

A multi model investigation of the lunar interior: a Hot Topic

Heidi Haviland

heidi.haviland@nasa.gov

NASA Marshall Space Flight Center (ST13) Heliophysics and Planetary Science Branch

What is Planetary Science? Why & how do we study planets?

What do we know about the Moon? What is there left to learn?

What is planetary science?

Human Remote Sensing

Image Source: NASA

Image Source: NASA

Image Source: Public Domain Clip Art

Image Source: Pixabay

Image Source: Pixabay

Geophysics Remote Sensing

State, public domain

Image Source: GRACE NASA

Apollo + Luna sampling sites = ~6% of the total lunar surface area

6% of the total terrestrial surface ≈ North America

Lunar Origin Theories

Weber et al., 2011

The current state is key to constraining origin theories.

Oxygen Isotopic Signatures

Stevenson [2014]

Giant Impact Scenarios:

TIME

Stevenson [2014]

Magma Ocean Crystallization Models

Time (model dependent - solidification occurs over 10 - 220 Ma)

The current state of the lunar interior is the first step to constraining formation.

Image source: NASA

Is the Moon Made of Cheese?

	Seismic velocities (km/s)
Cheeses	
Sapsago (Switzerland)	2.12
Romano (Italy)	1.74
Cheddar (Vermont)	1.72
Muenster (Wisconsin)	1.57
Lunar rocks	
Basalt 10017	1.84
Basalt 10046	1.25
Near-surface layer	1.20
Terrestrial rocks	
Granite	5.90
Gneiss	4.90
Basalt	5.80
Sandstone	4.90

Electromagnetic (EM) Sounding of the Moon - Theory

Earth-Sun-Moon Space Environment

Credit: NASA's Goddard Space Flight Center

Lunar Space Plasma Environment

Asymmetric Plasma Confinement

Vacuum Model

Dyal & Parkin, 1971

Night Side Time Domain EM Sounding

Dyal & Parkin, 1971 Sonett, 1982

COMSOL Time Domain (TD) EM Forward Model, implementation

Challenges for TDEM

- Cannot fully capture all Apollo surface observations.
- Apollo magnetometer data not available. Restoration efforts in work.
- Do not consistently observe the radial damping and tangential overshoot predicted by vacuum TDEM analytic theory.

How do induced magnetic fields interact with ambient plasma? Is wake confinement accurate? When can the vacuum approximation be applied?

> - Transient (time dependent) Plasma-induction hybrid model

Transient Plasma Hybrid Kinetic Model $\mathsf{B}_{\mathsf{IMF}}$ V_{SW} m

Case Study – Spatial Effects

 $V_{sw} = 320 \text{ km/s}$ $n_{sw} = 6 / \text{cm}^3$ $\Delta B_y = -8 \text{ nT}$

Fuqua Haviland et al. 2019, GRL

Electrical Conductivity Profile

Fuqua Haviland et al. 2019, ASR

Conclusion & Future Work

- Vacuum theory alone is not able to fully characterize nightside induced fields.
- Plasma hybrid model is able to characterize plasma currents which vary depending on solar wind conditions
- For the first time, we see wake and induced field coupling in models. Redefining Apollo era assumption about wake field confining induced field within cavity.
- Additional work is needed to isolate induction with magnetometer observations (Apollo, LP, Kaguya, ARTEMIS).

Future Lunar and planetary geophysical instrument and missions

CLPS Supports the Artemis Program

Artemis Phase 1: To the Lunar Surface by 2024

ARTEMIS 2: FIRST HUMANS TO THE MOON IN THE 21st CENTURY

ARTEMIS 1: FIRST HUMAN SPACECRAFT TO THE MOON IN THE 21st CENTURY FIRST HIGH POWER SOLAR ELECTRIC PROPULSION (SEP) SYSTEM FIRST PRESSURIZED CREW MODULE DELIVERED TO GATEWAY

ARTEMIS 3: CREWED MISSION TO GATEWAY AND LUNAR SURFACE

Commercial Lunar Payload Services - CLPS delivered science and technology payloads

Early South Pole Crater Rim Mission(s)

- First robotic landing on eventual human lunar return and ISRU site

- First ground truth of polar crater volatiles

Large-Scale Cargo Lander

 Increased capabilities for science and technology payloads

Humans on the Moon - 21st Century First crew leverages infrastructure left behind by previous missions

Neutron Measurements at the Lunar Surface (NMLS)

Neutron Spectroscopy

After Curran [2017]

• "Epithermal neutrons"

- medium energy
- ~constant for most lunar compositions (except H).

• "Thermal neutrons"

- low energy
- absorption cross section increases by nuclei
- is highly composition dependent (flux is large for Fe, Ti)
- Flux is greater in mafic materials (mare basalts, Mg or Fe-rich, of igneous/volcanic origin, dark in color, olivine, pyroxene)
- Flux is smaller in the Fe-poor highlands (farside).
- MSFC scintillator technology effectively discriminates between pulse shapes and distinguishes between neutron and gamma ray (as well as other false) triggers.

High value science opportunities exist for NMLS

Science at Astrobotic M1

WAC Color Ratio Composite R:609/321 G:415 B:321/689

Why Return to the lunar surface?

- The Moon records 4.5 Ga of Inner Solar System History
- The Moon is key to understanding differentiated planetary processes & exospheres
- The Moon acts as a plasma physics lab for understanding key solar system processes
- Unknown phenomena: *swirls, crustal magnetization, shallow moonquakes, sub surface structure*, core, origin, ... & LOTS more!
- The more we learn about the moon & our local space environment, the more we learn about ourselves

Questions?

