Authors	Email	Last Name, First Name	Employer/Affiliation
	duffy.m.kate@gmail.com	Duffy, Kate	Northeastern University
	thomas.vandal@nasa.gov	Vandal, Thomas	Bay Area Environmental Research Institute (BAERI)
	lishuangfirst@gmail.com	Li, Shuang	Bay Area Environmental Research Institute (BAERI)
	rama.nemani@nasa.gov	Nemani, Ramakrishna R.	NASA
	a.ganguly@northeastern.edu	Ganguly, Auroop	Northeastern University

Keywords Remote sensing, machine learning, emulation, geostationary satellite

Abstract	New generation geostationary satellites make reflectance observations	
1054401	available at a continental scale with unprecedented spatiotemporal	
	resolution and spectral range. Generating Earth monitoring products from	
	these observations requires retrieval of the basic parameter, surface	
	reflectance (SR), by atmospheric correction (AC). Algorithms for	
	atmospheric correction, including Multi-Angle Implementation of	
	Atmospheric Correction (MAIAC), are adapted for each sensor and are too	
	computationally complex to be run in real time, relying instead on look-up	
	tables with precomputed values. Machine learning methods, including	
	convolutional neural networks, have demonstrated performance in learning	
	complex, nonlinear mappings and extracting insight from high-dimensional	
	remote sensing data. In this work, we present a deep learning emulator of	
	MAIAC to retrieve both SR and cloud products. Using this adaptation of	
	deep learning-based emulation to remote sensing, we demonstrate stable SR	
	retrieval over a variety of land covers and viewing conditions and accurate	
	cloud detection. Further, a comparison of computation time suggests	
	emulation as a compelling alternative for expensive physical simulation,	
	especially for applications benefited by near-real time data, such as	
	agricultural management and disaster response.	

Event Name	AGU Fall Meeting 2019
Location	San Francisco, CA
Presentation Date	December 11, 2019
Presentation Sponsor	American Geophysical Union (AGU)
Presentation URL	https://agu.confex.com/agu/fm19/webprogrampreliminary/Paper543801.html