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What is Planetary Science?
Why & how do we study planets?

What do we know about the Moon?
What is there left to learn?



What is planetary science?
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Human Remote Sensing
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Geophysics Remote Sensing
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Apollo + Luna
sampling sites =
~6% of the total

lunar surface area

6% of the total
terrestrial surface
=~ North America
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Driving Science Question
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What is the current state and structure of the

global lunar interior?



Lunar Origin Theories
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The current state is key to constraining origin
theories.



Oxygen Isotopic Signatures
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Giant Impact Scenarios:
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https://www.youtube.com/watch%3Fv=pyKOZV43zvo
https://www.youtube.com/watchv=mqOKShwj5u0
https://www.youtube.com/watch%3Fv=nnYocAJLVRk

Magma Ocean Crystallization Models
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The current state of the lunar interior is the
first step to constraining formation.
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Is the Moon Made of Cheese?

Seismic velocities
(km/s)

Cheeses

Sapsago (Switzerland) 2.12
Romano (Italy) 1.74
Cheddar (Vermont) 1.72
Muenster (Wisconsin) 1.57
Lunar rocks

Basalt 10017 1.84
Basalt 10046 1.25
Near-surface layer 1.20

Terrestrial rocks

Granite 5.90
Gneiss 4.90
Basalt 5.80

Sandstone 490

Stevenson [2014]



Electromagnetic (EM) Sounding
of the Moon - Theory
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Lunar Space Plasma Environment

Horizontal and/or Vertical
Dust Transpgr

EXOSPHERE
___+ + ++Rarefaction ++ + +
INPUTS - Eclipse
Photons ——==;- Recompression - - - -
Solar Wind )
Solar A
S lic Regime? &S ggﬁf?&%’éﬁgmg ¢
Particles \\\:g A ) Wake Closure?
3 EURArSutiace Charging Wake :
Coronal Mass - lon Spi LElectric Fields —
Ej_eCtions ‘ Electron Driven
Negative Charging
Magnetosphere
- Magnetosheath Turbulence?

- Magnetotail



Asymmetric Plasma Confinement




Vacuum Model

XsEL AT(t) ( ) ABETF(t)

F(t)x exp(—t / Uaaz)

Dyal & Parkin, 1971



Night Side Time Domain EM Sounding
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COMSOL Time Domain (TD) EM
Forward Model, implementation
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Challenges for TDEM

e Cannot fully capture all Apollo surface observations.

* Apollo magnetometer data not available. Restoration
efforts in work.

* Do not consistently observe the radial damping and
tangential overshoot predicted by vacuum TDEM
analytic theory.



How do induced magnetic fields interact with
ambient plasma? Is wake confinement accurate?
When can the vacuum approximation be applied?

- Transient (time dependent) Plasma-induction
hybrid model



Transient Plasma Hybrid Kinetic
Model
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Case Study — Spatial Effects
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Case Study — Temporal Effects
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Case Study — Temporal Effects
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Electrical Conductivity Profile

Lunar Electrical Conductivity Profile
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Conclusion & Future Work

Vacuum theory alone is not able to fully characterize
nightside induced fields.

Plasma hybrid model is able to characterize plasma
currents which vary depending on solar wind conditions

For the first time, we see wake and induced field
coupling in models. Redefining Apollo era assumption
about wake field confining induced field within cavity.

Additional work is needed to isolate induction with

magnetometer observations (Apollo, LP, Kaguya,
ARTEMIS).



Future Lunar and planetary geophysical
instrument and missions



CLPS Supports the Artemis Program
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Neutron Measurements at the Lunar Surface (NMLS)

Data rate: 10 bps
' Ave Power: 4.8 W
Peak Power: 10 W




Neutron Spectroscopy

After Curran [2017]
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Why Return to the lunar surface?

The Moon records 4.5 Ga of Inner Solar System History

The Moon is key to understanding differentiated
planetary processes & exospheres

The Moon acts as a plasma physics lab for
understanding key solar system processes

Unknown phenomena: swirls, crustal magnetization,
shallow moonquakes, sub surface structure, core, origin,
... & LOTS more!

The more we learn about the moon & our local space
environment, the more we learn about ourselves



Questions?

S MARC




