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What is Machine Learning?

• Machine Learning: a study of algorithms and statistical models that computer systems use to

perform a specific task without using explicit instruction (Wiki)

• Employing machine learning is not magic: you usually must formulate very specific, very

narrow tasks:

• This does not work: “Let us predict solar flares.”

• This may work: “Let us predict the probability of occurrence of solar flares of strength

≥ M1.0 GOES class in active regions within 24 hours after a certain considered time

moment based on the data set X (full description of the data set including train-test

separation).”

• To get an impression of how widely machine learning is currently used in Heliophysics, let

us look at the publications.



The role of the machine learning in Heliophysics:

what do publication records tell us?

• NASA ADS (https://ui.adsabs.harvard.edu/) was used to gather statistics on the number of 

publications, citations, and number of reads.

• Statistics for the last 11 years (2009-2019) and for 2019 alone were compiled.

• The following search keywords were used to extract machine learning papers in Heliophysics:

• “Solar” or “Heliosphere” or “Heliophysics” or “Space Weather” in Abstract

• “Machine learning” or “Artificial Intelligence” or “Data Science” in Abstract

• Search with no machine learning keywords for comparison

https://ui.adsabs.harvard.edu/


Citation patterns: Heliophysics

Number of papers 

(Machine learning)

(Credit: NASA ADS)

• The number of machine learning papers in Heliophysics is growing exponentially with respect to the number 

of all papers in the field. This is an intensively growing field now.

• A smaller fraction of machine-learning papers are refereed on average, but the situation is improving.

Number of papers 

(all papers)



Citation patterns: 2009-2019 summary table

HELIOPHYSICS Machine Learning All papers

Number of papers 1,056 (0.46% from all) 227,403 (100%)

Number of citations 6,163 (5.84 per paper) 2,017,218 (8.87 per paper)

Number of reads (last 90 days) 49,985 (47.33 per paper) 2,553,061 (11.23 per paper)

• The number of reads during last 90 days is 4.2 times higher for machine learning papers.

• Machine learning papers are cited much less per paper on average than heliophysics papers overall.  This may 

be an effect of the exponential growth in recent years.

(Credit: NASA ADS)



HELIOPHYSICS Machine Learning All papers

Number of papers 273 (1.29% from all) 21,204 (100%)

Number of citations 256 (0.94 per paper) 21,134 (1.00 per paper)

Number of reads (last 90 days) 31,834 (115.00 per paper) 881,780 (41.6 per paper)

• (Answering the question from the previous slide) Yes, this is an effect of the field’s growth. Recent machine 

learning papers are cited at approximately the same rate as an average paper in 2019.

• The fraction of machine learning papers has grown with time (compare 1.29% for 2019 with 0.46% averaged 

over the last 11 years)

• Machine learning papers are just slightly less cited in average, but almost 3 (!) times more read compared to an 

average paper.

Citation patterns: 2019 summary table (Credits: NASA ADS)
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Can we classify machine learning research?

• It seems that machine learning research in Heliophysics can be classified into several 

categories, not based on type/algorithms but based on which physical problems they address.

• Example: classification of the contributions at the SHINE 2019 ML&DA Session.

• Can we build a more general classification?
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Simplification of physics 
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• Probably, this is a more 

realistic visualization of these 

clusters

• Clusters overlap with each 

other. A variety of research 

attempts can be associated 

with several clusters.

• Let us talk more about the 

selected research examples in 

each cluster.

Machine learning research clusters in Heliophysics: 

personal impression



Cluster 1: Enhancement of Space Weather prediction 

capabilities (forecasting and nowcasting)

• We are still trying to understand the triggers and drivers of solar transient and longer-term

activity and the related terrestrial impacts.

• Availability of large observational data volumes and (often) a very clearly-defined task

allows us to formulate precise classification or regression tasks for machine learning.

• Probably, the largest category in Heliophysics where machine learning is applied so far:

prediction of solar flares, CMEs, SEPs, ionospheric scintillations, geomagnetic indexes,

sunspot numbers, solar irradiance, etc.

• Together with a significant research component, this category is expected to have a strong

impact on operational forecasting of Space Weather



Example 1.1: Deep learning as an emerging tool for 
flare prediction

• Convolutional Neural Network-based methods1

using magnetograms as input images give 

results comparable to previous feature-based 

approaches.

• Recently several attempts utilizing Recurrent 

Neural Network2 architectures have appeared. 

Although feature-based, the presented methods 

consider time series instead of static 

descriptors.

Example of the LSTM network architecture. 

Credits: Liu et al. 2019

Input: time series of features

Output: time series of labels

1 Huang et al. 2018, Jonas et al. 2018
2 Long-Short Term Memory Network (LSTM), Liu et al. 2019, Sun et al. 2019



Example 1.2: Predicting ionospheric scintillations

• McGranaghan et al. (2018) utilized

solar wind data, geomagnetic

activity, and particle precipitation

data, as well as ionospheric data,

to predict high-latitude ionospheric

phase scintillations

• The authors employed a Support

Vector Machine (SVM) classifier

as a machine learning algorithm

and performed careful analysis of

the model performance with

respect to lead time variations and

definition of the scintillation.
Visualized confusion matrix. Credits: 

McGranaghan et al. (2018)
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Challenges while moving from research to operations

• Prediction depends on the data set, on the

definition of train/test subsets, on the metrics

targeted to maximize, etc.:

• It is almost impossible to cross-compare

the performance of different methods.

• It is very hard to move any developed

method to operational status.

• Possible solution: apply prediction algorithms

from different efforts under the same conditions

(right: Leka et al. 2019). Another solution:

match temporal and spatial scales of operational

data sets (Sadykov et al. AGU 2018).

• Research to Operations pipeline requires

validation of the research attempts on longer-

term data sets.

Comparison of different forecasting methods. Each symbol 

represents an operational method, either from space weather 

warning centers or research facilities. Credits: Leka et al. 2019. 
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Cluster 2: Object recognition and classification in 

observational and modeling data

• Although this task is often performed in support of other research directions (Space Weather

forecasting, derivation of features of recognized objects, statistical studies, etc.), it can be

considered as a self-contained task.

• Object recognition is often used to replace (and enhance) human-based detection.

• Often represents a pure classification task in machine learning



Examples 2.1: Employing deep learning for 

automatic detection of coronal holes and filaments

Right: Example of filament 

segmentation as reported to HEK (top) 

and detected by Mask R-CNN (bottom). 

Credits: Ahmadzadeh et al. 2019. 

Left: Examples of coronal hole 

detection by U-Net. Credits: 

Illarionov and  Tlatov, ML-Helio

2019. 

• Statement: deep learning can be

successfully applied to object

detection in solar images in the

presence of accurate labeling

and sufficient size of the training

set.



Other examples of event detection

Top: an example of automatic detection of radio 

bursts using the YOLO deep learning algorithm.                                   

Credits: Carley et al. (ML-Helio 2019). 

Right: illustration of recognition

of shockwaves in quiet Sun

simulations performed with the

StellarBox RMHD code

(Wray et al. 2015, 2018)

Shockwaves are prominent in

running-difference images of

synthesized SDO/AIA emission

(top panel). After clustering is

applied for synthesized

SDO/AIA emission, the shocks

and tend to be in one cluster

(bottom panel)

Credits: Sadykov et al. (2019).



Cluster 3: Simplification of physics models and 

approximation of non-linear relations by ML analogs

• Many problems of physics are non-linear, non-local, ill-posed in nature, and are very

expensive to solve computationally .

• Sometimes even finding the appropriate physical description of the relations between data

sets (for example, photospheric magnetic fields of active regions and related EUV emission

of coronal loops) is complicated.

• In the presence of enough training data, machine learning can help us either to replace some

portions of a model by its faster ML-driven analog, or to fully replace the original model.

• Further analysis of ML-driven models can potentially enhance our understanding of the

physical processes.



Example 3.1: Fast inversion of Mg II line profiles 

using Deep Learning

Reconstruction of atmospheric parameters from Mg II lines. 
Credits: Sainz Dalda et al. (2019)

• Sainz Dalda et al. (2019) developed a

faster model for non-LTE inversion of

the Mg II lines for various conditions of

the solar atmosphere (including flaring

atmospheres):

• The k-Means clustering technique

was applied for identification of

typical line profiles.

• Cluster centers were inverted with

STiC code (a physics model).

• The neural network was trained on

the inverted cluster centers to

“interpolate” the solutions of the

inverse problem.



Example 3.2: Fast inversion of EUV emission using 

Deep Learning

Comparison of physics-based and deep learning-based solutions. 
Credits: Wright et al. 2019, in HelioML ebook.

• Wright et al. (2019) employed deep

learning to replicate the differential

emission measure (DEM) derivation

from SDO/AIA images.

• The training set represented a set of

calibrated SDO/AIA observations

and physics-based DEM solutions

• The neural network was trained on

the inverted data set to replicate the

physical model.

• This attempt was followed by

generation of synthetic MEGS-A data

from SDO/AIA observations after the

instrument failed (FDL 2018).



Example 3.3: Far-side magnetic field maps from 

STEREO/EUVI and far-side helioseismology

Comparison of SDO/HMI magnetic field maps with generated from 
SDO/AIA 304A by AI. Credits: Kim et al. (2019)

• Kim et al. (2019) developed a model to

reconstruct magnetic field maps from EUV

images (SDO/AIA and STEREO/EUVI

304 A observations).

• STEREO/EUVI had periods of time when

it observed the far side of the Sun. This

opened the possibility of reconstructing the

far-side magnetic field maps.

• Chen et al. (AGU 2019) used far-side

helioseismology to deduce magnetic flux

maps based on previous EUV-HMI pairing.



Cluster 4: Exploration and discovery of (large 

highly-dimensional) data volumes

• Precursor: growing observational and modeling capabilities result in significantly larger data

complexity, rates, and volumes with respect to what was handled previously. It is impossible

to explore these volumes without projecting them to a simpler, more compact space

• Data clustering has already been applied to a variety of problems (selection of training

samples for deep learning, classification of spectroscopic line profiles and EUV emission).

Attempts to employ representation learning were shown at FDL 2019.

• Personal opinion: this direction is under-explored and has a strong potential for discovery.

Illustration of clustering 
of data points



Appearance of cyan line profiles (cyan histogram) 
correlates with the GOES SXR time derivative (orange 

curve). Credits: Panos et al. (2018)

• Panos et al. (2018) used a k-Means clustering

algorithm to recognize typical shapes of Mg II line

profiles observed during 33 solar flares (hundreds

of thousands of data samples).

• The authors found correlations between certain

profile shapes and the GOES Soft X-Ray (SXR)

time derivatives at the front of fast-moving flare

ribbons.

• Panos and Kleint (2019) recently investigated the

possibility of predicting solar flares based on the

appearance of certain types of profiles. The same

approach was introduced by Woods et al. (AGU 2019)

Example 4.1: Classification of spectroscopic line 
profiles and correlation with flare properties
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Left: Clusters of SDO/AIA relative 
running differences of the quiet Sun.

Right: Illustration of the quiet Sun 
domain used in the study.

Credits: Sadykov et al. (AGU 2019)

• We utilized 10-minute observations of the quiet Sun

at the disk center by SDO/AIA. Observations in

different channels are aligned.

• We define RRDs as RRD(t) = I(t)/I(t-1) – 1. RRDs

do not show dependence on global structures

• Seven clusters are selected using a k-Means

clustering algorithm. These correspond to seven

“quantum states” of SDO/AIA EUV emission.

Example 4.2: Clustering of Relative Running 
Differences (RRD) of SDO/AIA EUV emissions

• Idea: Now one can consider evolution of the discrete

number (quantum state) instead of a six-dimensional

vector. It makes the problem much easier. Preliminary

conclusions:

• The behavior of quantum states is Markovian.

• The system fully “forgets” the quantum state where

it was previously in about 48 seconds.



Cluster 5: Creation of homogeneous ML-ready 

datasets and related quality standards

• Data preparation is probably the most important phase in any machine learning attempt. If

the data is not prepared and cleaned properly, the results will be unreliable (“Garbage in –

garbage out”).

• The data preparation phase is usually very time- and effort-consuming. ML-ready datasets

are highly valuable for the community.

• The field spans beyond the “standard” procedures to prepare the data (search for outliers and

corrupted data, calibration, and instrument degradation corrections).



Example 5.1: Space Weather ANalytics for Solar 
Flares (SWAN-SF)

• Currently it is almost

impossible to compare the

scores from a variety of

flare prediction efforts (as

previously discussed).

Data partitioning in a SWAN-SF data set. Credits: Ahmadzadeh et al. 2019

Solution: build open-accessible data sets for flare prediction purposes (SWAN-SF). The data

set is properly separated and contains time series, which is important for some deep learning

(LSTM) algorithms and other methods in applications to flare forecasting.

Monthly-averaged 

sunspot number



Credits: Galvez et al. 2019

Example 5.2: Machine learning dataset prepared 

from the SDO/AIA mission
• The dataset contains SDO AIA

images and HMI magnetograms

with 2 min and 12 min cadence

correspondingly, with a size of

512x512 pixels. SDO/EVE data

is delivered every 10 seconds.

• The images are synchronized to

keep the same solar disk size and

rotation phase, and the SDO/AIA

and SDO/EVE data are corrected

for degradation of the

instruments.

• The data set delivered a variety

of results in FDL 2018&2019.
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Left: SOHO/MDI image. Center: corresponding SDO/AIA image. Right: super-resolved 

SOHO/MDI image using physics-based loss function. Credits: Jungbluth et al. 2019

Example 5.3: Super-resolution homogeneous 

magnetic field maps
• An attempt to super-resolve magnetic field maps and create a homogeneous dataset using deep

learning architectures spanning from Wilcox solar observatory data to Hinode/SOT maps.

• The work started in FDL 2019.



Ongoing projects related to creation of ML-ready 

datasets
• We all wish to have reproducible and traceable results and open-access high-quality data in our

community. The best practice is to start doing it for our projects.

• Two projects with involvement of NASA Ames / BAERI resulted in such data:

• “Machine Learning Tools for Predicting Solar Energetic Particle Hazards” (NASA ESI)

• “Interactive Database of Atmospheric Radiation Dose Rate” (NASA)

Current project



Conclusion

• Machine learning has many applications in Heliophysics. It has already moved beyond 

Space Weather forecasting and far beyond flare prediction.

• Research attempts are growing in number and receiving strong attention from the 

community.

• The research attempts can be subdivided into several categories based on the problems 

which they address. 

• It is critical to continue development of the field:

• We should address very important challenges which are impossible to solve if no

machine learning is applied.

• We must gain more understanding of machine learning, its limitations and pitfalls.


