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 REVISITING OSIRIS-REX TOUCH-AND-GO (TAG) 
PERFORMANCE GIVEN THE REALITIES OF ASTEROID BENNU 

Kevin Berry,* Kenneth Getzandanner,* Michael Moreau,* Peter Antreasian,† 
Anjani Polit,‡ Michael Nolan,‡ Heather Enos,‡ and Dante Lauretta‡ 

The Origins, Spectral Interpretation, Resource Identification, and Security–Reg-

olith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission that 

launched in 2016 and rendezvoused with the near-Earth asteroid (101955) Bennu 

in late 2018. Upon arrival, the surface of Bennu was found to be much rockier 

than expected.1 The original Touch-and-Go (TAG) requirement for sample col-

lection was to deliver the spacecraft to a site with a 25-meter radius;2 however, 

the largest hazard-free sites are no larger than 8 meters in radius. To accommodate 

the dearth of safe sample collection sites, the project re-evaluated all aspects of 

flight system performance pertaining to TAG in order to account for the demon-

strated performance of the spacecraft and navigation prediction accuracies. More-

over, the project has baselined onboard natural feature tracking3 instead of lidar 

for providing the onboard navigation state update during the TAG sequence. This 

paper summarizes the improvements in error source estimation, enhancements in 

onboard trajectory correction, and results of recent Monte Carlo simulation to en-

able sample collection with the given constraints. TAG delivery and onboard nav-

igation performance are presented for the final four candidate TAG sites. 

INTRODUCTION 

The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Se-

curity–Regolith Explorer (OSIRIS-REx) mission is to study the near-Earth asteroid (101955) 

Bennu and return a pristine regolith sample to Earth.4 The spacecraft arrived at Bennu on December 

3, 2018, and has been conducting proximity operations to map the entire surface and determine the 

distribution of regolith and boulders. On a global scale, Bennu’s properties largely match those 

determined by the pre-encounter astronomical campaign. However, the rocky surface of Bennu was 

found to have much fewer and smaller patches of boulder-free regions than was originally pre-

dicted.1,5 

 The original requirement on the Flight Dynamics System was to deliver the spacecraft to within 

25 m of a given Touch-and-Go (TAG) site, and this requirement was met with over 20% margin 

across the entire surface of Bennu with a simple lidar-based onboard guidance algorithm.2 As sur-

face observations were being made, it was found that the largest hazard-free sites are no larger than 

8 m in radius, providing a new challenge for the project to overcome.  
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To improve the TAG delivery accuracy, the project decided to switch to the onboard software 

system called Natural Feature Tracking (NFT)3 for the onboard guidance algorithm that provides 

the navigation state update during the TAG sequence. Although lidar provides accurate range meas-

urements, it cannot directly provide accurate cross-track information as NFT can. Also, there was 

a concern that the unexpected degree of albedo heterogeneity1,5 would be problematic for the auto-

matic gain controller in the lidar system. Fortunately, NFT had already been developed and imple-

mented as a backup capability. 

 

OVERVIEW OF THE TAG SEQUENCE 

The TAG sequence consists of a burn to depart orbit, two burns to target the TAG site position 

and TAG velocity, the actual TAG event, and then the back-away burn. The original design is 

detailed in the 2015 paper by Berry et al.2, but we are no longer planning on using a circular orbit 

prior to orbit departure. The TAG sequence now begins in a “frozen orbit” that is slightly offset 

from the Bennu solar terminator plane. This orbit was designed to balance the perturbations from 

solar radiation pressure with the low gravity of the asteroid, providing orbit stability over a period 

of several months.6 The frozen orbit is determined by finding an equilibrium solution to the La-

grange planetary equations such that none of the Keplerian orbit parameters evolve over time, with 

a result that has an eccentricity of roughly 0.15 as is shown in Figure 1.  

 

Figure 1. Frozen Orbit (purple) and TAG trajectory (green) 
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Figure 2. TAG Sequence Viewed Along the Orbit Normal Vector after Orbit Departure 

The orbit departure maneuver occurs on the morning side of the asteroid at roughly 1 km from 

Bennu’s center with a latitude that is opposite of the TAG site latitude to optimize the ground track 

for natural feature tracking. Approximately 4 hours later, the spacecraft arrives at Checkpoint with 

an altitude of 125 m above the TAG site on a trajectory that is designed to be passively safe, mean-

ing that the spacecraft will not collide with the surface if the next burn does not execute. Checkpoint 

is where NFT will check its estimate of the trajectory and update the subsequent burns to correct 

for dispersions. The updated Checkpoint burn is executed, followed by the Matchpoint burn 10 

minutes later. Matchpoint occurs at 50 m above the TAG site with a burn that sets the horizontal 

velocity to match the surface rotation at TAG. This is the final correction to the trajectory, after 

which the spacecraft will be in a free fall towards the surface until it makes contact at the TAG site 

with a vertical velocity of –10 cm/s. Since the Checkpoint and Matchpoint burns are executed in 

the TAG attitude, they are each split into 3 burns and performed sequentially in the 3 axes of the 

spacecraft body frame. After contact has been made and a sample has been collected, the spacecraft 

executes a 70 cm/s Backaway burn that is large enough to escape Bennu’s gravitational pull in all 

worst case contact scenarios. 

The spacecraft attitudes used during the TAG sequence are all inertially fixed following the 

orbit departure burn, as shown in Figure 2. The NFT attitude is defined to point the camera in the 

nadir direction at 1 hour after orbit departure while pointing the solar arrays as close to the Sun as 

possible. This allows images of the Bennu surface to be collected for processing in the NFT Kalman 

filter. Since the attitude is inertially fixed, the surface would leave the camera field of view if the 

spacecraft remained in this attitude too long. The final attitude that it needs to be in prior to the 

Checkpoint burn is the TAG attitude, which aligns the sample collection arm with the TAG site 

surface normal vector and constrains the other spacecraft axes to ensure communication with Earth 

via the low gain antenna. An intermediate attitude is needed between the NFT attitude and the TAG 

attitude to continue to collect surface images, so the spacecraft slews to the Look-Ahead attitude 1 

hour before Checkpoint. The Look-Ahead attitude is defined by rotating the TAG attitude by 30 
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degrees about the negative orbit normal vector, moving the camera field of view closer to nadir and 

ahead of where it would be in the TAG attitude, hence the name Look-Ahead. The solar array 

configuration changes throughout the TAG sequence to maintain power, ending with the “Y-wing” 

configuration in the TAG attitude as shown in Figure 2 to protect the arrays during contact with the 

surface and the Backaway burn. 

In the final descent to the surface, NFT will continue to process images to estimate the time and 

position where TAG will actually occur. This information can be used to wave-off the TAG attempt 

by triggering the Backaway burn early to terminate the descent. The original design had this capa-

bility limited to a check against a maximum radial distance from the TAG site center, which was 

intended to be used as a fail-safe against an anomalous event sending our trajectory far off course. 

In light of the challenges facing the TAG design, the spacecraft team has implemented a new ca-

pability that compares the NFT predicted TAG position and its uncertainty to an onboard hazard 

map and calculates the probability of unsafe contact, triggering a wave-off if that probability is 

larger than a predetermined threshold. This new capability enables us to safely attempt sample 

collection at a site that is smaller than the expected delivery ellipse, effectively changing the driving 

metric from delivery ellipse size to probability of success. 

 

IMPROVED MODELING 

As was previously mentioned, the largest hazard-free sites on the Bennu surface are no larger 

than 8 m in radius, which is much smaller than the 25-m delivery requirement that the mission was 

designed to accomplish. In addition to making the NFT guidance algorithm prime, it also became 

necessary to reevaluate all conservative error models and improve performance wherever possible. 

An exhaustive evaluation was undertaken by the navigation team and the spacecraft team to pa-

rameterize observed in-flight performance and determine where predictive uncertainties can be 

tightened.  

Navigation Performance in the Terminator Orbit 

Due to the small size and mass of Bennu, it is extremely important for the navigation team to 

accurately model gravitational forces as well as all non-gravitational forces down to 0.1 nm/s2. 

These forces include the Bennu spherical harmonic gravity model, solar radiation pressure, space-

craft thermal re-radiation pressure, Bennu surface thermal re-radiation pressure, and antenna pres-

sure.7,8 Rigorously modeling all of these forces during proximity operations at Bennu resulted in a 

substantial improvement in the state uncertainty at orbit departure as shown in Table 1. 

Table 1. Navigation State Uncertainty at Orbit Departure 

 Position Uncertainty (m, 3σ) Velocity Uncertainty (mm/s, 3σ) 

 Radial Transverse Normal Radial Transverse Normal 

Pre-Launch  12.5 52.6 3.80 3.92 0.506 0.0314 

In-Flight 3.63 20.6 0.523 1.58 0.169 0.0785 

 

Maneuver Execution Performance 

The pre-launch maneuver execution error model provided by the Lockheed Martin spacecraft 

team included the effects of a failed thruster for single fault tolerance, as well as conservative as-

sumptions on thruster misalignments, variation between thrusters, accelerometer errors, and errors 
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in the spacecraft center of gravity. Performing extensive statistical analysis on in-flight perfor-

mance, they were able to tighten up these errors sources and update their maneuver Monte Carlo 

analysis to provide greatly improved performance estimates shown in Table 2. These in-flight per-

formance numbers assume that no thrusters have failed, so they will need to be reevaluated in the 

unlikely event of a thruster failing before TAG. Note that the X, Y, and Z components of the Check-

point and Matchpoint burns now have varying maneuver execution errors. Since these individual 

component burns occur sequentially, slosh effects change the expected errors based on when each 

burn occurs in the sequence. The Checkpoint burn sequence is X-Y-Z, while the Matchpoint burn 

sequence is Z-Y-X. 

Table 2. Maneuver Execution Errors 

 Pre-Launch In-Flight 

 Magnitude Error Transverse Error Magnitude Error Transverse Error 

Orbit Departure RSS(0.3mm/s, 1.5%ΔV) 0.3mm/s+2.5%ΔV RSS(0.2mm/s, 0.3%ΔV) 0.0mm/s+1.3%ΔV 

Checkpoint X RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+10%ΔV RSS(1.3mm/s, 4.4%ΔV) 0.0mm/s+3.0%ΔV 

Checkpoint Y RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+10%ΔV RSS(1.3mm/s, 4.4%ΔV) 1.0mm/s+3.5%ΔV 

Checkpoint Z RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+2.5%ΔV RSS(1.3mm/s, 4.4%ΔV) 0.5mm/s+1.4%ΔV 

Matchpoint X RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+10%ΔV RSS(1.3mm/s, 4.4%ΔV) 1.0mm/s+3.0%ΔV 

Matchpoint Y RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+10%ΔV RSS(1.3mm/s, 4.4%ΔV) 1.3mm/s+5.5%ΔV 

Matchpoint Z RSS(1.5mm/s, 5.0%ΔV) 1.5mm/s+2.5%ΔV RSS(1.3mm/s, 4.4%ΔV) 0.0mm/s+1.2%ΔV 

 

NFT Performance 

As a result of the improvements in navigation and maneuver execution performance, the NFT 

team saw a reduction in the Checkpoint prediction uncertainty. Since NFT is running a Kalman 

filter, initializing it with a smaller covariance after the orbit departure burn results in a more accu-

rate trajectory estimate onboard, as is shown in Table 3. The actual performance varies across the 

possible TAG sites, so the numbers shown here are bounding. In the final TAG design, these NFT 

performance estimates will be improved further based on the feature availability in the images ex-

pected on the specific TAG trajectory. 

Table 3. NFT State Uncertainty at Checkpoint 

 Position Uncertainty (m, 3σ) Velocity Uncertainty (mm/s, 3σ) 

 Radial Transverse Normal Radial Transverse Normal 

Pre-Launch  3.0 3.0 3.0 3.0 3.0 3.0 

In-Flight 2.1 2.1 2.1 2.9 2.9 2.9 

In addition to the Checkpoint prediction improvement, the spacecraft team developed a flight 

software patch that enables an NFT wave-off assessment against a hazard map. Since that assess-

ment uses the NFT uncertainty calculated onboard at a range of 5 m from the surface on its TAG 

position estimate to calculate the probability of unsafe contact, we needed a bounding uncertainty 

to use in the comparison of the probability of success between the various TAG sites being ana-

lyzed. The NFT team determined the uncertainty in the TAG position estimate at the time of the 

final onboard solution and provided a conservative estimate of 1.27 m (3σ) to be used in the site 

selection process, with an expectation that this will also be improved upon for the selected site. 
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FINAL FOUR CANDIDATE SAMPLE SITES 

The site selection process began shortly after arrival in December of 2018. Global maps were 

created for Deliverability, Safety, Sampleability, and Science Value, which were all compared to 

determine the regions of interest for the various teams to focus on. This process is what highlighted 

the need for the performance improvements discussed in the previous sections, resulting in addi-

tional observations of the surface and several iterations with the site selection board as we learned 

more and refined our maps. The regions of interest were exhaustively analyzed and compared until 

they were narrowed down to the “Sweet Sixteen”, followed by the “Elite Eight”. In August of 2019, 

the project announced the selection of the “Final Four” sites shown in Figure 3 and Figure 4. 

 

Figure 3. Locations of the Final Four TAG Sites on Bennu. Image credit: 

NASA/University of Arizona 

 

Figure 4. Images of Each of the Final Four TAG Sites. Image credit: NASA/University of 

Arizona 
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MONTE CARLO SIMULATION 

A thorough Monte Carlo analysis is needed to determine the combined effects of all error 

sources propagated with non-linear dynamics along with the NFT guidance update to the Check-

point and Matchpoint burns. The trajectory design and targeting in this analysis is performed with 

STK (Systems Tool Kit) by Analytical Graphics, Inc. MATLAB (by MathWorks, Inc.) is used to 

drive the Monte Carlo analysis by automating the inputs to the STK scenario and applying the 

various perturbations to the nominal trajectory. A detailed description of the algorithms can be 

found in Berry et al.2 

Orbit Departure Dispersions 

The dispersions following the orbit departure burn are shown in Table 4 for the Final Four TAG 

sites, along with the range of dispersions that were seen in the Monte Carlo analysis that was per-

formed before the mission launched. In general, the dispersions have been cut in half with the 

improved modeling described previously. These dispersion are used to initialize the NFT filter. 

Table 4. Trajectory Dispersions after Orbit Departure Burn 

 Position Dispersions (m, 3σ) Velocity Dispersions (mm/s, 3σ) 

 Radial Transverse Normal Radial Transverse Normal 

Pre-Launch  14 - 15 11 - 36 40 - 52 4.2 - 4.4 1.5 - 1.7 1.3 - 1.6 

Nightingale 4.65 3.29 19.7 1.78 0.738 0.591 

Kingfisher 4.85 3.37 20.2 1.79 0.729 0.600 

Osprey 4.83 3.67 20.1 1.79 0.737 0.609 

Sandpiper 4.69 8.10 19.0 1.74 0.712 0.528 

 

Checkpoint Dispersions 

Propagating the dispersed trajectories to Checkpoint results in an elongation of the covariance 

in the transverse direction. The Checkpoint dispersions shown in Table 5 represent the range of 

trajectory errors that the NFT guidance algorithm will need to correct for with the Checkpoint and 

Matchpoint burn update. This dramatic improvement in dispersions result in a more accurate NFT 

estimate and a more accurate TAG delivery. 

Table 5. Trajectory Dispersions before Checkpoint Burn 

 Position Dispersions (m, 3σ) Velocity Dispersions (mm/s, 3σ) 

 Radial Transverse Normal Radial Transverse Normal 

Pre-Launch  28 - 37 68 - 120 9.1 - 12 17 - 29 7.5 - 8.8 8.5 - 11 

Nightingale 9.89 50.4 3.66 12.0 3.39 4.69 

Kingfisher 12.9 48.1 3.22 11.1 3.33 4.14 

Osprey 12.3 47.1 3.36 11.4 3.24 4.29 

Sandpiper 10.9 42.0 2.98 10.7 2.96 4.21 
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TAG Dispersions 

Continuing the Monte Carlo runs to the surface, the TAG dispersions in Table 6 show that we 

were able to reduce the pre-launch position errors of 17–20 m down to 5.7–8.1 m. The velocity 

dispersions are also much smaller, giving us more margin against the 20 mm/s maximum horizontal 

and vertical velocity requirements that the spacecraft was designed to. The next section will show 

the TAG position error ellipses overlaid on each of the TAG sites and what the resulting probabil-

ities of success are. 

Table 6. TAG Dispersions 

 Position  

Dispersions 

(m, 3σ) 

Horizontal Velocity 

Dispersions 

(mm/s, 3σ) 

Vertical Velocity  

Dispersions 

(mm/s, 3σ) 

Pre-Launch  17 - 20 12 - 15 9.4 - 15 

Nightingale 8.12 6.64 6.95 

Kingfisher 5.89 5.03 7.54 

Osprey 5.66 4.56 6.39 

Sandpiper 7.29 6.47 5.57 

 

PROBABILITY OF SUCCESS 

For each TAG site, a hazard map is generated that determines the regions where contact may be 

unsafe. Since the spacecraft can tip over up to 25 degrees during contact, larger boulders and hills 

present tip-over hazards and backaway hazards if TAG occurs adjacent to one and the spacecraft 

tips toward it before the Backaway burn starts. The hazard maps shown in this section, along with 

the corresponding success probability calculations, are based on tip-over and backaway hazards 

only. Future work will include adding rocks and boulders that could be hazardous for the sample 

collection head to make contact with, which may reduce the success probabilities shown. 

On a given trajectory down to the TAG site, NFT will predict the actual TAG position with an 

uncertainty that is expected to be less than 1.27 m (3σ). The flight software takes that predicted 

TAG position and covariance and integrates the corresponding 2-dimensional probability density 

function against the hazard map to determine the probability of unsafe contact. If that probability 

is larger than a configurable threshold, NFT will trigger a wave-off to protect the spacecraft, result-

ing in an early Backaway burn at 5 meters altitude. In this analysis, the threshold used for a given 

site is derived based on a 0.5% total probability of unsafe contact across the entire site area, which 

was chosen to give us margin against the 1% requirement. The final probability of unsafe contact 

will be determined just prior to TAG implementation. 

To determine the probability of success for each TAG site, the delivery ellipse is used to deter-

mine the probability of contact with every facet in the hazard map. The NFT wave-off assessment 

is performed for a trajectory that is estimated to make contact with each individual facet, and facets 

that triggered a wave-off are summed to determine the total probability of wave-off. The probability 

of success is the probability that the spacecraft proceeds to the surface without a wave-off and that 

there isn’t any unsafe contact, which is shown in Equation (1). 

𝑃𝑆𝑢𝑐𝑐𝑒𝑠𝑠 = 1 − 𝑃𝑊𝑎𝑣𝑒−𝑂𝑓𝑓 − 𝑃𝑈𝑛𝑠𝑎𝑓𝑒 (1) 
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Figure 5 shows the 3σ delivery ellipses colored blue for each site overlaid on the hazard maps, 

along with the three probabilities previously mentioned. The facets of the hazard maps are colored 

according to the following scheme: 

Red & Yellow:  NFT wave-off 

• Probability of contact with hazard ≥ threshold 

• Red facets are potential hazards 

• Yellow facets are close enough to red to trigger wave-off   

Green & Pink: No NFT wave-off 

• Probability of contact with hazard < threshold 

• Green facets are free of hazards and are considered successful TAG attempts 

• Pink facets are hazards too small to trigger wave-off and represent unsafe contacts 

Nightingale

 

Kingfisher

 

Osprey

 

Sandpiper
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Figure 5. TAG Deliverability & Hazard Maps 

CONCLUSIONS 

To meet the challenges presented by the unexpectedly rocky landscape of Bennu, the OSIRIS-

REx team was able to modify the prelaunch TAG design through performance improvements and 

enhancements to the NFT estimation algorithms. Adding the NFT wave-off capability allowed the 

delivery error metric to be changed to a configurable probability of success, which made it possible 

to easily rank each site for comparison with the other site selection criteria. On December 12 of 

2019, the project announced the selection of Nightingale as the primary TAG site due to its abun-

dance of fine-grained material and its relatively high probability of successful collection of at least 

60 g of regolith (the mission level-1 requirement). The backup site was selected to be Osprey, 

which has less fine-grained materials but a higher probability of surface contact (the minimum 

mission success criterion).  
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