
policy, with one policy copied to each agent. A homogeneous policy was used to
avoid the problem of credit assignment. With one policy, the global reward directly
correlates to the single policy’s performance, and learning becomes fairly stable.
Also, learning one policy significantly reduces the policy search space. As a result,
the team policy is easier to learn, but cannot learn more complex interactions (e.g.,
agents do not develop roles).

Each of the algorithms tested produced similar quality in learned policy and
training time. Typically, neuroevolution learns with a much lower sample efficiency
because it learns from one reward over an entire episode, instead of one reward per
time step. Due the sparseness of the reward, only one non-zero reward was provided
each episode. This sparseness impeded the learning of the Q-network and the policy
gradient, causing them to learn with a sample efficiency similar neuroevolution.
This would explain the similar training times. Also, the sparse reward encouraged
agents to find as many resource bearing locations as possible, instead of converging
to a local optimum. This may be the reason these algorithms produced policies of
similar quality [4].

Neuroevolution was selected for the final mission parameter search as it was
quantitatively found to give results with the least variation. In this implementation
of neuroevolution, mutation was performed without crossover. Mutation was rep-
resented as the perturbation of the weights using a unit normal distribution with
a set standard deviation. Mutated weights were chosen at random using a uniform
distribution. The crossover method selected was tournament selection with ran-
domly generated tournament pairs. The winner of the tournament moved to the
new population and the loser became a mutated copy of the winner. The population
of agents evolved for a set number epochs.

4.1 Parameter Search: Agent Focused

The parameter search began by selecting a set of environment variables which may
have an effect on the performance of the scouting rovers. The first five parameters
included the number of agents used, the probability of satellite data being accurate,
the probability of sensor failure, the probability of an agent experiencing total system
failure, and agent differentiation in the controller.

The number of agents was chosen as a parameter, because a larger number of
rovers would be able to search an area more quickly than a few rovers. Sensor failure
was defined as the probability of any given sensor returning a zero instead of the
sensed value. This parameter was chosen to determine if highly accurate sensors
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would be needed for the control policy to function effectively. Agent failure was
defined as the probability of an agent experiencing a critical failure at the beginning
of an episode. This was chosen to determine how well agents could complete the
task given a portion of the team could not contribute. Satellite data inaccuracy
could hinder scout performance, which is why it was chosen as a parameter to
test. An option was included to provide an agent with a binary version of their
identification number as part of their state input. The motivation behind this test
was to determine if including differentiating information as part of the state input
would allow agents to learn slightly different policies. If the policies could be slightly
different for each agent, a larger control space could be searched in comparison
to purely homogeneous policies. This larger controller space should theoretically
contain policies which have a higher performance than the purely homogeneous
policy.

A summary of the effects of mission parameters on performance can be seen in
figure 3. In this figure, it is clear that the number of agents used has the largest
impact on performance, with all other parameters showing minor correlations. The
inclusion of incorrect satellite data seems to only have a minor impact on the per-
formance of the agent. This is most likely due to the small performance cost of
needing to verify that a location contains no resources.

An unexpected result lies in the slight positive correlation between sensor error
and performance. This result is sensible if the sensor failure is viewed as a form of
noise. Adding sensor noise has been found to generate more robust policies, which
tend to achieve higher performance than their noise free counterparts [10]. Agent
failure seemed to cause the largest losses. These losses are fairly small in comparison
to the relatively large failure rate of 15 percent.

Including agent identification as part of the state input seems to have a greater
effect on the performance of the agents with an increasing number of agents. The-
oretically, if there is only one agent, adding an agent identifier to its input should
not increase its performance as there are no other agents to differentiate from. This
is shown as the performance of one agent does not change with the inclusion of an
identifier. Conversely, adding identifier codes to many agents could improve their
performance. This is also shown in figure 3 with 12 agents displaying a higher
performance with the addition to the state input.
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Figure 3. Five plots present the effect of each of the five parameters on mission
performance. A 3 ∗ 24 full factorial design was tested with 5 trials per test. Each
plot presents the results, grouped by parameter and number of agents. It should be
noted that the failure rate was not included for the single agent cases. This explains
the similarity in the agent failure plot in the single agent cases.

A linear regression model was used to predict agent performance given the mis-
sion parameters. The coefficients of this model are included in figure 4. The purpose
of this figure is to quantify the effects of the relationships presented in figure 3. Sim-
ilarly to figure 3, this figure shows that the number of agents have the largest effect
on mission performance.
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Figure 4. Correlation coefficients of linear regression plotted. This model described
the relationship between the five parameters and reward received. Note that number
of agents contributed the most by a large margin.

4.2 Parameter Search: Agent Identification

Another study continued the exploration of the effect of agent identification on agent
performance. A comparison was performed, with and without agent identification,
for a varying number of agents from one to twenty. The results are presented in
figure 5. These results generally confirm previous results, showing a general trend in
improved performance at higher agent population sizes. From this, it is clear that the
agents with identification perform better than those without. While homogeneous
policies are easier and more stable to train, these results support that heterogeneous
polices may be necessary to increase agent performance.
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Figure 5. Agent performance (left) and performance per agent (right) as a function
of the number of agents. Both plots compare the effects of the inclusion of agent
identification on performance. Note the diminishing returns as the number of agents
increases.

4.3 Parameter Search: Satellite Data Inaccuracy

A more in-depth study was performed on the effect of erroneous satellite data on
agent performance. The goal of this study was to determine the accuracy of the
satellite data needed to maintain high agent performance. The intuition behind this
test was that if a significant portion of the satellite data was inaccurate, then the
scouts would have to spend more time verifying the data instead of finding resource
locations. If the data provided was too inaccurate, the scouts’ search would no longer
be guided and should break down into a form of brute-force search. To test this,
five real reasource groups were included in the sattelite data along with a varying
number of fake resource groups.

Figure 6 shows the relationship between the number of agents and fake resources
and the performance of the team. The plot shows a defined increase in performance
as the number of agents increases, with a very minor decrease in performance as
the number of fake resources increases. Even as the fake resources outnumber the
real resources by a factor of four, the agents seem to map the resources without
obstruction. These results show that satellite data might not need to be accurate
for agents to successfully map the resource distribution. Even with a data accuracy
of 5 real resources groups out of 25 total groups, the scouts are provided enough
information to effectively complete the task.
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Figure 6. The relationship between number of agents and number of fake resource
groups on the reward received is displayed. During these tests, five real resource
groups were to be mapped, surrounded by fake resource groups. Yellow indicates
high performance while blue indicates low performance.

4.4 Parameter Search: Resource Focused

The last parameter search focused on the effects of the resource distribution on
agent performance. The parameters tested include number of agents, the number of
time steps in an episode, the spread of the resources, and the size of each resource.
In these experiments, spread is defined as the maximum distance from the center
of the map to a resource, while size refers to the average diameter of each resource
cluster. Theoretically, increasing resource spread should cause the agents to spend
more time moving from one resource site to another, thus lowering the total available
time for sampling soil resources and increasing the difficulty of the task. If agents
are tasked with mapping resources in a given area, then increasing the size of the
resource sites should increase the difficulty of the task. As the size of the resources
increase, then the total area of land the agents must check also increases. Having a
larger area to check, means that the team of agents may run out of time before a
majority of resource locations can be found.

The summary of the results of the experiment is shown in figure 7. This plot
displays the coefficients of linear regression performed to model the effect of the list
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of parameters on mission performance. In this figure, it is clear that both resource
spread and size have a strong negative correlation to mission performance. It should
be noted that the negative impact of size is much larger than spread. This outcome
is intuitive as increasing size increases an area the agents must probe, which scales
quadratically, while increasing spread increases travel distance, which scales linearly.
Due the quadratic scaling of resource size should generally increase the difficulty of
the task more than the linear scaling of resource spread.
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Figure 7. Linear regression was used to determine the relationship between parame-
ters and reward received. Correlation coefficients of the linear regression are plotted
to show the correlations between parameters and mission performance.

Figure 8 presents a side by side comparison of the experimental results. From
these plots it is clear that increasing the resource size decreases the reward received
by the agent. The left portion of the figure shows diminishing returns after around
6 agents. This shows that the problem is fairly easy to solve at a size of 0.5, only
requiring six agents to solve. Adding more than 6 agents would provide no additional
benefit, but instead increased cost. When the size is set to 2.0 and the spread to
30.0, the agents experience difficulty in solving the problem. It should be noted
that in this case, the relationship between reward received and number of agents is
roughly linear. As a result, each agent added roughly adds the same value as the
agent before it. From this it can be concluded that there are not enough agents
used to solve this task and multiple agents could be added past the 20 in this plot
before experiencing diminishing returns.
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Figure 8. The effect of resource size, resource spread, and number of agents on agent
performance is displayed. A 20 ∗ 33 full factorial design was tested to gather this
data, with each data point representing the mean of 5 trials.

5 Application of Reinforcement Learning to Physical
Scouts

Hand tuning controllers presents a set of challenges in its application to lunar re-
source scouting. The first issue is the difficulty of programming a controller for
an unfamiliar environment. Differences between the testing environment and the
physical environment can cause the scouts to perform suboptimally or produce fatal
errors. Another potential issue is the handling of unforeseen experiences. A scout
may move forward and lodge a wheel between a few rocks. The scout may need to
reverse its movement to free its wheel, but its programming continues to attempt to
move the scout forward. In this scenario, the robot is clearly taking a poor action,
but cannot update the controller to improve the action it takes. Reinforcement
learning would allow the scout to learn from its mistakes and perform a low-level of
problem solving. This type of learning would also allow the scout to learn to better
interact with its environment, so that differences in its simulation do not hurt its
performance. The idea of reinforcement is appealing, but its application can be
challenging.
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5.1 Sample Efficiency

Humans have the extraordinary capability of learning to complete a task given only
a few experiences. An example of this would be the game of Pong. After only
playing a few rounds, a human understands the general goal of the game and can
play at a reasonable skill level. Current reinforcement learning algorithms can also
successfully learn to play a game of Pong, but will require thousands of games of
experience [8,11,12]. In reinforcement learning, the amount of information an agent
learns from an experience is referred to as sample efficiency. Low sample efficiency
is not problematic for learning to play games such as Pong because thousands of
games can be simulated every second, thus generating thousands of samples to learn
from. In robotics this is usually not the case. For example, a robot learning to map
resources may take a few hours to a few days to find a new resource. Using these
sample inefficient algorithms, it may take the rover weeks to learn a good control
policy. The sparsely rewarded nature of this domain requires high sample efficiency
in order to learn a control policy in a reasonable amount of time.

Sparsely rewarded domains present their own challenge to sample efficiency. In
these domains, the majority of the rewards an agent receives are constant and unin-
formative. The agent experiences difficulty learning from these experiences because
the reward does not provide much information on its performance. In an episode
of learning, only a handful of informative rewards may be provided to the agents.
With so few informative samples, sample efficiency becomes important if the agent
is to learn a control policy quickly.

Reinforcement learning algorithms can be divided into two categories: model-free
and model-based. Model-free algorithms perform a direct policy search, essentially
learning via trial and error. These algorithms make small changes to the policy
and determine how the changes affect the reward received. Due to the trial and
error nature of these algorithms, they tend to converge slowly to a local minimum.
They also do not perform well in sparsely rewarded domains, such as our scouting
domain, as they require frequent feedback. Model-based algorithms learn to model
their environment, then learn to take optimal actions from information from their
model. These algorithms tend to be more sample efficient, but not efficient enough
due the large number of samples needed to model the environment. However, with
this model, search becomes easier. Thus, they are better at learning out of local
minima and tend to produce higher performing policies. A model based algorithm
would be the best approach for the scouts, but it would be difficult for the scouts
to learn an accurate model of their environment quickly.

One recently proposed method of improving sample efficiency is the use of a
hindsight experience replay buffer. This algorithm allows an agent to learn from
experiences which provide no reward, by setting incremental goals from which to
learn. This approach proved to be significantly more sample efficient than previous
deep reinforcement learning algorithms, but two issues arise. The first issue is for
an agent to learn successfully, clear goal states must be present. A bipedal robot
tasked with walking from one point to another has a clear state which it must be in
to receive a reward. In the case of the mapping rovers, there is no clear goal state
which can be defined. The second issue is that while this algorithm is more sample
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efficient, it is not sample efficient enough. This algorithm still requires hundreds of
experiences to learn from, which the scouts do not have.

Soft actor critic was presented as a more sample efficient actor critic method, and
it proved to be significantly more sample efficient than previous deep reinforcement
learning algorithms. One example of this improvement in sample efficiency was
shown in a quadrupedal robotic locomotion. In this work, the robot was trained
to walk in a span of 2 hours. This significant improvement is not enough for the
rover domain however. While the training of the quadruped took only 2 hours,
400 episodes passed. An episode for a rover could take hours to days. Using this
algorithm, 400 episodes would cost too much of the agents’ time [13].

5.2 Simulation-to-Real Learning

One promising area of applied reinforcement learning to robotics is simulation-to-
real learning. This method involves generating a fairly accurate simulation of a
robotics system, then training the robot in the simulation. The simulation allows
the robot to experience a learning episode in a much shorter time frame. With this,
thousands of simulations can be run in a short time. With thousands of examples
to learn from, sample efficiency no longer becomes an issue. The largest issue that
arises with this method is the transfer of the policy to a real robot. Discrepancies
between the simulated model and the actual physics of the robot can cause the agent
to learn a policy which performs well in the simulated system, but performs poorly
in the physical system. One popular method to compensate for this is to add noise
to the simulation to encourage the agent to learn a more general policy [14,15].

The largest drawback associated with these methods is that very little training
is performed after the policy leaves the simulation. This is problematic in domains
where an accurate simulation of the robot cannot be constructed. Differences be-
tween the physical and simulated environments would lead to poor policy transfer to
the physical robot. The policies also do not perform well when they encounter new
obstacles for the first time in the real world. These are issues the scouts would face,
due to the difficulty of generating a realistic simulation of their environment. This
problem could be solved if the agent learned to overcome the discrepancies between
the simulated and physical environments.

5.3 Future Work

A potential solution to this problem would be a form of transfer learning. A large
portion of a human’s ability to learn with such a high sample efficiency is due to
transfer learning. A human often quickly learns to complete a task by comparing
it to a similar task or a task with similar system dynamics. This type of learning
would be directly applicable to the scouts. The scouts could learn to model the
environment in a simulation, then learn a control policy from this model. The
model and policy would then be transferred to the robot, where the robot would
continually update the model to better reflect the physical system. From this model,
the agent could learn a control policy which better performs in the physical system.
This solves the problem of sample efficiency by performing a majority of the learning
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in the simulation. Outside of the simulation, the model and policy should only need
minor adjustments to reflect the real world dynamics.

6 Conclusions

Robotic mining of lunar resources has the potential to reduce the cost of extended
missions on the Moon and to Mars. This robotic mining would be accomplished
by teams of robots, grouped into three work types. This work focused on the re-
source scouting robots and the application of reinforcement learning to their mission
success.

The mission parameter search began as a series of mission parameters. A series of
simulations were generated with these modified parameters. Due to the differences
in environments, a single control policy could not be used for each case. As a result,
neuroevolution was used to a control policy for each environment. The performances
of these policies were used to then determine the impact of the parameter change
on mission performance.

At the time of this writing, there are very few algorithms which would allow the
scouts to learn to map the resources in a reasonable time span. This is largely due
to the issue of low sample efficiency in many modern deep reinforcement learning
algorithms. Learning in a simulated environment, then transferring the policy to
a physical robot, presents a promising solution, but is not entirely practical. One
possible solution to this problem would be to have an agent learn to model the
system in a simulation, then use transfer learning to accelerate the agent’s ability
to model the real system. This model could then be used to quickly learn a viable
control policy.
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